Homework 8

1. (a) [5 pts] Let μ and ν be two distributions on Ω, and let (X, Y) be a coupling of μ and ν. Show that for all $A \subset \Omega$,

$$
\mu(A)-\nu(A) \leq \mathbb{P}\{X \neq Y\}
$$

(b) $[3 \mathrm{pts}]$ Use part (a) to show that $\|\mu-\nu\|_{T V} \leq \mathbb{P}\{X \neq Y\}$.
2. Consider the following coupling of the random transposition walk: we pick a label l and a position p, and transpose the card labelled l with the card in position p in both chains. (For example, if we're at $(1234,4321)$ then if we transpose position 3 with label 1 the coupling goes to $(3214,4312)$.) Let the coupling be as usual denoted by $\left(X_{t}, Y_{t}\right)$.
(a) [5 pts] Let D_{t} be the number of unmatched cards for the pair $\left(X_{t}, Y_{t}\right)$: that is, the number of cards whose positions are different in the two chains. (For example, at $(3214,4312)$ the number of unmatched cards is 3 since the positions of 2,3 and 4 are different in both chains.) Show that $D_{t+1} \leq D_{t}$.
(b) [5 pts] Show that $\mathbb{P}\left\{D_{t+1} \leq i-1 \mid D_{t}=i\right\}=i^{2} / n^{2}$.
(c) $[5 \mathrm{pts}]$ Let τ_{i} be the first time $D_{t} \leq i$. Show that if we condition on $\tau_{i-1} \neq \tau_{i}, \tau_{i-1}-\tau_{i}$ is distributed as a geometric random variable with parameter i^{2} / n^{2}.
(d) [5 pts] Clearly, τ_{0} is the first time $D_{t}=0$ and hence $X_{t}=Y_{t}$. Use part (c) to show that

$$
\mathbb{E}\left(\tau_{0}\right) \leq \sum_{i=1}^{\infty} \frac{n^{2}}{i^{2}}
$$

(e) $[5 \mathrm{pts}]$ Use part (d) to show that

$$
\mathbb{E}\left[T_{\text {couple }}^{x, y}\right] \leq 2 n^{2}
$$

(f) [5 pts] Use part (e) and Markov's inequality to show that $t_{m i x}$ is at most of order n^{2}.
3. In this question, we will be simulating the above coupling for the random transposition walk. We will be needing to use a pseudo-random number generator in Matlab (it's pseudo-random since it's very hard to come up with truly random numbers.) The relevant functions are rng and randi you may want to check the Matlab documentation for them.
For our purposes, we will want to use the Mersenne Twister pseudorandom number generator. Furthermore, since pseudo-random numbers need a 'seed' (Google this if you're curious!) we will, as is standard, use the
current time as the seed. This will ensure that the pseudo-random number generator gives a different number each time. To accomplish these, we will always start code that uses pseudo-random numbers with rng('shuffle', 'twister').
For the following questions, you will only need the fact that $\operatorname{randi}(n)$ generates a pseudo-random integer between 1 and n.
(a) [5 pts] Writing a permutation as a vector, write the code that swaps a random pair of cards in a permutation of length 10.
(b) [5 pts] Now, write code that performs the random transposition walk for 200 steps.
(c) [5 pts] Write code that simulates the coupling in question 2 for 30 steps.
(d) [5 pts] Run the code in part (c) 100 times, and keep track of the percentage of the time that the coupling meets.

