Productive Lindelofness and a class of spaces
considered by Z. Frolik

November 30, 2011

PETER BURTON, FRANKLIN D. TaLL[]

Abstract

We prove that closed subspaces of countable products of o-compact
spaces are productively Lindeldf if and only if there are no Michael spaces.
We also prove that, assuming CH, if X is productively Lindel6f and the
union of N; compact sets, then X is Lindelof.

1 Introduction — Frolik Spaces

On this 50" anniversary of TopoSym it is appropriate to pay tribute to an
early participant in these symposia, Zdenék Frolik, by referring to a paper of
his [12] written in the year of the first symposium. We thank Wis Comfort
for suggesting we consult [12], which has proved highly relevant to our current
research on productively Lindelof spaces. For convenience, we will assume all
spaces in this paper are T4 1

Definition 1.1. A space will be called Frolik if it is homeomorphic to a closed
subspace of a countable product of o-compact spaces.

Rather surprisingly, Frolik [I2] proved:

Lemma 1.1. A space is Frolik if and only if it is K,s, that is, an intersection
of countably many o-compact subspaces of its Cech-Stone compactification.

Note that:

Lemma 1.2. FEvery Frolik space is powerfully Lindeldf, that is, all of its count-
able powers are Lindeldf.
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This is well-known and follows immediately from the following observation. Con-

sider a Frolik space F' C H C,,, where each C), is o-compact. Then F* is closed
nw

in ( H C’n)w, which is itself a countable product of o-compact spaces, and hence

n<w

F“ is Lindelof.

Lately we have been investigating powerfully Lindel6f spaces and productively
Lindel6f spaces, that is, those space X such that X x Y is Lindelof for every
Lindelof space Y. Examples of this work include [1], [4], [26], [27] and [25]. An
old question of E.A. Michael asks:

Problem 1.1. Is every productively Lindeldf space powerfully Lindelof?
The motivation is:

Lemma 1.3. Every o-compact space is powerfully ( [12], [16]) and productively
Lindelof.

Here are some partial results:

Lemma 1.4. [I9] The Continuum Hypothesis (CH) implies that every pro-
ductively Lindelof metrizable space is o-compact.

Lemma 1.5. [Z] CH implies that every productively Lindelof space of weight
< Ny is powerfully Lindeldf.

Another classic problem of Michael is:

Problem 1.2. Does there exist a Michael space, that is, a Lindelof space X
such that X x P is not Lindeldf? Here, P denotes the space of irrationals. In
other words, does P fail to be productively Lindeldf?

It is known that (see for example [20]):
Lemma 1.6. b =X or 9 = Cov(M) implies there is a Michael space.

Theorem 1.1. There is no Michael space if and only if every Frolik space is
productively Lindeldf.

Proof. Since the irrationals themselves are a Frolik space, it is clear that there
can be no Michael space if Frolik spaces are productively Lindelof. Thus, let
us consider a Lindelof space L such that w* x L is Lindelof. It suffices to show
that H C,, x L is Lindelof for any sequence {Cp,}n<w of o-compact spaces.

n<w
By 3.8.G. in [II], we know that for each n there is a compact space K, such

that C,, can be written as a continuous image of a closed subspace of w x K.
Thus, H C,, is a continuous image of a closed subspace of H (w X Kn), which
n<w n<w

is homeomorphic to w* x H K,. But H K, x L is a Lindelof space, so by

n<w n<w



assumption w* X H K, x L is a Lindelof space. So, H C,, is a continuous

n<w n<w
image of a closed subspace of a Lindel6f space and we have the result. O

In fact, the above proof gives a slightly sharper statement: if L is a Lindelof
space, and there exists a Frolik space F' with L x F not Lindelof, then L is a
Michael space. The following is another new result.

Theorem 1.2. FEvery Frolik space is the union of <0 compact sets, where 0 is
the least cardinality of a family of functions cofinal in w* under the <* ordering.

Proof. Firstly, consider a family C cofinal in (w“’, S*). For f € C and n < w,
define f,, : w = w by f,(k) = max(f(k),n). If we take D = {f,}ec n<w, then
D is cofinal in (w*, <). Moreover, since w < 9 < |C|, we have |D| = |C|-w = [C|.

Now, for n < w, let C), = U K" be a o-compact space, where K" is
m<w
compact. Write ¥ = H C,. For i € D, we define a compact W; C Y by
n<w

W, — H( U Kﬁ). Claim Y = | J .

n<w k<i(n) i€D
If vy = (yo,y1,-..) € Y, then y,, € C, for each n < w, which implies that
for every n < w there is a j(n) < w such that y,, € K2™ . Then, y € H Kim,

n<w
Choose an i € D with j < i. Then, H K™ C W;, which implies y € W;

n<w

and we have the claim. If F C Y is closed, then FF N W; is compact and
F=|JFnw,. O
ieD

Notice that this provides many examples of Lindel6f spaces which are not Frolik.

2 Okunev’s Space

There is a Frolik space due to O. Okunev in [3] that has proven to be of con-
siderable interest in our investigations of productive Lindel6fness.

Definition 2.1. A space X is Rothberger if for any sequence {Uy }n<w of open
covers of X, there are open sets {Uy}n<w such that U, € U,, and U U,=X.

n<w

This is the selection principle S¢ (O, 0). We can also define the corresponding
Rothberger game G%(0,0) as follows. In the nt" round, ONE chooses an
open cover U, and TWO chooses a single U, € U,. TWO wins if {Un}n<w
covers X.

It is a nontrivial result of Pawlikowski [22] that ONE has no winning strategy
in the Rothberger game on a space X exactly when X is Rothberger.



Definition 2.2. A space X is projectively countable if f(X) is countable for
every continuous map [ from X to a separable metric space.

Arhangel’skii [3] calls projectively countable spaces w-simple. Note that Lin-
deldf projectively countable spaces are Rothberger [6].

Example 2.1. Okunev’s space V is formed by taking the Alexandrov duplicate
A(P) of the space of irrationals and collapsing the nondiscrete copy of P to a
point. We will let p denote the unique nonisolated point of V', and let q denote
the quotient mapping A(P) — V. We will also write P; for the copy of P in A(PP)
that is homeomorphic to the usual irrationals, and write Py for the discrete copy.
This construction has the following properties.

(i) V is K,s, hence Frolik [3],

(i) V is not o-compact 3],

(iii) V is projectively countable [3],

(iv) V is Rothberger,

(v) V does not include a closed copy of P [27].

Definition 2.3. [T7] A space is K-analytic if it is the continuous image of a
Lindeldf Cech-complete space.

In [27], we asked whether productively Lindelof K-analytic spaces must be o-
compact, and in [25] the second author claimed this follows from C'H. This is
not the case:

(vi) V is K-analytic.
This is immediate from the following.

Theorem 2.1. [12] If F is a Frolik space, then there is a Cech-complete Frolik
space F' which maps continuously onto F.

Another interesting fact about Okunev’s space is that since V' is K, its growth
V* = BV \ V is Borel but V* is not Baire. That is, V* is an element of the
o-algebra generated by the open sets of SV, but not in the corresponding o-
algebra Z generated by the zero-sets. To see this, recall that the elements of
Z are Lindelof (see for example [7]), so supposing V* € Z, V would be Lin-
delof at infinity. A space is Lindelof at infinity if and only if every compact
set is included in a compact set of countable character [I8]. We claim this is
a contradiction, since no compact set including the nonisolated point p can be
a G. To see this last assertion, suppose p € G, where G C V is a GG5. Then
¢ 1(G) C A(P)is a G5, and P; C G. Thus, ¢~ 1(G) is cocountable, which implies
that G is cocountable. But if G were compact, V would be o-compact.

The second author created unnecessary confusion in [27] by using nonstan-
dard definitions of ‘Borel’ and ‘Baire’. In the same paper we noted that the



Hurewicz Dichotomy does not hold for Okunev’s space, since it is not o-
compact nor does it include a closed copy of P. Thus, contrary to [27], the
dichotomy does not hold for absolute Borel spaces, but we can ask:

Problem 2.1. Must every Baire subspace of a compact Hausdorff space either
include a closed copy of P or be o-compact?

Using K-analyticity, we can improve Corollary ?7?7. Note that by Lemma
as well as the argument given above, 0 = N; implies there is a Michael space.
In [26] it is observed that:

Lemma 2.1. The existence of a Michael space implies that productively Lindeldf
analytic metrizable spaces are o-compact.

Definition 2.4. A space is projectively o-compact if any continuous image
i a separable metric space is o-compact.

In [23] it is shown that K-analytic metrizable spaces are analytic. Clearly,
continuous images of K-analytic spaces are K-analytic, so we can conclude:

Theorem 2.2. The existence of a Michael space implies that productively Lin-
delof Frolik spaces are projectively o-compact.

Now, if productively Lindelof Frolik spaces are projectively o-compact, then P
is not productively Lindelof, so there is a Michael space. Rewriting the resulting
equivalence, we have:

Corollary 2.1. There is no Michael space if and only if there is a productively
Lindelof Frolik space which is not projectively o-compact.

Corollary 2.2. There is a productively Lindeldf Frolik space which is not pro-
jectively o-compact if and only if every Frolik space is productively Lindeldf

Definition 2.5. A space is Alster if whenever each compact set is included in
some member of a G5 cover, then that cover must have a countable subcover.

(vii) V is Alster and hence ([2]) productively Lindelof.

Proof. The complement of an open set containing the nonisolated point is Lin-
deldf and discrete, hence countable. Thus a Gs containing the nonisolated point
is cocountable. It follows that any G5 cover has a countable subcover. O

Furthermore,
(viii) TWO has a winning strategy for the Rothberger game on V.

Proof. ONE picks the first open cover Uy. Let TWO choose an element Uy € Uy
such that p € Uy. Then P; C ¢~ 1(Up). Notice that we can choose {x,, },<. such
that each z, € P;, and symmetric intervals I,, centered at x,, so that P; =
U I,,. But since ¢~1(Up) is open in A(P), we must then have (I, \ z,) NP, C

n<w



q¢ 1 (Up). So, no matter what subsequent sequence {Uy,}1<n<. of open covers
of V. ONE chooses, TWO can pick an element U,, € U,, with ¢(z,—1) € U,.

U U,, is then a cover of V. O

nw

(viii) yields an unusual proof that:
(ix) The nonisolated point p is not a G in V.
This is immediate from the following result of F. Galvin.

Lemma 2.2. [13/If TWO has a winning strategy for the Rothberger game on
X and each point of X is a Gs, then X is countable.

Lemma [2.2] can also be used to show that TWO winning the Rothberger game
is not equivalent to projectively countable.

Theorem 2.3. TWO having a winning strategy for the Rothberger game implies
that a space is projectively countable, but the converse is false.

Proof. Assume TWO has a winning strategy for the Rothberger game on X,

and let f : X — Y map X continuously onto a separable metrizable space

Y. Consider the Rothberger game on Y. Any open cover U,, of Y that ONE

chooses gives rise to an open cover U, = {f~1(U) : U € U,} of X. So, TWO

can choose some f~1(U,,) from each U, such that U f~1(U,) = X. But then,
n<w

U U, =Y, so the winning strategy for TWO on X determines a winning

n<w

strategy on Y. Y is metrizable, thus points of Y are G5 and Lemma [2.2] implies
that Y is countable.

Moore’s L-space M in [21] is projectively countable [24]. Hereditarily Lindelof
T5 spaces have points Gy, so if TWO had a winning strategy for the Roth-
berger game on M, Lemma [2.2] would imply that M is countable, which is not
the case. O

3 An Application of Elementary Submodels

Another partial result akin to Lemma [1.5]is:

Lemma 3.1. [27] CH implies every productively Lindeldf space of size < ¥y
s powerfully Lindelof.

We can now generalize Lemma [3.1] to obtain:

Theorem 3.1. CH implies that every productively Lindeldf space which is the
union of < Ny compact sets is powerfully Lindeldf.



Proof. This proof is nontrivial, employing a novel application of elementary
submodels. Recall that the Lindel6f number L(X) of a space X is the least
cardinal A such that every open cover of X has a subcover of size < A. We
straightforwardly generalize the second half of Lemma [I.3] to obtain:

Lemma 3.2. Suppose X is the union of < Wy compact sets. Then L(X¥) < Nj.

Since X is Ty 1 it embeds in a compact space Z. Therefore X*“ embeds in the

compact space Z“. Write m, for the projection Z« — Z and let X = U K.,
a<wi

for K, compact. Then K, is closed in Z, so 7, 1(K,) is closed in Z¥. Tt follows

that {m; ' (Ka)}n<w,a<w, is a family satisfying the hypotheses of the following.

Proposition 3.1. Let Y C Z where Z is compact. Suppose there is a family
{Fuota<w, of sets closed in Z such that if vo € Y and z1 € Z\'Y, we have
xo € Fo, and x1 ¢ F,, for some ag < wy. Then L(Y) < Ny

Proof of Proposition[3.1 Let U = {Ug}s<, be an open cover of Y. Take

Vs = Z\ 'Y \ Ug, where the closure is taken with respect to Z. Since Y \ Ug is

closedin Y, Y \UgNY =Y \ Ug. This implies Y C U Vo = V. Furthermore,
B<k

Y NVg CUsg.

Take x € Y and note that for each y € Z \ V there is a compact F,,, with

r € F,, but y ¢ F,, . It follows that ﬂ F,, €V and hence U Z\ Fy,
yezZ\V yeZ\V

covers Z \ V', which is compact. Take a finite subcover {Z\ Fy,,, }m<am of Z\ V.

Then z € m F,, C V. This demonstates that, if we let F' be the union of all

m<M
such finite intersections of F,, which meet Y but not Z\ V, then Y C F C V.

F is a union of 8; compact sets, so we can take a subcover {Va, }a<w,- {¥Y' N
VB, }a<w, Will then be a refinement of U.

To prove Theorem [3.1] it then suffices to establish:

Lemma 3.3. CH implies that if X is productively Lindelof and L(X“) < Ny,
then X* is Lindeldf.

Proof. In addition to the elementary submodel topology considered in [I5], an
alternate method of constructing a topology from a space and an elementary
submodel containing it is explored in [5], [8] and [I0]. Given X and an elemen-
tary submodel M with X € M, we define an equivalence relation by letting
xg ~ x1 for zg,xq1 € X if and only if f(xp) = f(z1) for every continuous
f: X — R such that f € M. Letting X/M be the resulting quotient and 7 the
projection X — X /M, we topologize X/M by taking a base of the form 7 (U),
where U is a cozero set in X such that U € M. The basic properties of this



construction can be found in any of the papers above, but the most important
fact is probably the following.

Lemma 3.4. [10] For a Ts space X, X/M is a T3 space which is a continuous
image of X.

It follows that if X is productively Lindeldf, then so is X/M. Let M be a ele-
mentary submodel of size < W; such that X € M. By CH, we can get such an
M which is countably closed. Then w(X/M) < ¥y, since X/M has a base of
sets which are members of M. By Lemma X/M is powerfully Lindel6f.

Now, take an open cover U of X“ and assume without loss of generality that
U has size V. Additionally, assume that every element of U/ is basic open of
the form U = H U,., where each U, is a cozero set in X and cofinitely many

n<w

U, = X. Assume that U,, € M for each n < w and each U € . Consider the
map © : X¥ — (X/M)¥“ given by reducing each coordinate of a point in X%
modulo M. More explicitly, if 7 : X — X/M is the quotient map described
above, we let ©(zg,x1,...) = (7(z), w(x1),...), for (zo,z1,...) € X“. I claim
that ©~10O(U) = U for each U € U.

Suppose x = (zg,x1,...) € X* and O(z) = O(y), where y = (yo,y1,...) € U.
If we write [x,] for the equivalence class /M of a point in X, the statement
O(x) = O(y) says [xn] = [yn] for every n. By Proposition 2.4.2 in [10], this im-
plies that whenever H € M is a cozero set, then z,, € H if and only if y,, € H.
But, y € U implies y,, € U, for every n and we assumed U,, € M, hence x,, € U,
for each M. We have shown x € U, which gives the claim.

So, consider {O(U) : U € U}, which is an open cover of (X/M)“. Since X/M
is powerfully Lindeldf, there is a countable subcover {©(U*)}x«,,. Pulling this
back to {0710(U*)}r<w = {U*}r<w gives a countable subcover of Y. This
concludes the proof of Lemma [3.3] and hence we have Theorem [3.1 O

This result raises the following question.
Problem 3.1. If X is productively Lindeldf, is it consistent that L(X%) < 280 2

This could be combined with CH to solve Problem Nothing is known
towards an answer except for the following results.

Theorem 3.2. If X is Lindelof, L(X%) is less than the first strongly compact
cardinal

Proof. In [9], Drake characterizes the first strongly compact cardinal kg as the
least uncountable x such that if C is a family of spaces such that every open
cover of every C € C has a subcover of size < k, then every open cover of [[C
has a subcover of size < x . If X is Lindeldf, then clearly L(X) = w < kg, so
L(X%) < Ko. O



This result is notably unsatisfying, since the same argument shows that if X is
Lindel6f, then L(X?) is less than the first strongly compact cardinal for every
A. In terms of possible counterexamples, there is:

Example 3.1. [T It is consistent with CH that there is a space X with X™
Lindeldf for every n < w, but L(X*¥) = N,.

The natural attempt to solve Problem would be to Lévy-collapse a super-
compact to Ny with countable conditions. We do not know what happens in
such a model.
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