Homework 7

1. Consider the gambler's ruin walk. As in class, let f_{k} be the expected number of steps until the walk hits either 0 or n if it starts at k. Recall that these satisfy

$$
f_{k}=\frac{1}{2} f_{k-1}+\frac{1}{2} f_{k+1}+1, f_{0}=f_{n}=0
$$

In this question, we will show that $f_{k}=k(n-k)$, as stated in class.
(a) $[5 \mathrm{pts}]$ Use induction to show that $f_{k}=k f_{1}-k(k-1)$.
(b) $[5 \mathrm{pts}]$ Use the fact that $f_{n}=0$ to solve for f_{1} and then use part (a) to find the formula for f_{k}.
2. Consider the gambler's ruin walk for a hesitant gambler: if the walk is at $k \neq 0$ or n, he flips a coin which lands heads with probability p. If the coin lands heads, the walk moves up with probability $1 / 2$ and down with probability $1 / 2$; if the coin lands tails, the walk stays in place. If the walk is at 0 or n, it stays there. (The question on the quiz was the case $p=1 / 2)$.
(a) [5 pts] Let q_{k} be the probability that the walk ends at 0 if it starts at k. Find the equations that the q_{k} satisfy without simplifying.
(b) [5 pts] Let g_{k} be the expected amount of time it takes the walk to end at either 0 or n if it starts at k. Find the equations that the g_{k} satisfy without simplifying.
3. (a) $[2 \mathrm{pts}]$ Let X be a random variable such that $\mathbb{P}(X=1)=1 / 2, \mathbb{P}(X=$ $2)=1 / 3$ and $\mathbb{P}(X=3)=1 / 6$. Calculate $\mathbb{E}(X)$.
(b) $[3 \mathrm{pts}]$ Let X be a random variable such that $\mathbb{P}(X=i)=2 / 3^{i}$ for all positive integers i. Calculate $\mathbb{E}(X)$.
(c) [5 pts] Prove that if X is a nonnegative integer valued random variable, $\mathbb{E}(X)=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)$.
4. Consider the pair of random variables (X, Y) that's distributed as:

$$
(X, Y)= \begin{cases}(1,2) & \text { with probability } 1 / 2 \\ (1,3) & \text { with probability } 1 / 3 \\ (2,2) & \text { with probability } 1 / 12 \\ (1,3) & \text { with probability } 1 / 12\end{cases}
$$

This is a coupling of some pair of distributions μ and ν.
(a) [3 pts] What are the distributions μ and ν ? (State both the state spaces and the probabilities of each state.)
(b) [5 pts] Write down another coupling of these distributions. (There are many - just pick one!)
5. Let P be the transition matrix for the gambler's ruin random walk on $\{1,2, \ldots, 20\}$
(a) [5 pts] Use a for loop to enter in P into Matlab. Print your code and output for grading.
(b) $[2 \mathrm{pts}]$ Calculate P^{2000}.
(c) $[5 \mathrm{pts}]$ Explain where the answer in (b) comes from.

