Homework 5

1. Consider two distributions ν_{1}, ν_{2} on the finite state space Ω. In this question, we will prove the identity

$$
\left\|\nu_{1}-\nu_{2}\right\|_{T V}=\max _{A \subseteq \Omega}\left|\nu_{1}(A)-\nu_{2}(A)\right|
$$

(a) [5 pts] Define S to be the set of $x \in \Omega$ such that $\nu_{1}(x) \leq \nu_{2}(x)$. Show that

$$
\begin{aligned}
\left\|\nu_{1}-\nu_{2}\right\|_{T V} & =\frac{1}{2}\left(\sum_{x \in S}\left(\nu_{2}(x)-\nu_{1}(x)\right)+\sum_{x \in S^{c}}\left(\nu_{1}(x)-\nu_{2}(x)\right)\right) \\
& =\frac{1}{2}\left(\nu_{2}(S)-\nu_{1}(S)+\nu_{1}\left(S^{c}\right)-\nu_{2}\left(S^{c}\right)\right)
\end{aligned}
$$

(b) [5 pts] Show that $\nu_{2}(S)-\nu_{1}(S)=\nu_{1}\left(S^{c}\right)-\nu_{2}\left(S^{c}\right)$, and combine this with part (a) to show that

$$
\left\|\nu_{1}-\nu_{2}\right\|_{T V}=\nu_{2}(S)-\nu_{1}(S)=\left|\nu_{1}(S)-\nu_{2}(S)\right|
$$

(c) [5 pts] Use part (b) to conclude that

$$
\left\|\nu_{1}-\nu_{2}\right\|_{T V} \leq \max _{A \subseteq \Omega}\left|\nu_{1}(A)-\nu_{2}(A)\right|
$$

(d) [5 pts] Now, show that for any set $A \subseteq \Omega$,

$$
\nu_{1}(A \cap S)-\nu_{2}(A \cap S) \leq \nu_{1}(A)-\nu_{2}(A) \leq \nu_{1}\left(A \cap S^{c}\right)-\nu_{2}\left(A \cap S^{c}\right)
$$

(e) [5 pts] Use part (d) to show that for any $A \subseteq \Omega,\left|\nu_{1}(A)-\nu_{2}(A)\right| \leq$ $\nu_{2}(S)-\nu_{1}(S)$ and hence by part (b)

$$
\left|\nu_{1}(A)-\nu_{2}(A)\right| \leq\left\|\nu_{1}-\nu_{2}\right\|_{T V}
$$

Combining this with part (c) shows the desired result!
Notation: S^{c} is the complement of S - that is, all the elements of Ω that are not in S. Formally,

$$
S^{c}=\{\text { all } a \in \Omega \text { such that } a \notin S\}
$$

$X \cap Y$ is the intersection of sets X and Y - that is, all the elements that appear both in X and in Y. Formally,

$$
X \cap Y=\{\text { all } a \text { such that } a \in X \text { and } a \in Y\}
$$

2. For this question, you will be using the Matlab eigs function - for documentation, see http://www.mathworks.com/help/matlab/ref/eigs.html.

Recall that to find the left eigenvectors of a matrix, it suffices to find the right eigenvectors of the transpose of A.
The number of times an eigenvalue appears in the matrix D calculated by Matlab is the multiplicity of the eigenvalue - for us, the important fact is that if the multiplicity is 1 , then the eigenvalue has a unique eigenvector up to scalar multiplication. When the multiplicity is higher, Matlab will provide two distinct eigenvectors for the eigenvalue.
(a) [5 pts] Consider a Markov chain with transition matrix P

$$
P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.25 & 0.75 \\
0 & 0.5 & 0.5
\end{array}\right]
$$

Use Matlab to find two distinct distributions ν satisfying $\nu P=\nu$ (that is, stationary distributions of P). Why is such a distribution not unique?
Clarification: We have shown that under certain conditions, the distribution is unique. Please explain why these conditions do not hold here.
(b) [5 pts] Now consider a Markov chain with transition matrix

$$
Q=\left[\begin{array}{cccc}
0 & 0.25 & 0 & 0.75 \\
0.5 & 0 & 0.5 & 0 \\
0 & 0.5 & 0 & 0.5 \\
0.75 & 0 & 0.25 & 0
\end{array}\right]
$$

Use Matlab to find whether this matrix has a unique stationary distribution π, and calculate what it is.
(c) [5 pts] Use Matlab to check whether π is the limiting distribution for the above Markov chain. If it is not, explain how that is possible.
3. Consider a Markov chain with finite state space Ω and transition matrix P. For this question, let $\mathcal{T}(x)$ be the set of m such that $P^{m}(x, x)>0-$ that is, the possible return times at x.
(a) [5 pts] We say that a set S is closed under addition if for any $s_{1}, s_{2} \in S$ (not necessarily distinct), $s_{1}+s_{2} \in S$. Show that $\mathcal{T}(x)$ is closed under addition.
(b) [BONUS] It happens to be true that any set of positive integers that's closed under addition and whose gcd is 1 contains all integers greater than some number m. Use this to show that if the chain is irreducible and aperiodic, there exists an r such that $P^{r}(x, y)>0$ for all $x, y \in \Omega$.

