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Abstract
We introduce a topology on the space of actions modulo weak equivalence finer than the one previously
studied in the literature. We show that the product of actions is a continuous operation with respect to
this topology, so that the space of actions modulo weak equivalence becomes a topological semigroup.

1 Introduction.

Let T" be a countable group and let (X, ) be a standard probability space. All partitions considered in this
note will be assumed to be measurable. If a is a measure-preserving action of I' on (X, 1) and v € I' we write
~* for the element of Aut(X, p1) corresponding to v under a. Let A(T', X, 1) be the space of measure-preserving
actions of T on (X, ). We have the following basic definition, due to Kechris.

Definition 1. For actions a,b € A(T, X, ) we say that a is weakly contained in b if for every partition
(AP of (X, ), finite set FF C T and € > 0 there is a partition (B;)7_, of (X, ) such that

(" AN Aj) = p (" BiN Bj)| < e

foralli,j <mn and ally € F. We write a < b to mean that a is weakly contained in b. We say a is weakly
equivalent to b and write a ~ b if we have both a < b and b < a. ~ is an equivalence relation and we write
[a] for the weak equivalence class of a.

For more information on the space of actions and the relation of weak equivalence, we refer the reader to [3].
Let A (I, X, u) = A(T', X, 1)/ ~ be the set of weak equivalence classes of actions. Freeness is invariant under
weak equivalence, so the set FR. (T, X, i) of weak equivalence classes of free actions is a subset of A (T, X, u).

Given [a],[b] € A~(T, X, ) with representatives a and b consider the action a x b on (X2, u*). We can
choose an isomorphism of (X2, ,u2) with (X, u) and thereby regard a x b as an action on (X, ). The weak
equivalence class of the resulting action on (X, ) does not depend on our choice of isomorphism, nor on
the choice of representatives. So we have a well-defined binary operation x on A (T, X, ). This is clearly
associative and commutative. In Section 2 we introduce a new topology on A. (T, X, 1) which is finer than
the one studied in [1], [2] and [4]. We call this the fine topology. The goal of this note is to prove the following
result.

Theorem 1. X is continuous with respect to the fine topology, so that in this topology (A~ (T, X, u), xX) is a
commutative topological semigroup.



In [?], Tucker-Drob shows that for any free action a we have a x sp ~ a, where sr is the Bernoulli shift
n ([07 1", )\F) with A being Lebesgue measure. Thus if we restrict attention to the free actions there is
additional algebraic structure.

Corollary 1. With the fine topology, (FR(T, X, p), X) is a commutative topological monoid.
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2 Definition of the fine topology.

Fix an enumeration I' = (v,)%2, of T'. Given a € A(T, X, u), t,k € N and a partition A = (4;)%_, of X into
k pieces let M{f‘k(a) be the point in [0, 1]"*¥** whose s,1,m coordinate is (Y2 A; N A,,). Endow [0, 1]/*#*k
with the metric given by the sum of the distances between coordinates and let dg be the corresponding
Hausdorff metric on the space of compact subsets of [0,1]”%**. Let Cy ;(a) be the closure of the set

{M; : A is a partition of X into k pieces }.

We have a ~ b if and only if C; 1(a) = Cy 1 (b) for all ¢, k. Define a metric dy on A (T, X, i) by

f_oj,j (sup i (Crata). Coa) )

This is clearly finer than the topology on A (T, X, i) discussed in the references.
Definition 2. The topology induced by dy is called the the fine topology.

We have [a,,] — [a] in the fine topology if and only if for every finite set F* C T' and € > 0 there is N so that
when n > N, for every k € N and every partition (4;)F_, of (X, u) there is a partition (B;)F_; so that

k
> (AN Ap) = 1 (BN By)| < €

l,m=1

forall vy € Fand I,m < k.

3 Proof of the theorem.

We begin by showing a simple arithmetic lemma.

Lemma 1. Suppose I and J are finite sets and (a;)ier, (bi)ier, (¢;) e, (dj)jes are sequences of elements of

[0,1] with Z(li:l, Zdj:]., Z\al—bz| <4é andZ\cj—dj| < 6. Then Z \aicj—bidj|<25,

iel jeJ iel jeJ (i,5)EIXJ



Proof. Fix i. We have

> laic; —bids] <Y (laic; — aidy| + |dja; — d;bil)

JjeJ jeJ
=Y (aile; — dj| + djla; — bi])
jeJ
S (Sai + \ai — bz|

Therefore
Z |aicj — bidj| S Z(azd + |ai — bl‘) é 24.

(i,5)€IXT iel

We now give the main argument.

Proof of Theorem 1. Suppose [a,] — [a] and [b,] — [b] in the fine topology. Fix € > 0 and ¢ € N. Let N be
large enough so that when n > N we have

max (stlip di (Crr (ay),Cyi(a)), Sllip dp (Ce i (by), Ct,k(b))> < (1)

=

Fix n > N. Let k € N be arbitrary and consider a partition A = (4;)F_, of X? into k pieces. Find partitions
(Dil)f:1 and (D?);.I:l of X such that for each [ < k there are pairwise disjoint sets I; C p x ¢ such that if we
write D; = | ] D} x D then

(i,5)€ni

2(DIAA) < —. 2
p(DIAA) < s (2)
Write (75)._; = F. By (1) we can find a partition (Evl)f:1 of X such that for all v € F' we have

K3

p
> lw(DIND}) —u(yELn B} < 3)

4,j=1

and a partition (E-Q)q:1 of X such that for all v € F' we have

v/

q
> n("DINDE) — (3 EI N E)| < 7. (4)
ij=1

Define a partition B = (B;)y_, of X? by setting B, = U E} x E]2 For v € F we now have
(i,5)€l



IN

<

k
Z |,U2("Ya><bDl N DTn) _ u?(,yanxanl N Bm)|

e U e |a[ U pLen
(i1,1)€l (i2,52)EIlm
—p [yl U ELxEL 0| U ELxE, ‘
(i1,J1)€q; (i2,42)€lm

(U wephernz o U oo
(i1,51)€L (i2,j2)€Im
— U B, x| n| | ELxE} ‘
(i1,51)€L (i2,52)Elm

k

>

l,m=1

k
S| U e tpiyn o1 < 02)
I,m=1 (i1,41,i2,J2)
el xIm
| U e mnen )|
(41,1,82,52)
EIZXIWL
k
o U (pinDL)x (D nD3)
l,m=1 (41,71,i2,42)

el xIp,

VIR BT E|

(41,71,12,52)
el xIm

k
> > |w(DinDL) ("D N D) —p (v EL NEL) p (7B} N ES)|

I,m=1 (i1,51,i2,52)
GI}, XIm

> |r(Di N DL)p (v D} N D3) — (v EL N EL) p (v E; N E})|

(i1,41,%2,52)
EPXgXpXq

> (DL nDL) p (D N D) - p (v EL N EL) p (YB3 N ES)]
(i1,%2,41,72)
ep?xq?



Now (3) and (4) let us apply Lemma 1 with [ = p?, J = ¢* and § = i to conclude that (5) < —. Note that

for any three subsets S1,S2, 53 of a probability space (Y, ) we have

|V(Sl N Sg) - Z/(SQ N 53)| = |V(Sl N Sg n S3) + V((Sl \ Sg) n S3) — Z/(Sl N SQ N Sg) - I/((Sz \ Sl) N 53)|
S Z/(SlASQ>,

[NCN e

hence for any [, m < k and any action c € A (F, X2, MQ) we have
(AN A) = (7 Dy N D)
<P (VAN An) = (DN Ap)| + | (DN A) — 5 (¢ Di N Dy |
< 12 (F ALY DY) + 1 (AnSD) < 55,
where the last inequality follows from (2). Hence for all v € F,

k
S (AN A) = 2 (%P By 0 By)|

Therefore M{f‘k(a x b) is within € of Mfk (an x by) and we have shown that for all k, Cy ;(a x b) is contained
in the ball of radius € around Cy p(a, X b,). A symmetric argument shows that if n > N then for all k,
Ct k(an % by,) is contained in the ball of radius e around C} (a x b) and thus the theorem is proved. O
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