Quiz 1 Solutions

1. For the random walk in the following picture, calculate the distribution of X_{2}, assuming $X_{0}=3$.

Solution: Clearly, the distribution of X_{1} is

$$
\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=2\right)=\mathbb{P}\left(X_{1}=3\right)=1 / 3
$$

Therefore,

$$
\begin{aligned}
\mathbb{P}\left(X_{2}=1\right) & =\frac{1}{3} \mathbb{P}(1 \rightarrow 1)+\frac{1}{3} \mathbb{P}(2 \rightarrow 1)+\frac{1}{3} \mathbb{P}(3 \rightarrow 1) \\
& =\frac{1}{3} \cdot \frac{1}{3}+\frac{1}{3} \cdot \frac{1}{2}+\frac{1}{3} \cdot \frac{1}{3}=\frac{7}{18} \\
\mathbb{P}\left(X_{2}=2\right) & =\frac{1}{3} \mathbb{P}(1 \rightarrow 2)+\frac{1}{3} \mathbb{P}(2 \rightarrow 2)+\frac{1}{3} \mathbb{P}(3 \rightarrow 2) \\
& =\frac{1}{3} \cdot \frac{1}{3}+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot \frac{1}{3}=\frac{2}{9} \\
\mathbb{P}\left(X_{2}=3\right) & =\frac{1}{3} \mathbb{P}(1 \rightarrow 3)+\frac{1}{3} \mathbb{P}(2 \rightarrow 3)+\frac{1}{3} \mathbb{P}(3 \rightarrow 3) \\
& =\frac{1}{3} \cdot \frac{1}{3}+\frac{1}{3} \cdot \frac{1}{2}+\frac{1}{3} \cdot \frac{1}{3}=\frac{7}{18}
\end{aligned}
$$

2. Define

$$
A=\left[\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right]
$$

Calculate $A+A^{2}$.
Solution: By definition,

$$
A^{2}=\left[\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right]=\left[\begin{array}{cc}
7 & -6 \\
-9 & 22
\end{array}\right]
$$

Therefore,

$$
A+A^{2}=\left[\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right]+\left[\begin{array}{cc}
7 & -6 \\
-9 & 22
\end{array}\right]=\left[\begin{array}{cc}
8 & -4 \\
-6 & 18
\end{array}\right]
$$

3. Draw a diagram for a random walk which has the same limiting distribution regardless of what X_{0} is, and such that this limiting distribution isn't equal on all the states.

Solutions: Let the probability of each arrow in this diagram be $1 / 2$. Then, states 2,3 and 4 have probability $1 / 3$ in the limiting distribution, while state 1 has probability 0 .

