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Abstract

We prove that closed subspaces of countable products of σ-compact
spaces are productively Lindelöf if and only if there are no Michael spaces.
We also prove that, assuming CH, if X is productively Lindelöf and the
union of ℵ1 compact sets, then Xω is Lindelöf.

1 Introduction – Froĺık Spaces

On this 50th anniversary of TopoSym it is appropriate to pay tribute to an
early participant in these symposia, Zdeněk Froĺık, by referring to a paper of
his [12] written in the year of the first symposium. We thank Wis Comfort
for suggesting we consult [12], which has proved highly relevant to our current
research on productively Lindelöf spaces. For convenience, we will assume all
spaces in this paper are T3 1

2
.

Definition 1.1. A space will be called Froĺık if it is homeomorphic to a closed
subspace of a countable product of σ-compact spaces.

Rather surprisingly, Froĺık [12] proved:

Lemma 1.1. A space is Froĺık if and only if it is Kσδ, that is, an intersection
of countably many σ-compact subspaces of its Čech-Stone compactification.

Note that:

Lemma 1.2. Every Froĺık space is powerfully Lindelöf, that is, all of its count-
able powers are Lindelöf.
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This is well-known and follows immediately from the following observation. Con-

sider a Froĺık space F ⊆
∏
n<ω

Cn, where each Cn is σ-compact. Then Fω is closed

in
(∏
n<ω

Cn
)ω

, which is itself a countable product of σ-compact spaces, and hence

Fω is Lindelöf.

Lately we have been investigating powerfully Lindelöf spaces and productively
Lindelöf spaces, that is, those space X such that X × Y is Lindelöf for every
Lindelöf space Y . Examples of this work include [1], [4], [26], [27] and [25]. An
old question of E.A. Michael asks:

Problem 1.1. Is every productively Lindelöf space powerfully Lindelöf?

The motivation is:

Lemma 1.3. Every σ-compact space is powerfully ( [12], [16]) and productively
Lindelöf.

Here are some partial results:

Lemma 1.4. [19] The Continuum Hypothesis (CH) implies that every pro-
ductively Lindelöf metrizable space is σ-compact.

Lemma 1.5. [2] CH implies that every productively Lindelöf space of weight
≤ ℵ1 is powerfully Lindelöf.

Another classic problem of Michael is:

Problem 1.2. Does there exist a Michael space, that is, a Lindelöf space X
such that X × P is not Lindelöf? Here, P denotes the space of irrationals. In
other words, does P fail to be productively Lindelöf?

It is known that (see for example [20]):

Lemma 1.6. b = ℵ1 or d = Cov(M) implies there is a Michael space.

Theorem 1.1. There is no Michael space if and only if every Froĺık space is
productively Lindelöf.

Proof. Since the irrationals themselves are a Froĺık space, it is clear that there
can be no Michael space if Froĺık spaces are productively Lindelöf. Thus, let
us consider a Lindelöf space L such that ωω × L is Lindelöf. It suffices to show

that
∏
n<ω

Cn × L is Lindelöf for any sequence {Cn}n<ω of σ-compact spaces.

By 3.8.G. in [11], we know that for each n there is a compact space Kn such
that Cn can be written as a continuous image of a closed subspace of ω ×Kn.

Thus,
∏
n<ω

Cn is a continuous image of a closed subspace of
∏
n<ω

(
ω ×Kn

)
, which

is homeomorphic to ωω ×
∏
n<ω

Kn. But
∏
n<ω

Kn × L is a Lindelöf space, so by
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assumption ωω ×
∏
n<ω

Kn × L is a Lindelöf space. So,
∏
n<ω

Cn is a continuous

image of a closed subspace of a Lindelöf space and we have the result.

In fact, the above proof gives a slightly sharper statement: if L is a Lindelöf
space, and there exists a Froĺık space F with L × F not Lindelöf, then L is a
Michael space. The following is another new result.

Theorem 1.2. Every Froĺık space is the union of ≤ d compact sets, where d is
the least cardinality of a family of functions cofinal in ωω under the ≤∗ ordering.

Proof. Firstly, consider a family C cofinal in
(
ωω,≤∗

)
. For f ∈ C and n < ω,

define fn : ω → ω by fn(k) = max(f(k), n). If we take D = {fn}f∈C,n<ω, then
D is cofinal in

(
ωω,≤

)
. Moreover, since ω < d ≤ |C|, we have |D| = |C| ·ω = |C|.

Now, for n < ω, let Cn =
⋃
m<ω

Km
n be a σ-compact space, where Km

n is

compact. Write Y =
∏
n<ω

Cn. For i ∈ D, we define a compact Wi ⊆ Y by

Wi =
∏
n<ω

( ⋃
k≤i(n)

Kk
n

)
. Claim Y =

⋃
i∈D

Wi.

If y = (y0, y1, . . .) ∈ Y , then yn ∈ Cn for each n < ω, which implies that

for every n < ω there is a j(n) < ω such that yn ∈ Kj(n)
n . Then, y ∈

∏
n<ω

Kj(n)
n .

Choose an i ∈ D with j ≤ i. Then,
∏
n<ω

Kj(n)
n ⊆ Wi, which implies y ∈ Wi

and we have the claim. If F ⊆ Y is closed, then F ∩ Wi is compact and

F =
⋃
i∈D

F ∩Wi.

Notice that this provides many examples of Lindelöf spaces which are not Froĺık.

2 Okunev’s Space

There is a Froĺık space due to O. Okunev in [3] that has proven to be of con-
siderable interest in our investigations of productive Lindelöfness.

Definition 2.1. A space X is Rothberger if for any sequence {Un}n<ω of open

covers of X, there are open sets {Un}n<ω such that Un ∈ Un and
⋃
n<ω

Un = X.

This is the selection principle Sω1 (O,O). We can also define the corresponding
Rothberger game Gω1 (O,O) as follows. In the nth round, ONE chooses an
open cover Un and TWO chooses a single Un ∈ Un. TWO wins if {Un}n<ω
covers X.

It is a nontrivial result of Pawlikowski [22] that ONE has no winning strategy
in the Rothberger game on a space X exactly when X is Rothberger.
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Definition 2.2. A space X is projectively countable if f(X) is countable for
every continuous map f from X to a separable metric space.

Arhangel’skii [3] calls projectively countable spaces ω-simple. Note that Lin-
delöf projectively countable spaces are Rothberger [6].

Example 2.1. Okunev’s space V is formed by taking the Alexandrov duplicate
A(P) of the space of irrationals and collapsing the nondiscrete copy of P to a
point. We will let p denote the unique nonisolated point of V , and let q denote
the quotient mapping A(P) � V . We will also write Pi for the copy of P in A(P)
that is homeomorphic to the usual irrationals, and write Pd for the discrete copy.
This construction has the following properties.

(i) V is Kσδ, hence Froĺık [3],

(ii) V is not σ-compact [3],

(iii) V is projectively countable [3],

(iv) V is Rothberger,

(v) V does not include a closed copy of P [27].

Definition 2.3. [17] A space is K-analytic if it is the continuous image of a
Lindelöf Čech-complete space.

In [27], we asked whether productively Lindelöf K-analytic spaces must be σ-
compact, and in [25] the second author claimed this follows from CH. This is
not the case:

(vi) V is K-analytic.

This is immediate from the following.

Theorem 2.1. [12] If F is a Froĺık space, then there is a Čech-complete Froĺık
space F̃ which maps continuously onto F .

Another interesting fact about Okunev’s space is that since V is Kσδ, its growth
V ∗ = βV \ V is Borel but V ∗ is not Baire. That is, V ∗ is an element of the
σ-algebra generated by the open sets of βV , but not in the corresponding σ-
algebra Z generated by the zero-sets. To see this, recall that the elements of
Z are Lindelöf (see for example [7]), so supposing V ∗ ∈ Z, V would be Lin-
delöf at infinity. A space is Lindelöf at infinity if and only if every compact
set is included in a compact set of countable character [18]. We claim this is
a contradiction, since no compact set including the nonisolated point p can be
a Gδ. To see this last assertion, suppose p ∈ G, where G ⊆ V is a Gδ. Then
q−1(G) ⊆ A(P) is a Gδ, and Pi ⊆ G. Thus, q−1(G) is cocountable, which implies
that G is cocountable. But if G were compact, V would be σ-compact.

The second author created unnecessary confusion in [27] by using nonstan-
dard definitions of ‘Borel’ and ‘Baire’. In the same paper we noted that the
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Hurewicz Dichotomy does not hold for Okunev’s space, since it is not σ-
compact nor does it include a closed copy of P. Thus, contrary to [27], the
dichotomy does not hold for absolute Borel spaces, but we can ask:

Problem 2.1. Must every Baire subspace of a compact Hausdorff space either
include a closed copy of P or be σ-compact?

Using K-analyticity, we can improve Corollary ??. Note that by Lemma 1.6
as well as the argument given above, d = ℵ1 implies there is a Michael space.
In [26] it is observed that:

Lemma 2.1. The existence of a Michael space implies that productively Lindelöf
analytic metrizable spaces are σ-compact.

Definition 2.4. A space is projectively σ-compact if any continuous image
in a separable metric space is σ-compact.

In [23] it is shown that K-analytic metrizable spaces are analytic. Clearly,
continuous images of K-analytic spaces are K-analytic, so we can conclude:

Theorem 2.2. The existence of a Michael space implies that productively Lin-
delöf Froĺık spaces are projectively σ-compact.

Now, if productively Lindelöf Froĺık spaces are projectively σ-compact, then P
is not productively Lindelöf, so there is a Michael space. Rewriting the resulting
equivalence, we have:

Corollary 2.1. There is no Michael space if and only if there is a productively
Lindelöf Froĺık space which is not projectively σ-compact.

Corollary 2.2. There is a productively Lindelöf Froĺık space which is not pro-
jectively σ-compact if and only if every Froĺık space is productively Lindelöf

Definition 2.5. A space is Alster if whenever each compact set is included in
some member of a Gδ cover, then that cover must have a countable subcover.

(vii) V is Alster and hence ([2]) productively Lindelöf.

Proof. The complement of an open set containing the nonisolated point is Lin-
delöf and discrete, hence countable. Thus a Gδ containing the nonisolated point
is cocountable. It follows that any Gδ cover has a countable subcover.

Furthermore,

(viii) TWO has a winning strategy for the Rothberger game on V .

Proof. ONE picks the first open cover U0. Let TWO choose an element U0 ∈ U0
such that p ∈ U0. Then Pi ⊆ q−1(U0). Notice that we can choose {xn}n<ω such
that each xn ∈ Pi, and symmetric intervals In centered at xn, so that Pi =⋃
n<ω

In. But since q−1(U0) is open in A(P), we must then have (In \ xn) ∩ Pd ⊆
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q−1(U0). So, no matter what subsequent sequence {Un}1≤n<ω of open covers
of V ONE chooses, TWO can pick an element Un ∈ Un with q(xn−1) ∈ Un.⋃
n<ω

Un is then a cover of V .

(viii) yields an unusual proof that:

(ix) The nonisolated point p is not a Gδ in V .

This is immediate from the following result of F. Galvin.

Lemma 2.2. [13]If TWO has a winning strategy for the Rothberger game on
X and each point of X is a Gδ, then X is countable.

Lemma 2.2 can also be used to show that TWO winning the Rothberger game
is not equivalent to projectively countable.

Theorem 2.3. TWO having a winning strategy for the Rothberger game implies
that a space is projectively countable, but the converse is false.

Proof. Assume TWO has a winning strategy for the Rothberger game on X,
and let f : X � Y map X continuously onto a separable metrizable space
Y . Consider the Rothberger game on Y . Any open cover Un of Y that ONE
chooses gives rise to an open cover Ũn = {f−1(U) : U ∈ Un} of X. So, TWO

can choose some f−1(Un) from each Ũn such that
⋃
n<ω

f−1(Un) = X. But then,⋃
n<ω

Un = Y , so the winning strategy for TWO on X determines a winning

strategy on Y . Y is metrizable, thus points of Y are Gδ and Lemma 2.2 implies
that Y is countable.

Moore’s L-space M in [21] is projectively countable [24]. Hereditarily Lindelöf
T3 spaces have points Gδ, so if TWO had a winning strategy for the Roth-
berger game on M , Lemma 2.2 would imply that M is countable, which is not
the case.

3 An Application of Elementary Submodels

Another partial result akin to Lemma 1.5 is:

Lemma 3.1. [27] CH implies every productively Lindelöf space of size ≤ ℵ1
is powerfully Lindelöf.

We can now generalize Lemma 3.1 to obtain:

Theorem 3.1. CH implies that every productively Lindelöf space which is the
union of ≤ ℵ1 compact sets is powerfully Lindelöf.
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Proof. This proof is nontrivial, employing a novel application of elementary
submodels. Recall that the Lindelöf number L(X) of a space X is the least
cardinal λ such that every open cover of X has a subcover of size ≤ λ. We
straightforwardly generalize the second half of Lemma 1.3 to obtain:

Lemma 3.2. Suppose X is the union of ≤ ℵ1 compact sets. Then L(Xω) ≤ ℵ1.

Since X is T3 1
2
, it embeds in a compact space Z. Therefore Xω embeds in the

compact space Zω. Write πn for the projection Zω → Z and let X =
⋃
α<ω1

Kα,

for Kα compact. Then Kα is closed in Z, so π−1n (Kα) is closed in Zω. It follows
that {π−1n (Kα)}n<ω,α<ω1 is a family satisfying the hypotheses of the following.

Proposition 3.1. Let Y ⊆ Z where Z is compact. Suppose there is a family
{Fα}α<ω1 of sets closed in Z such that if x0 ∈ Y and x1 ∈ Z \ Y , we have
x0 ∈ Fα0

and x1 /∈ Fα0
for some α0 < ω1. Then L(Y ) ≤ ℵ1.

Proof of Proposition 3.1. Let U = {Uβ}β<κ be an open cover of Y . Take

Vβ = Z \ Y \ Uβ , where the closure is taken with respect to Z. Since Y \ Uβ is

closed in Y , Y \ Uβ ∩Y = Y \ Uβ . This implies Y ⊆
⋃
β<κ

Vα = V . Furthermore,

Y ∩ Vβ ⊆ Uβ .

Take x ∈ Y and note that for each y ∈ Z \ V there is a compact Fαy with

x ∈ Fαy but y /∈ Fαy . It follows that
⋂

y∈Z\V

Fαy ⊆ V and hence
⋃

y∈Z\V

Z \ Fαy

covers Z \V , which is compact. Take a finite subcover {Z \Fαm}m≤M of Z \V .

Then x ∈
⋂

m≤M

Fαm ⊆ V . This demonstates that, if we let F be the union of all

such finite intersections of Fα which meet Y but not Z \ V , then Y ⊆ F ⊆ V .

F is a union of ℵ1 compact sets, so we can take a subcover {Vβα}α<ω1
. {Y ∩

Vβα}α<ω1 will then be a refinement of U .

To prove Theorem 3.1, it then suffices to establish:

Lemma 3.3. CH implies that if X is productively Lindelöf and L(Xω) ≤ ℵ1,
then Xω is Lindelöf.

Proof. In addition to the elementary submodel topology considered in [15], an
alternate method of constructing a topology from a space and an elementary
submodel containing it is explored in [5], [8] and [10]. Given X and an elemen-
tary submodel M with X ∈ M , we define an equivalence relation by letting
x0 ∼ x1 for x0, x1 ∈ X if and only if f(x0) = f(x1) for every continuous
f : X → R such that f ∈M . Letting X/M be the resulting quotient and π the
projection X � X/M , we topologize X/M by taking a base of the form π(U),
where U is a cozero set in X such that U ∈ M . The basic properties of this
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construction can be found in any of the papers above, but the most important
fact is probably the following.

Lemma 3.4. [10] For a T3 space X, X/M is a T3 space which is a continuous
image of X.

It follows that if X is productively Lindelöf, then so is X/M . Let M be a ele-
mentary submodel of size ≤ ℵ1 such that X ∈M . By CH, we can get such an
M which is countably closed. Then w(X/M) ≤ ℵ1, since X/M has a base of
sets which are members of M . By Lemma 1.5, X/M is powerfully Lindelöf.

Now, take an open cover U of Xω and assume without loss of generality that
U has size ℵ1. Additionally, assume that every element of U is basic open of

the form U =
∏
n<ω

Un, where each Un is a cozero set in X and cofinitely many

Un = X. Assume that Un ∈ M for each n < ω and each U ∈ U . Consider the
map Θ : Xω → (X/M)ω given by reducing each coordinate of a point in Xω

modulo M . More explicitly, if π : X � X/M is the quotient map described
above, we let Θ(x0, x1, . . .) = (π(x0), π(x1), . . .), for (x0, x1, . . .) ∈ Xω. I claim
that Θ−1Θ(U) = U for each U ∈ U .

Suppose x = (x0, x1, . . .) ∈ Xω and Θ(x) = Θ(y), where y = (y0, y1, . . .) ∈ U .
If we write [xn] for the equivalence class /M of a point in X, the statement
Θ(x) = Θ(y) says [xn] = [yn] for every n. By Proposition 2.4.2 in [10], this im-
plies that whenever H ∈M is a cozero set, then xn ∈ H if and only if yn ∈ H.
But, y ∈ U implies yn ∈ Un for every n and we assumed Un ∈M , hence xn ∈ Un
for each M . We have shown x ∈ U , which gives the claim.

So, consider {Θ(U) : U ∈ U}, which is an open cover of (X/M)ω. Since X/M
is powerfully Lindelöf, there is a countable subcover {Θ(Uk)}k<ω. Pulling this
back to {Θ−1Θ(Uk)}k<ω = {Uk}k<ω gives a countable subcover of U . This
concludes the proof of Lemma 3.3 and hence we have Theorem 3.1.

This result raises the following question.

Problem 3.1. If X is productively Lindelöf, is it consistent that L(Xω) ≤ 2ℵ0?

This could be combined with CH to solve Problem 1.1. Nothing is known
towards an answer except for the following results.

Theorem 3.2. If X is Lindelöf, L(Xω) is less than the first strongly compact
cardinal

Proof. In [9], Drake characterizes the first strongly compact cardinal κ0 as the
least uncountable κ such that if C is a family of spaces such that every open
cover of every C ∈ C has a subcover of size < κ, then every open cover of

∏
C

has a subcover of size < κ . If X is Lindelöf, then clearly L(X) = ω < κ0, so
L(Xω) < κ0.
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This result is notably unsatisfying, since the same argument shows that if X is
Lindelöf, then L(Xλ) is less than the first strongly compact cardinal for every
λ. In terms of possible counterexamples, there is:

Example 3.1. [14] It is consistent with CH that there is a space X with Xn

Lindelöf for every n < ω, but L(Xω) = ℵ2.

The natural attempt to solve Problem 3.1 would be to Lévy-collapse a super-
compact to ℵ2 with countable conditions. We do not know what happens in
such a model.
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Lindelöf spaces and small cardinals. Houston J. Math., 37:1373–1381, 2011.

[2] K. Alster. On the class of all spaces of weight not greater than ω1 whose
Cartesian product with every Lindelöf space is Lindelöf. Fund. Math.,
129:133–140, 1988.
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