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Abstract

This paper studies certain aspects of harmonic analysis on the rank two free group. We focus on the
concept of a positive definite function on the free group and our primary goal is to understand how such
functions can be extended from balls of finite radius to the entire group. More specifically, we define a
concept of ‘relative energy’ which measures the proximity between a pair of positive definite functions,
and we ask whether a family of positive definite functions on a finite ball can be extended to the entire
group with control on their relative energies. We find that the answer to this question depends on the
configuration of relative energies that we seek to control, and that it has deep connections with classical
harmonic analysis and with the recent refutation of Connes’ embedding conjecture.
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1 Introduction

In this paper we never consider free groups of rank higher than two, and we denote the free group of rank
two by F. We now present the definitions needed to formalize the discussion in the abstract and to state our
main results.

1.1 Preliminary information

1.1.1 The fundamental inequality on the free group

Definition 1.1. Let d ∈ N and let F be a finite subset of F. We define a function C : F → Matd×d(C) to be
positive definite if we have the fundamental inequality∑

g,h∈E

α(h)∗C(h−1g)α(g) ≥ 0 (1.1)

for every subset E of F with E−1E ⊆ F and every function α : E → Cd.

We define C to be strictly positive definite if C is positive definite and the inequality in (1.1) is satu-
rated only when α is identically 0. We define a function C : F→ Matd×d(C) to be (strictly) positive definite
if C � F is (strictly) positive definite for every finite F ⊆ F.

A positive definite function on the free group can be thought of as a noncommutative analog of an infinite
positive definite Toeplitz matrix.

1.1.2 The space of normalized strictly positive definite functions

We will always assume the following normalization condition.

Definition 1.2. Let Id denote the d × d identity matrix. If C is a positive definite function with values in
Matd×d(C) whose domain contains e, we define C to be normalized if C(e) = Id.

If C is normalized then for any fixed g ∈ F the vectors ΦC(g)1, . . . ,ΦC(g)d are orthonormal. We denote the
space of normalized strictly positive definite functions C : Br → Matd×d(C) by NSPD(r, d). We endow the
space of functions from Br to Matd×d(C) with the norm

||C||1 =
∑
g∈Br

d∑
j,k=1

|C(g)j,k|

1.1.3 Realizations of positive definite functions on balls

Note that B−1
r Br = B2r. Therefore if C ∈ NSPD(2r, d) we can regard it as a positive definite kernel on the

set Br × [d]. By Theorem C.2.3 in [3] there exists a Hilbert space X(C) and a function ΦC : Br → X(C)d such
that

〈ΦC(g)j ,ΦC(h)k〉 = C(h−1g)j,k (1.2)

for all g, h ∈ Br and all j, k ∈ [d]. Moreover, we may and will assume that the coordinates of the range of
ΦC span X(C). The hypothesis that C is strictly positive definite ensures that the coordinates of the range
of ΦC will be linearly independent. We will refer to them as the canonical basis for X(C).
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Definition 1.3. We say that (X(C),ΦC) as above is a realization of C.

We can construct a realization of a positive definite function C : F→ Matd×d(C) in the same way, obtaining
a Hilbert space X(C) and a function ΦC : F → X(C)d such that the span of the coordinates of the range of
ΦC is dense in X(C).

It is clear that given two realizations of the same positive definite function there exists a natural unitary
isomorphism from one realization Hilbert space to the other. This isomorphism transforms a canonical ba-
sis vector in one realization to the canonical basis vector in another realization having the same index. If
C : F → Matd×d(C) is positive definite then the function g 7→ (ΦC(hg)1, . . . ,ΦC(hg)d) is a realization of ΦC

for any h ∈ F. Thus we may make the following definition.

Definition 1.4. Let d ∈ N and let C : F → Matd×d(C) be positive definite. Then any realization of C
defines an associated unitary representation of F on X(C) denoted by ρC and given by the translation
ρC(h)ΦC(g)j = ΦC(hg)j for g, h ∈ F and j ∈ [d].

1.1.4 Transport operators and relative energies

Definition 1.5. Let C,D ∈ NSPD(2r, d). Let (X(C),ΦC) and (X(D),ΦD) be realizations of C and D respec-
tively. Define the transport operator t[C,D] : X(C)→ X(D) by setting

t[C,D]
∑
g∈Br

d∑
j=1

α(g)jΦC(g)j =
∑
g∈Br

d∑
j=1

α(g)jΦD(g)j

for functions α : Br → Cd. We refer to the square of the operator norm of t[C,D] as the relative energy of
the pair (C,D) and denote it by e(C,D).

If C,D : F → Matd×d(C) are strictly positive definite we define the relative energy of the pair (C,D) to
be supr∈N e(C � Br,D � Br). We continue to denote it by e(C,D). In general we may have e(C,D) = ∞. If
e(C,D) < ∞ then there is a naturally defined transport operator from X(C) to X(D), which we continue to
denote by t[C,D].

The relevance of Definition 1.5 is that the transport operator between two strictly positive definite functions
defined on all of F clearly intertwines the associated unitary representations. Thus transport operators will
be useful in analyzing commuting representations of F.

Note that the normalization hypotheses implies e(C,D) ≥ 1 for all C,D and e(C,D) = 1 if and only if
C = D.

1.2 Main results and discussion

Definition 1.6. Let Θ = (V,E) be a finite directed graph and let r, d ∈ N. We define a d-dimensional
radius-r configuration over Θ to be a family (Cv)v∈V of elements of NSPD(r, d) indexed by V .

The following definitions are the central concepts of this paper, and our study indicates they are the appro-
priate way to formalize the extension problem.
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Definition 1.7. Given ε > 0 and a d-dimensional radius-r configuration C = (Cv)v∈V over a finite directed
graph Θ we define the ε-malleable extension energy cost of C to be the infimum of all numbers M ∈ [1,∞)

such that there exists for each v ∈ V a positive definite function Ĉv : F→ Matd×d(C) with

max
(
e(Cv, Ĉv � Br), e(Ĉv � Br,Cv)

)
≤ 1 + ε

and
e(Ĉv, Ĉw)− 1 ≤M

(
e(Cv,Cw)− 1

)
(1.3)

for all (v, w) ∈ E. We denote this by encostε(C). We adopt the convention that inf ∅ =∞ in the sense that
we set encostε(C) =∞ when there does not exist M as in (1.3).

We define the ε-malleable radius-r extension energy cost of Θ to be supC encostε(C), where the supre-
mum is taken over all d ∈ N and all d-dimensional radius-r configurations C over Θ. We denote this by
encostr,ε(Θ). We define the (r, ε)-extension energy cost of the free group to be supΘ encostr,ε(Θ), where
the supremum is taken over all finite directed graphs Θ. We denote this by encostr,ε(F).

In order for Definition 1.7 to be reasonable we ought to know that any element of NSPD(r, d) admits an
extension to a positive definite function defined on all of F. This fact appears as Proposition 4.4 in [1] and
as Lemma 25 in [13].

Our main results are the following.

Theorem 1.1. If Θ is a finite tree directed toward a root or a finite directed cycle then encostr,ε(Θ) = 1 for
all r ∈ N and all ε > 0.

Theorem 1.2. There exist r ∈ N and ε > 0 such that encostr,ε(F) =∞. Indeed, for these r and ε we have

sup
{

encostr,ε(Θ) : Θ is a finite 4-regular directed graph
}

=∞ (1.4)

We remark that the existence of a sequence of finitely supported positive definite functions on Z converging to
the constant 1 from below ensures that after appropriately modifying Definition 1.7 we find encostr,ε(Z) <∞
for all r ∈ N and ε > 0.

Section 2 will be dedicated to the proof of Theorem 1.1. This proof proceeds by giving an explicit recursive
procedure for constructing extensions of positive definite functions over a tree or a cycle while controlling
relative energies. This procedure is based on an analysis of noncommutative Szegö parameters that builds
on the work in [1].

Section 3 we will be dedicated to the proof of Theorem 1.2. The starting point for this part of the proof is
the negation of Connes’ embedding conjecture, which was recently established in the breakthrough paper [7].

Theorems 1.1 and 1.2 constitute the full extent of the authors’ understanding of extension energy costs,
aside from the minor fact that methods of the present paper can be easily modified to show that 4 in (1.4)
can be replaced with 3. Beyond these results, energy extension costs seem somewhat mysterious. For exam-
ple, if we fix the minimal r as in Theorem 1.2 then it is trivial that encostr,A(F) = 1 for sufficiently large
finite values of A. Therefore there exists a maximal positive value of ε such that encostr,ε(F) = ∞. The
exact value of this minimal r and maximal ε can be thought of as a kind of phase transition point, and
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they seem extremely difficult to compute. We also observe that the examples in Theorem 1.1 show that the
existence of cycles and vertexes of high degree are not in themselves obstructions a graph to having low exten-
sion energy cost, so it is unclear what to say about the graph theoretic implications of extension energy costs.

One way to gain insight into the last issue would be to obtain a more concrete understanding of the graphs
constructed to prove Theorem 1.2. Our approach constructs these graphs directly from the negation of the
statement of Connes’ embedding conjecture. By using more information about a counterexample to Connes’
embedding conjecture it might be possible to obtain more details about these graphs.

1.3 Notation

1.3.1 The free group

Fix a pair of free generators a and b for F and endow F with the standard Cayley graph structure corre-
sponding to left multiplication by these generators. If Γ is a quotient of F we identify a and b with their
images in Γ. We write e for the identity of F. We will also use the symbol e for 2.718 . . .

We consider the word length associated to a and b, which we denote by |·|. For r ∈ N let Br = {g ∈ F : |g| ≤ r}
be the ball of radius r around e. Write Kr for the cardinality of Br.

We define an ordering � on the sphere of radius 1 in F by setting a � b � a−1 � b−1. From this we
obtain a corresponding shortlex linear ordering on all of F, which we continue to denote by �. For g ∈ F
define Ig =

⋃
{{h, h−1} : h � g}. Define a generalized Cayley graph Cay(F, g) with vertex set equal to F

by placing an edge between distinct elements h and ` if and only if `−1h ∈ Ig. Write g↑ for the immediate
predecessor of g in � and g↓ for the immediate successor of g in �.

1.3.2 Miscellanea

If z and w are complex numbers and ε > 0 we will sometimes write z ≈[ε]w to mean |z − w| ≤ ε.

We write D for the open unit disk in the complex plane.

If n ∈ N we write [n] for {1, . . . , n}.

It is customary in analysis to collect accumulating constants into a single notation, such as O(·) or a symbol
such as C which can take on multiple values. We do employ O(·) and o(·) notation in Section 2. However,
we choose to keep track explicitly of all constants in Section 3. Despite the fact that their specific values
are unimportant, we feel that checking how these constants vary from line to line aids in verification of the
proof.

1.4 Acknowledgements

We thank Lewis Bowen for several suggestions that improved the writing. We thank Rostyslav Kravchenko
for suggesting the use of Proposition 2.11.
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2 Proof of Theorem 1.1

In Section 2 we prove Theorem 1.1

2.1 Review of certain aspects of classical theory

In Subsection 2.1 we recall some information about classical harmonic analysis which will be relevant to our
later arguments.

2.1.1 The fundamental inequality on the integers

Harmonic analysis typically begins with Fourier analysis. The theory of Fourier series on the unit circle T can
be thought of as harmonic analysis on the additive group of integers Z, which is the free group on one genera-
tor. We now discuss some aspects of this classical theory which are relevant to the method we use in Section 2.

We define a marked unitary representation of a countable discrete group G to be a unitary representa-
tion ρ of G on a Hilbert space X together with a distinguished vector x ∈ X which is cyclic in the sense that
the span of the set {ρ(g)x : g ∈ G} is dense in X. Any unitary representation of a countable discrete group
G can be decomposed into a countable orthogonal sum of subrepresentations, each of which admits a cyclic
vector.

The family of marked unitary representations of Z is in canonical one to one correspondence with the the
family of finite Borel measures on T. This correspondence is given by placing both of these families of objects
in canonical one to one correspondence with a third family of objects. This third family consists of so-called
positive definite functions on Z. A positive definite function C on Z is a function from Z to the complex
numbers which satisfies the fundamental inequality

N∑
m,n=−N

α(m)α(n)C(m− n) ≥ 0 (2.1)

for every natural number N and every function α : {−N, . . .N} → C. One can think of a positive definite
function on Z as an infinite version of a positive definite Toeplitz matrix.

2.1.2 Fourier correspondence

The correspondence between a positive definite function C on Z and a finite Borel measure µ on T is given
by the formula

C(n) = µ̂(n) =

∫
T
s−n dµ(s) (2.2)

Thus the values of C are the Fourier coefficients of µ. The fact that the sequence of Fourier coefficients of a
measure is positive definite reflects the following fact, which can be verified with elementary computation.

N∑
m,n=−N

α(m)α(n)C(m− n) =

N∑
m,n=−N

α(m)α(n)

∫
T
sn−m dµ(s)
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=

∫
T

∣∣∣∣∣
N∑

m=−N
α(m)s−m

∣∣∣∣∣
2

dµ(s) ≥ 0

The fact that a positive definite function on Z uniquely defines a finite Borel measure on T via (2.2) is known
as Bôchner’s theorem.

2.1.3 Spectral correspondence

The correspondence between a positive definite function C on Z and a marked unitary representation (ρ, x)
of Z is given as follows. Let u = ρ(1) be the unitary operator corresponding to the unique free generator of
Z. Then we set

C(n) = 〈unx, x〉 (2.3)

Thus the values of C are the matrix coefficients of the marked unitary representation. The fact that a
sequence of unitary matrix coefficients is positive definite reflects the following fact, which can be verified
with elementary computation.

N∑
m,n=−N

α(m)α(n)C(m− n) =

N∑
m,n=−N

α(m)α(n)〈um−nx, x〉

=

∣∣∣∣∣
∣∣∣∣∣

N∑
m=−N

α(m)umx

∣∣∣∣∣
∣∣∣∣∣
2

≥ 0

The fact that a positive definite function on Z uniquely defines a marked unitary representation of Z via
(2.3) is a version of the spectral theorem.

2.1.4 Constructing positive definite functions on the integers

In Subsection 2.1.4 we describe a method for recursively constructing positive definite functions on the inte-
gers. A noncommutative version of this construction is the main topic of Section 2

Note that if m,n ∈ {0, . . . , N} then we have m − n ∈ {−N, . . . , N}. Suppose we have defined a function
C : {−N, . . . , N} → C which satisfies the restricted fundamental inequality

N∑
m,n=0

α(m)α(n)C(m− n) ≥ 0 (2.4)

for every function α : {0, . . . , N} → C. We refer to C as a partially defined positive definite function. We
wish to extend C to a partially defined positive definite function defined on {−N − 1, . . . , N + 1}. In order
to do so it suffices to specify the number C(N + 1), as then we must have C(−N − 1) = C(N + 1).

We will assume that C is strictly positive definite in the sense that the inequality in (2.4) is saturated only
when α is identically zero. Standard theory then implies that we can find a Hilbert space X of dimension
N + 1 and canonical basis vectors Φ0, . . . ,ΦN ∈ X such that

〈Φm,Φn〉 = C(m− n) (2.5)
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for all m,n ∈ {0, . . . , N}. We can also define a shifted Hilbert space Y of dimension N + 1 with canonical
basis vectors Φ1, . . . ,ΦN+1 satisfying (2.5) for all m,n ∈ {1, . . . , N +1}. Let Z be the vector space consisting
of the span of X and Y, so that Z has a canonical basis Φ0, . . . ,ΦN+1.

In the vector space Z the inner product between Φ0 and ΦN+1 is not defined. However, the inner prod-
ucts between all other pairs of elements of the canonical basis for Z are defined. This allows us to apply the
Gram-Schmidt procedure to Φ1, . . . ,ΦN to obtain an orthonormal basis B for the subspace

X ∩ Y = span(Φ1, . . . ,ΦN ) (2.6)

of Z. Moreover, we can compute the inner products between Φ0 and the elements of B and we can compute
the inner products between ΦN+1 and the elements of B. Therefore the orthogonal projection p from Z onto
the subspace in (2.6) is well defined.

Write I for the identity operator on Z. Then for any complex number ζ with |ζ| ≤ 1 we can set〈
(I − p)ΦN+1

||(I − p)ΦN+1||
,

(I − p)Φ0

||(I − p)Φ0||

〉
= ζ (2.7)

The hypothesis that C is strictly positive definite ensures the denominators of the fractions in (2.7) are
nonzero. The hypothesis that |ζ| ≤ 1 reflects to the need to satisfy the Cauchy-Schwartz inequality. Once
we have chosen ζ, the space Z is promoted to a full Hilbert space. The fact that any choice of ζ with |ζ| ≤ 1
produces a valid positive definite extension follows from the observation that no matter the value of ζ we
have a decomposition

Z = (X ∩ Y)⊕ span
(
(I − p)ΦN+1, (I − p)Φ0

)
(2.8)

From (2.7) we can recover

C(N + 1) = 〈ΦN+1,Φ0〉
= ζ||(I − p)ΦN+1|| ||(I − p)Φ0||+ 〈pΦN+1,Φ0〉+ 〈ΦN+1, pΦ0〉 − 〈pΦN+1, pΦ0〉
= ζ||(I − p)ΦN+1|| ||(I − p)Φ0||+ 〈pΦN+1, pΦ0〉 (2.9)

The norms and inner products in (2.9) are determined by C, so ζ is indeed the only free parameter. Thus the
set of legal possibilities for C(N+1) is a closed disk in C of radius ||(I−p)ΦN+1|| ||(I−p)Φ0|| centered at the
point 〈pΦN+1, pΦ0〉. The numbers ||(I−p)Ψ0|| and ||(I−p)ΦN+1|| are bounded by ||Φ0|| = ||ΦN+1|| = C(0).
Moreover, these numbers will be small if the numbers ||pΦ0|| and ||pΦN+1|| are close to C(0). Since p is the
orthogonal projection onto X ∩ Y, we can interpret this as indicating that if Φ0 and ΦN+1 are close to X ∩ Y
then the possibilities for C(N + 1) are more restricted. The number ζ is typically referred to as a Szegö
parameter.

2.2 Constructing positive definite functions on the free group

In Subsection 2.2 we describe the general procedure for constructing positive definite functions on the free
group. This will allow us to state Lemmas 2.1, 2.2 and 2.3 in Segment 2.2.9 below. These three lemmas
easily imply Theorem 1.1, and will be proved in Subsections 2.3, 2.4 and 2.5 respectively.
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2.2.1 Geometry of generalized Cayley graphs on the free group

In Segment 2.2.1 we describe certain geometric features of the graphs Cay(F, g) which will be necessary
for the construction of positive definite functions. We will use two known results about generalized Cayley
graphs on F.

Recall that a graph is said to be chordal if every induced cycle has length at most 3. The next fact ap-
pears as Proposition 3.2 in [1] and as Proposition 3.6.7 in [2].

Proposition 2.1 (Bakonyi, Timotin). Let g ∈ F. Then Cay(F, g) is chordal.

Let g ∈ F and suppose K is a clique in Cay(F, g) which is not a clique in Cay(F, g↑). We note that K is
maximal among all cliques in Cay(F, g) if and only if K is maximal among those cliques in Cay(F, g) which
are not cliques in Cay(F, g↑). The following appears as Corollary 3.3 in [1] and as Corollary 3.6.8 in [2].

Proposition 2.2 (Bakonyi, Timotin). Let g ∈ F and let K be a maximal clique in Cay(F, g) which is not a
clique in Cay(F, g↑). Then there exists a unique edge in K which is not an edge in Cay(F, g↑).

The next two propositions are implicit in [1] but we include proofs for completeness.

Proposition 2.3. Let g ∈ F. Then there exists a unique maximal clique Kg in Cay(F, g) which contains the
edge (e, g).

Proof of Proposition 2.3. Suppose toward a contradiction that Proposition 2.3 fails. LetM1 andM2 be two
distinct maximal cliques in Cay(F, g) which contain (e, g). Since M1 and M2 contain (e, g), they are not
cliques in Cay(F, g↑). Therefore Proposition 2.2 implies that for each j ∈ {1, 2} the edge (e, g) is the unique
edge in Mj which is not an edge in Cay(F, g↑). Thus for each j ∈ {1, 2} and every m ∈Mj \ {g, e} we have
that (m, g) and (m, e) are edges of Cay(F, g↑).

SinceM1 andM2 are distinct and maximal, it must be the case that their union is not a clique in Cay(F, g).
Therefore we can choose m1 ∈M1 \M2 and m2 inM2 \M1 such that (m1,m2) is not an edge in Cay(F, g).
Since {g, e} ⊆ M1 ∩M2 for each j ∈ {1, 2} we have mj /∈ {g, e}. Again using the fact that (g, e) is the
unique edge added to M1 and M2 when passing from Cay(F, g↑) to Cay(F, g) we see that (m1,m2) is not
an edge in Cay(F, g↑).

Consider the path e → m1 → g → m2 → e. The previous paragraphs show that this is an induced cy-
cle in Cay(F, g↑), so we obtain a contradiction to Proposition 2.1.

Proposition 2.4. Suppose M is a maximal clique in Cay(F, g) which is not a clique in Cay(F, g↑). Then
M is a translate of Kg.

Proof of Proposition 2.4. Since M is not a clique in Cay(F, g↑) it must contain a pair of vertexes h, ` such
that `−1h /∈ Ig↑ . Since g is the unique element of Ig \ Ig↑ and M is a clique in Cay(F, g) this implies that
`−1h = g. Thus by translating we may assume that h = g and ` = e and so Proposition 2.4 follows from
Proposition 2.3.

The next proposition is necessary because it may happen that g↑ /∈ Kg.

Proposition 2.5. Let g ∈ F. Then there exists h ∈ Ig such that Kg \ {g} is contained in a translate of Kh.
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Proof of Proposition 2.5. Proposition 2.1 implies that (e, g) is the unique edge in Kg which is not an edge
in Cay(F, g↑). Therefore we have that Kg \ {g} is a clique in Cay(F, g↑). Let h be the �-least element such
that Kg \ {g} is a clique in Cay(F, h). Let M be a maximal clique in Cay(F, h) which contains Kg \ {g}. If
M were a clique in Cay(F, h↑) then Kg \ {g} would be a clique in Cay(F, h↑), contradicting our choice of h.
Thus Proposition 2.3 implies M is contained in a translate of Kh.

2.2.2 Full Hilbert space realizations of partial positive definite functions

Write NSPD(g, d) for the space of normalized strictly positive definite functions from Ig to Matd×d(C). We
refer to such a function as a partial positive definite function. Let C ∈ NSPD(g, d). If J is a clique in
Cay(F, g), there exists a Hilbert space X(C,J ) and a function ΦC : J → X(C)d such that

〈ΦC(h)j ,ΦC(`)k〉 = C(`−1h)j,k (2.10)

for all h, ` ∈ J and j, k ∈ [d]. The assertion that J is a clique in Cay(F, g) is equivalent to the assertion
that J−1J ⊆ Ig. The relevance of this hypothesis is that it ensures the inner products between all pairs of
elements of the range of Φ are defined. If we require that the set

{ΦC(h)j : h ∈ J , j ∈ [d]}

spans X(C,J ) then these data are unique up to a unique unitary isomorphism. We write X(C) for X(C,Kg).

2.2.3 Partial Hilbert space realizations of partial positive definite functions

The following definition makes precise the construction of the space Z from Subsection 2.1.4.

Definition 2.1. A partial Hilbert space is a vector space V together with a pair of distinguished subspaces
V1 and V2 of V having the following properties.

• The subspaces V1 and V2 span V.

• Each Vm is a Hilbert space with inner product 〈·, ·〉m.

• The inner products on V1 and V2 are compatible in the sense that for any pair of vectors x, y ∈ V1 ∩V2

we have 〈x, y〉1 = 〈x, y〉2.

We refer to V1 ∩ V2 as the core of V and denote it by core(V).

The following proposition is the key to the extension procedure.

Proposition 2.6. If V is a partial Hilbert space then the orthogonal projection from V onto core(V) is
well-defined.

Proof of Proposition 2.6. The third item in Definition 2.1 ensures that we can apply the Gram-Schmidt
procedure to obtain an orthonormal basis for core(V). The first and second items in Definition 2.1 imply
that we can compute the inner products between an arbitrary element of V and and element of core(V).
Therefore Proposition 2.6 follows.
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We now describe how to associate a partial Hilbert space to a partial positive definite function. This par-
tial Hilbert space will be used to calculate the set of legal possibilities for an extension of an element of
NSPD(g↑, d) to an element of NSPD(g, d).

Let C ∈ NSPD(g↑, d). Proposition 2.2 implies the clique Kg in Cay(F, g) contains a unique edge which
is not an edge in Cay(F, g↑). This must be the edge between g and e. Therefore the sets Kg \{g} and Kg \{e}
are cliques in Cay(F, g↑). Hence the discussion in Segment 2.2.2 implies that we can construct two Hilbert
spaces X(C,Kg \ {g}) and X(C,Kg \ {e}) together with functions

ΦC : Kg \ {g} → X(C,Kg \ {g})d

and
ΨC : Kg \ {e} → X(C,Kg \ {e})d

such that ΦC and ΨC satisfy (2.10) on their domains.

Proposition 2.7. Let C ∈ NSPD(g↑, d). Then there exists a partial Hilbert space X(C)• with distinguished
subspaces that can be identified with X(C,Kg \ {g}) and X(C,Kg \ {e}). Moreover, if h ∈ Kg \ {g, e} then
ΨC(h)j = ΦC(h)j for all j ∈ [d] and core(X(C)•) consists exactly of the span of these vectors.

Proof of Proposition 2.7. We take X(C)• to be the quotient of the disjoint union of X(C,Kg \ {g}) and
X(C,Kg \ {e}) by the equivalence relation which identifies ΦC(h)j and ΨC(h)j for h ∈ Kg \ {g, e} and
j ∈ [d].

If C ∈ NSPD(g↑, d) we define

ΘC(h)m =


ΦC(h)j = ΨC(h)j if h ∈ Kg \ {g, e} and j ∈ [d]

ΨC(h)j if h = g and j ∈ [d]

ΦC(h)j if h = e and j ∈ [d]

(2.11)

Thus {ΘC(h)m : h ∈ Kg, j ∈ [d]} forms a canonical basis for X(C)•.

2.2.4 Partial positive definite functions with partial matrix specification

Segment 2.2.4 is purely notational. For (j, k) ∈ [d]2 we adopt the notation NSPD(g, d, j, k) for elements C of
NSPD(g↑, d) such that the entries C(g)l,m have been specified for all pairs (l,m) < (j, k). Write

D(g, d, j, k) = (Ig↑ × [d]2) ∪
(
{g} × {(l,m) ∈ [d]2 : (l,m) < (j, k)}

)
Thus we can regard an element of NSPD(g, d, j, k) as a function from D(g, d, j, k) to C. We endow the space
of functions from D(g, d, j, k) to C with the norm

||C||1 =
∑

(h,l,m)∈D(g,d,j,k)

|C(h)l,m|

If (j, k) 6= (d, d) we let (j↓, k↓) be the immediate successor of (j, k) in the lexicographic order. We also let

NSPD(g, d, j, k)↓ =

{
NSPD(g, d, j↓, k↓) if (j, k) 6= (d, d)

NSPD(g↓, d, 1, 1) if (j, k) = (d, d)

Write P(g, d, j, k) for the set of indexes (h,m) ∈ F× [d] such that one of the following conditions holds.
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• We have h ∈ Kg \ {e, g} and m ∈ [d] is arbitrary.

• We have h = g and m ∈ [j − 1].

• We have h = e and m ∈ [k − 1].

Also let Q(g, d, j, k) = P(g, d, j, k) ∪ {(e, k), (g, j)}.

2.2.5 Parameterizing extensions

In Segment 2.2.5 we describe the procedure for extending positive definite functions. This construction has
its roots in [1] and in Section 3.6 of [2].

Let g ∈ F and fix C ∈ NSPD(g↑, d). We wish to understand extensions of C to an element of NSPD(g, d). In or-
der to describe such an extension it suffices to specify the matrix C(g) since then we must have C(g−1) = C(g)∗.

We begin by constructing the partial Hilbert space X(C)• as in Proposition 2.7. Specifying the matrix
C(g) amounts to specifying the inner products between ΘC(g)j and ΘC(e)k for (j, k) ∈ [d]2. We do this by
recursion on the lexicographic order on pairs (j, k) ∈ [d]2. We use the notation < for the lexicographic order
on [d]2.

Fix (j, k) ∈ [d]2 and C ∈ NSPD(g, d, j, k). Since we have specified C(g)l,m for (l,m) < (j, k) we have
that the inner product between ΘC(g)l and ΘC(e)m is defined for all pairs (l,m) < (j, k). Thus we have spec-
ified the inner products between ΘC(h)m and ΘC(`)q for all pairs (h,m) and (`, q) of elements of P(g, d, j, k).

Using this data we can construct a partial Hilbert space X(C)• which is the subspace of X(C)• spanned
by {ΘC(h)m : (h,m) ∈ Q(g, d, j, k)}. The distinguished subspaces of X(C)• are given by

X(C)g = span
(
{ΘC(h)m : (h,m) ∈ P(g, d, j, k)} ∪ {ΘC(g)j}

)
and

X(C)e = span
(
{ΘC(h)m : (h,m) ∈ P(g, d, j, k)} ∪ {ΘC(e)k}

)
and core(X(C)•) is the span of {ΘC(h)m : (h,m) ∈ P(g, d, j, k)}. The point of attempting to extend C instead
of directly extending C is that the pair {ΘC(g)j ,ΘC(e)k} is the only pair of canonical basis vectors in X(C)•
whose inner product is undefined.

Write I for the identity operator on X(C)•. By Proposition 2.6 we can consider the orthogonal projec-
tion p from X(C)• onto core(X(C)•). Given a complex number ζ with |ζ| < 1, we can make the following
definition, which generalizes (2.7). Set〈

(I − p)ΘC(g)j
||(I − p)ΘC(g)j ||

,
(I − p)ΘC(e)k
||(I − p)ΘC(e)k||

〉
= ζ (2.12)

The hypothesis that C is strictly positive definite implies that the denominators of the fractions in (2.12)
are nonzero. As with (2.7), the requirement that |ζ| ≤ 1 is immediate from the need to satisfy the Cauchy-
Schwartz inequality. The requirement that |ζ| 6= 1 will be discussed in Segment 2.2.8. From (2.12) we have
the analog of (2.9), whereby we recover C(g)j,k as

C(g)j,k = 〈ΘC(g)j ,ΘC(e)k〉
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= ζ||(I − p)ΘC(g)j || ||(I − p)ΘC(e)k||+ 〈pΘC(g)j , pΘC(e)k〉 (2.13)

The norms and inner product in (2.13) are determined by C, so that ζ is indeed the only free parameter.
The fact that any value of ζ with |ζ| ≤ 1 produces a valid positive definite function follows by the analog of
(2.8), which is the decomposition

X(C)• = core(X(C)•)⊕ span
(
(I − p)ΘC(g)j , (I − p)ΘC(e)k

)
valid for any value of ζ. Write Cζ for the extension of C by ζ. Thus after extending by ζ the partial Hilbert
space X(C)• is promoted to a full Hilbert space X(Cζ). The Hilbert space X(Cζ) has a canonical basis in-
dexed by Q(g, d, j, k) and we can regard Cζ as an element of NSPD(g, d, j, k)↓. It is natural to think of ζ as
a noncommutative Szegö parameter.

If we choose ζ = 0 at every step of the extension procedure we obtain the so-called ‘central extension’,
which corresponds to the construction of a higher-step Markov process on the free group. This is the con-
struction given in Lemma 24 of [13]. However, the central extension does not have the properties required
to prove Theorem 1.1 and we must choose the extension parameters more carefully.

The essential proofs in Section 2 are contained in Subsections 2.3 - 2.5. In these subsections we will al-
ways have g, d, j and k fixed and we will be considering elements of NSPD(g, d, j, k). Thus to ease notation
we will omit the underline and denote elements of NSPD(g, d, j, k) by symbols such as C and D.

2.2.6 Transport operators of partially defined functions

We will need the following analog of Definition 1.5.

Definition 2.2. Let g ∈ F, d ∈ N and (j, k) ∈ [d]2. Let C,D ∈ NSPD(g, d, j, k). The transport operator
between the partial Hilbert spaces X(C)• and X(D)• is denoted t[C,D] and is given by setting

t[C,D]
∑

(h,m)∈Q(g,d,j,k)

α(h)mΘC(h)m =
∑

(h,m)∈Q(g,d,j,k)

α(h)mΘD(h)m

for α : Q(g, d, j, k)→ C. We define the relative energy of the pair (C,D) to be the maximum of the squares
of the operator norms of the restrictions of t[C,D] to the distinguished subspaces X(C)g and X(C)e. We denote
the relative energy of the pair (C,D) by e(C,D).

There is a slight difference between Definitions 1.5 and 2.2. If |g| = 2r and g is the � last element of its
length then Kg is a translate of Br different from Br.

2.2.7 Strong local free group extension graphs

Definition 2.3. Let (V,E) be a finite directed graph. We define (V,E) to be a strong local free group
extension graph if the following holds. Let g, d ∈ N and let j, k ∈ [d] and let η > 0. Let (Dv)v∈V be
a family of elements of NSPD(g, d, j, k). Then there exist elements (Kv)v∈V of NSPD(g, d, j, k)↓ such that
||Dv − (Kv � D(g, d, j, k))||1 ≤ η for all v ∈ V and such that e(Kv,Kw) ≤ e(Dv,Dw) + η whenever (v, w) ∈ E.
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2.2.8 Degenerate extensions

Observe that the construction described in Segment 2.2.5 makes sense if we choose ζ to be an element of
the unit circle. However, in this case the resulting extension will not be strictly positive definite and so the
denominators of the fractions in (2.12) will be zero at some later stage of the procedure. Thus we regard
|ζ| = 1 as an unacceptable degeneracy. Intuitively, such a degeneracy corresponds to a cycle in the time
evolution represented by the extension procedure. The following definition will allow us to avoid this issue
in the context of minimizing relative energies.

Definition 2.4. Let g ∈ F, d ∈ N and (j, k) ∈ [d]2. Let C,D ∈ NSPD(g, d, j, k). We define the pair (C,D) to
have singular degeneracies if there is a constant c > 0 depending only on previously introduced data such
that

e(Cζ ,Dµ) ≥ c

1− |ζ|2

for all ζ, µ ∈ D. If N ∈ N, we say that a family C1, . . . ,CN ∈ NSPD(g, d, j, k) has completely singular
degeneracies if the pair (Cl,Cm) has singular degeneracies for all distinct pairs l,m ∈ [N ].

2.2.9 Three lemmas

We now formulate three lemmas that will imply Theorem 1.1. We will prove them below in Subsections 2.3,
2.4 and 2.5 respectively.

Lemma 2.1 (Small perturbations give singular degeneracies). Let g ∈ F be such that |g| ≥ 5, let d,N ∈
N, let j, k ∈ [d] and let η > 0. Let also C1, . . . ,CN ∈ NSPD(g, d, j, k). Then there exist D1, . . . ,DN ∈
NSPD(g, d, j, k) such that ||Cm − Dm||1 ≤ η for all m ∈ [N ] and such the family D1, . . . ,DN has completely
singular degeneracies.

Lemma 2.2. If Θ is a strong local free group extension graph then encostr,ε(Θ) = 1 for all r ∈ N and ε > 0.

Lemma 2.3. A tree directed toward a root and a single directed cycle are strong local free group extension
graphs.

2.3 Proof of Lemma 2.1

In Subsection 2.3 we prove Lemma 2.1.

2.3.1 Smoothness of Gram-Schmidt

In Segment 2.3.1 we establish Proposition 2.8. This is a general result about the Gram-Schmidt procedure
which is likely well-known.

Definition 2.5. Let n ∈ N and let M ∈ Matn×n(C) be strictly positive definite with ones on the diagonal.
Let Z be a Hilbert space and let y1, . . . , yn ∈ Z be a basis such that 〈yj , yk〉 = Mj,k for all j, k ∈ [n]. Let
z1, . . . , zn be the orthogonal basis obtained by applying the Gram-Schmidt procedure to y1, . . . , yn. We define
the orthogonalization matrix of M to be the n×n matrix which changes y1, . . . , yn coordinates to z1, . . . , zn
coordinates. We denote the orthogonalization matrix by G(M). Also define the orthonormalization matrix
of M to be the matrix which changes y1, . . . , yn coordinates to z1||z1||−1, . . . , zn||zn||−1 coordinates. We denote
the orthonormalization matrix by N (M).
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Proposition 2.8. The entries of G(M) is an analytic function of the entries of M . The entries of N (M)
are differentiable functions of M .

Proof of Proposition 2.8. We establish the proposition by induction on n. The case n = 1 is trivial, so assume
we have established the result for n with the goal of establishing it for n+ 1. Fix an n× n strictly positive
definite matrix M• with ones on the diagonal. If M is an (n + 1)× (n + 1) matrix we have that the first n
columns of G(M) depend only on the n× n upper left corner of M . Therefore we will express M in terms of
a variable x = (x1, . . . , xn, 1) ∈ Cn+1 representing a column to be augmented on the right of M• to form a
(n + 1) × (n + 1) strictly positive definite matrix M(x). Note that for a given strictly positive definite M•
the set of x ∈ Cn+1 such that M(x) is strictly positive definite is open. Moreover, it is nonempty since it
contains the vector (0, . . . , 0, 1).

Let q(x) = (q1(x), . . . , qn(x), 1) be the k + 1 column of G(M(x)). For k ∈ [n] let M•(ǩ) be M• with
the kth column removed. We have the following expression for q(x).

qk(x) = (−1)k+n det(M•(ǩ) |x)

det(M•)
. (2.14)

This appears, for example, as (35) in Section 6 of Chapter IX of [6]. The first clause in Proposition 2.8
is clear from (2.14). Writing (r1(x), . . . , rn(x), rn+1(x)) for the k + 1 column of N (M(x)) from the same
reference we have the formula

rk(x) = (−1)k+n det(M•(ǩ) |x)√
det(M•)det(M(x))

. (2.15)

The second clause in Proposition 2.8 is clear from (2.15).

2.3.2 First perturbation of the configuration

Let g, d,N, j, k, η and C1, . . . ,CN be as in the statement of Lemma 2.1.

For s ∈ {1, . . . , |g|} let gs be the word consisting of the first s letters of g. Given a 4-tuple Λ = (λ1, λ2, λ3, λ4)
of complex numbers, let Cm,Λ denote the modification of Cm given by setting

(Cm,Λ)(g−1
1 g)j,1 = (Cm,Λ)(g−1g1)j,1 = (Cm)(g−1

1 g)j,1 + λ1

(Cm,Λ)(g−1
2 g)j,1 = Cm,Λ(g−1g2)j,1 = (Cm)(g−1

2 g)j,1 + λ2

(Cm,Λ)(g−1
1 )k,1 = Cm,Λ(g1)k,1 = (Cm)(g−1

1 )k,1 + λ3

(Cm,Λ)(g−1
2 )k,1 = Cm,Λ(g2)k,1 = (Cm)(g−1

2 )k,1 + λ4

and leaving all other entries of Cm unchanged. Since the space of strictly positive definite functions is open,
if ||Λ||1 is small enough we will have Cm,Λ ∈ NSPD(g, d, j, k).

Let wm(Λ) be the orthogonal projection from X(Cm,Λ)• onto the span of ΘCm,Λ(g1)1 and ΘCm,Λ(g2)1. Let
Wm(Λ) be the matrix of wm(Λ) constructed with respect to the canonical basis

{ΘCm,Λ(h)n : (h, n) ∈ Q(g, d, j, k)} (2.16)
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Note that this matrix does not depend on the correlation between ΘCm(g)j and ΘCm(e)k and so it is well-
defined on the partial Hilbert space X(Cm,Λ)•. Let W ′m(Λ) be the restriction of Wm(Λ) to the span of
{ΘCm,Λ(g)j ,ΘCm,Λ(e)k}. Thus W ′m(Λ) is a 2× 2 square matrix. Since W ′m(Λ) is an invertible affine function
of Λ we obtain the following.

Proposition 2.9. For each m ∈ [N ] there exists Λ with ||Λ||1 ≤ η
2 such that the matrix W ′m(Λ) is invertible.

Using Proposition 2.9 for each m ∈ [N ] we can fix Λm ∈ C4 such that W ′m(Λm) is invertible, ||Cm,Λm−Cm||1 ≤
η
2 and Cm,Λm remains strictly positive definite. Write C′m for Cm,Λm .

2.3.3 Second perturbation of the configuration

As before, let ∆ ∈ NSPD(g, d, j, k) be given by setting ∆(e) = Id and letting all other entries of ∆ be equal
to 0. For s ∈ [0, 1] and m ∈ [N ] let Cm,s = (1− s)C′m + s∆.

We specify that when performing the Gram-Schmidt orthogonalization procedure on the canonical basis
(2.16) the vectors {ΘC′m(g)j ,ΘC′m(e)k} should be the last to be orthogonalized. Let Am,s = (I⊕ 0)G(C′m,s),
where I is a copy of the identity matrix corresponding to the indexes in P(g, d, j, k) and 0 is a copy of the
zero matrix corresponding to the indexes {(g, j), (e, k)}. Note that since the last two rows of Am,s are zero,
this matrix is well-defined even though the inner product 〈ΘC′m(g)j ,ΘC′m(e)k〉 is not yet specified.

Proposition 2.10. There exist s1, . . . , sN such that for each distinct pair l,m ∈ [N ] the kernel of Al,sl has
trivial intersection with the kernel of Am,sm and such that ||C′m,sm − C′m||1 ≤

η
2 for all m ∈ [N ].

Proof of Proposition 2.10. Proposition 2.8 implies that the entries of Am,s are real analytic functions of s.
Let Qm,s be the span of {ΘCm,s(g)j ,ΘCm,s(e)k}. The kernel of Am,s is equal to the orthogonal complement of
core(X(Cm,s)•) in X(Cm,s)•. Proposition 2.9 implies that the restriction to Qm of the orthogonal projection
from X(C′m)• onto core(X(C′m)•) has trivial kernel. Therefore the kernel of the matrices Am,0 have trivial
intersection with Qm. On the other hand, it is clear that the kernel of Am,1 is equal to Qm. Hence if we
write

Dl,m(s, u) = det
(
A∗l,sAl,s +A∗m,uAm,u

)
then Dl,m(0, 1) 6= 0 for all l,m ∈ [N ]. Since Dl,m(s, u) is a real analytic function of s and u we see that the
set of pairs (s, u) such that Dl,m(s, u) = 0 has Lebesgue measure 0. Hence we can choose s1, . . . , sN such
that Dl,m(sl, sm) 6= 0 for all l,m ∈ [N ] and such that ||C′m,sm − C′m||1 ≤

η
2 .

Let s1, . . . , sN be as in Proposition 2.10. Write Dm for Cm,sm and Âm for Am,sm . Let θ > 0 be such that

if α : P(g, d, j, k) → C satisfies ||α||2 ≥ 1 and Âmα = 0 for some m ∈ [N ] then ||Âlα||2 ≥ θ for all l ∈ [N ]
different from m. Let also Bm,◦ be the orthogonal basis for core(X(Dm)•) obtained by applying the Gram-
Schmidt orthogonalization procedure to {ΘDm(h)n : (h, n) ∈ P(g, d, j, k)}. Let κ be the minimal norm of
among all elements of Bm,◦ for m ∈ [N ].

2.3.4 Establishing the existence of energy singularities

Fix l,m ∈ [N ] and ζ, µ ∈ D. Consider the extensions Dζm,D
µ
l ∈ NSPD(g, d, j, k). Let B be the orthogonal

basis produced obtained applying the Gram-Schmidt orthogonalization procedure to the canonical basis

{ΘDl(h)n : (h, n) ∈ P(g, d, j, k)} ∪ {ΘDl(g)j ,ΘDl(e)k}

17



Note that this orthogonalization procedure can be completed in its entirety because we have specified
〈ΘDl(g)j ,ΘDl(e)k〉. Moreover, we stipulate that when performing this procedure the vectors ΘDl(g)j and
ΘDl(e)k are orthogonalized at the last stage. Then B extends Bl,◦.

Consider a function α : Q(g, d, j, k)→ C, which defines a vector

x = α(g)jΘDm(g)j + α(e)kΘDm +
∑

(h,n)∈P(g,d,j,k)

α(h)nΘDm(h)n

in the space X(Dµl ). If we rewrite x in the basis B, the resulting coordinates are given by Âlα. Therefore

||x|| ≥ κ||Âlα||2. From our choice of θ we see that if Âmα = 0 then ||Âlα||2 ≥ θ||α||2 so that ||x|| ≥ κθ||α||2.

Let p be the orthogonal projection from the extended Hilbert space X(Dζm) onto core(X(Dm)•). Then we
have 〈

ζ
(I − p)ΘDm(g)j
||(I − p)ΘDm(g)j ||

,
(I − p)ΘDm(e)k
||(I − p)ΘDm(e)k||

〉
= |ζ|2 (2.17)

Let

y = ζ
(I − p)ΘDm(g)j
||(I − p)ΘDm(g)j ||

− (I − p)ΘDm(e)k
||(I − p)ΘDm(e)k||

If we rewrite
y = α(g)jΘDm(g)j + α(e)kΘDm +

∑
(h,n)∈P(g,d,j,k)

α(h)nΘDm(h)n

then we must have

α(e)k =
1

||(I − p)ΘD(e)k||

so that ||α||2 ≥ 1. Moreover, we have Âm(α) = 0 since y lies in the orthogonal complement of core(X(Dm)•).
It follows that ||t[Dζm,D

µ
l ]y|| ≥ κθ.

On the other hand, from (2.17) we see ||y||2 ≤ 2− 2|ζ|2. Therefore e(Dζm,D
µ
l ]) ≥ κ2θ2(2− 2|ζ|2)−1. Since κ

and θ are determined by D1, . . . ,DN this completes the proof of Lemma 2.1.

2.4 Proof of Lemma 2.2

In Subsection 2.4 we prove Lemma 2.2.

2.4.1 Bounding transport operators by `1 distance

We will need the following preliminary result. Given invertible n×n matrices L and M , let t[L,M ] : Cn → Cn
be the operator which maps the jth column of L to the jth column of M .

Proposition 2.11. Let L be an invertible n× n matrix. Then for every σ > 0 there exists η > 0 such that
if M is an n× n matrix and ||L∗L−M∗M ||1 ≤ η then

max(||t[L,M ]||op, ||t[M,L]||op) ≤ 1 + σ
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Proof of Proposition 2.11. Let σ ∈ (0, 1) and choose η > 0 such that 2η||L−1||2op ≤ σ. Assume ||L∗L −
M∗M ||1 ≤ η. We compute

||M−1||2op = ||(M∗M)−1||op

= ||(M∗M − L∗L+ L∗L)−1||op

=
∣∣∣∣∣∣L−1

(
In − (L∗)−1(L∗L−M∗M)L−1

)−1
(L∗)−1

∣∣∣∣∣∣
op

≤ ||L−1||2op

∣∣∣∣∣∣(In − (L∗)−1(L∗L−M∗M)L−1
)−1
∣∣∣∣∣∣

op
(2.18)

≤ ||L−1||2op

(
1− ||L−1||2op||M∗M − L∗L||op

)−1
(2.19)

≤ ||L−1||2op

(
1− ||L−1||2op||M∗M − L∗L||1

)−1

≤ ||L−1||2op(1− η||L−1||2op)−1

≤ 2||L−1||2op (2.20)

Here, (2.19) follows from (2.18) since ||(In −A)−1||op ≤ (1− ||A||op)−1 whenever ||A||op < 1.

Now, the matrix of t is given by ML−1. We compute

||ML−1||2op = ||(ML−1)∗ML−1||op

= ||(L−1)∗M∗ML−1||op

= ||(L−1)∗(M∗M − L∗L+ L∗L)L−1||op

≤ 1 + ||(L−1)∗(M∗M − L∗L)L−1||op

≤ 1 + ||L−1||2op||M∗M − L∗L||op

≤ 1 + σ

Similarly, we find

||LM−1||op ≤ 1 + η||M−1|| (2.21)

≤ 1 + 2η||L−1||op (2.22)

≤ 1 + σ

Here, (2.22) follows from (2.21) by (2.20).

2.4.2 Carrying out the recursive procedure

Let (V,E) be a strong local free group extension graph. Let r, d, ε and (Cv)v∈V be as in Definition 1.7. We
perform a recursive construction, first over F along the ordering � and secondly along [d]2 according to the
lexicographic order ≤. We will continue to use the notation � to refer to this ordering among triples (g, j, k)
where g ∈ F and j, k ∈ [d].

Let (σg,j,k)g∈F,j,k∈[d] be a sequence of positive numbers such that

2
∑
g∈F

d∑
j,k=1

σg,j,k ≤
ε

2
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Let g◦ be the � first element of F \ Br. Let Cv,g◦,1,1 = Cv. Fix g ∈ F \ Br and j, k ∈ [d].

Suppose that for all (h, l,m) � (g, j, k) we have constructed elements (Cv,h,l,m)v∈V of NSPD(h, d, l,m)
such that

||Cv,h,l↑,m↑ − (Cv,h,l,m � D(h, d, l↑,m↑))||1 ≤ σh,l,m (2.23)

for all (h, l,m) � (g, j, k) and such that

e
(
Cv,h,l,m,Cw,h,l,m

)
≤ e(Cv,Cw) +

∑
(`,n,p)�(h,l,m)

σ`,n,p (2.24)

for all (h, l,m) � (g, j, k) and all (v, w) ∈ E. Write C̃v for Cv,g,j,k.

Choose η′ > 0 such that
(1 + η′)e(Cv,Cw) ≤ e(Cv,Cw) + σg,j↓,k↓ (2.25)

for all (v, w) ∈ E.

Given a positive definite matrix J we can write J = U−1QU for a unitary matrix U and a positive di-
agonal matrix Q. Let

√
Q be the diagonal matrix whose entries are the square roots of the entries of Q.

Then the columns of
√
QU form a realization of J . Moreover, Section II.6.2 of [9] guarantees that U and Q

can be chosen to be continuous functions of J in the `1-norm.

We can regard each C̃v as a square matrix indexed by P(g, d, j, k). By applying Proposition 2.11 to the

construction in the previous paragraph we can find η > 0 such that if J ∈ NSPD(g, d, j, k) and ||C̃v− J||1 ≤ η
then

max(e(C̃v, J), e(J, C̃v)) ≤ 1 + η′ (2.26)

Apply Lemma 2.1 to this choice of η and the family (C̃v)v∈V to obtain a family (Dv)v∈V of elements of
NSPD(g, d, j, k) with completely singular degeneracies satisfying

max(e(C̃v,Dv), e(Dv, C̃v)) ≤ 1 + σg,j↓,k↓ (2.27)

for all v ∈ V . Then for (v, w) ∈ E we have

e(Dv,Dw) ≤ e(Dv, C̃v)e(C̃v, C̃w)e(C̃w,Dw) (2.28)

≤ (1 + η′)2e(C̃v, C̃w) (2.29)

≤ e(C̃v, C̃w) + σg,j↓,k↓ (2.30)

Here, (2.29) follows from (2.28) by (2.26) and (2.30) follows from (2.29) by (2.25). Apply Definition 2.3 to
the family (Dv)v∈V with η = σg,j↓,k↓ to obtain a family (Kv)v∈V of elements of NSPD(g, d, j, k)↓ such that

e(Kv,Kw) ≤ e(C̃v, C̃w) + σg,j↓,k↓ (2.31)

for all (v, w) ∈ E. Set Kv = Cg,d,j↓,k↓ . Then (2.31) is the next step in the recursion for (2.24).

Thus we may assume that we have constructed (Cv,g,j,k)v∈V for all g ∈ F and all j, k ∈ [d]. Write Cv,g
for Cv,g,d,d. From (2.23) we see that the matrices (Cv,g(h))h�g form a Cauchy sequence for each h ∈ F.

Setting Ĉv(h) to be the limit of these matrices completes the proof.
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2.5 Proof of Lemma 2.3

In Segments 2.5.1 - 2.5.7 of Subsection 2.5 we establish Propositions 2.12 - 2.18, which will be used below in
Segments 2.5.8 and 2.5.9 to prove Lemma 2.3.

2.5.1 Introducing initial data

Let g ∈ F, let d ∈ N, let j, k ∈ [d] and let C,D ∈ NSPD(g, d, j, k). Observe that for any ζ ∈ D, the space
X(Cζ) has a canonical basis as in (2.11) indexed by Q(g, d, j, k). We will adopt the convention that for λ ∈ D
a vector x ∈ X(Cζ) is identified with the vector in X(Cλ) having the same coordinates with respect to the
canonical basis.

Let ζ, µ ∈ D and consider the extensions Cζ and Dµ. We consider an additive perturbation χς to the
parameters ζ and µ where ς ∈ D and χ ∈ R is sufficiently small that max(|ζ + χς|, |µ + χς|) < 1. It will be
convenient to introduce the asymptotic notations O(·) and o(·) with respect to the limit χ→ 0.

Let p be the orthogonal projection from X(C)• onto core(X(C)•) and let q be the orthogonal projection
from X(D)• onto core(X(D)•). We introduce the following notations.

S =
(I − p)ΘC(g)j
||(I − p)ΘC(g)j ||

(2.32)

S′ =
(I − p)ΘC(e)k
||(I − p)ΘC(e)k||

(2.33)

T =
(I − q)ΘD(g)j
||(I − p)ΘD(g)j ||

(2.34)

T ′ =
(I − q)ΘD(e)k
||(I − q)ΘD(e)k||

(2.35)

2.5.2 Energy increases require extension components

Proposition 2.12. Let x ∈ X(C)• and write x = αS + α′S′ + x′ for x′ ∈ core(X(C)•). If ||t[Cζ ,Dµ]x||2 >
e(C,D)||x||2 then both α and α′ are nonzero.

Proof of Proposition 2.12. This is immediate from the observation that if one of α and α′ is zero then x lies
in one of the distinguished subspaces of the partial Hilbert space X(C)•.

2.5.3 Energy increases give one dimensional norm achievers

Proposition 2.13. Suppose that ζ, µ ∈ D are such that

e(Cζ ,Dµ) > e(C,D) (2.36)

Then the space of vectors which achieve the norm of t[Cζ ,Dµ] is one-dimensional.

Proof of Proposition 2.13. Suppose toward a contradiction that x and y are orthogonal unit vectors in X(Cζ)
which achieve the norm of t[Cζ ,Dµ]. Write x = αS+α′S′+x′ for x′ ∈ core(X(C)•) and write y = βS+α′S′+y′

for y′ ∈ core(X(C)•). Proposition 2.12 and the hypothesis (2.36) implies that α 6= 0. Consider the vector
z = βα−1x−y. This vector z also achieves the norm of t[C,D]. Since z has no S component using Proposition
2.12 we obtain a contradiction to the hypothesis (2.36).
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2.5.4 Initial bounds on coefficients and energies

Proposition 2.14. Let x ∈ X(Cζ) and write x = αS + α′S′ + x′ for x′ ∈ core(X(C)•). Then we have
|α||α′| ≤ (1− |ζ|)−1||x||2.

Proof of Proposition 2.14. We have

||x||2 = ||αS + α′S′ + x′||2 (2.37)

≥ ||αS + α′S′||2 (2.38)

= |α|2 + |α′|2 + 2 Re(ζαα′) (2.39)

≥ |α|2 + |α′|2 − 2|α||α′||ζ|
= (1− |ζ|)(|α|2 + |α′|2) + |ζ|(|α|2 + |α′|2 − 2|α||α′|) (2.40)

≥ (1− |ζ|)(|α|2 + |α′|2) (2.41)

Here,

• (2.38) follows from (2.37) since αS + α′S′ ⊥ x′

• (2.39) follows from (2.38) since by construction we have 〈S, S′〉 = ζ,

• and (2.41) follows from (2.40) since

|α|2 + |α′|2 − 2|α||α′| = (|α| − |α′|)2 ≥ 0

Therefore we have max(|α|2, |α′|2) ≤ (1− |ζ|)−1 and so the proof of Proposition 2.14 is complete.

Proposition 2.15. We have e(Cζ+χς ,Dµ) = e(Cζ ,Dµ) +O(χ) and e(Cζ ,Dµ+χς) = e(Cζ ,Dµ) +O(χ).

Proof of Proposition 2.15. Let xχ ∈ X(Cζ+χς) be a unit vector which achieves the norm of t[Cζ+χς ,Dµ].
Write || · ||χ for the norm on X(Cζ+χς) and write xχ = αχS + α′χS

′ + x′χ for x′χ ∈ core(X(C)•). We have
(1− |ζ + χς|)−1 = O(1), so that Proposition 2.14 implies |αχ||α′χ| = O(1). We have

||xχ||20 = ||xχ||2χ − 2χRe(ςαχα′χ) (2.42)

= 1− 2χRe(ςαχα′χ) (2.43)

≤ 1 + 2χ|αχ||α′χ|
≤ 1 +O(χ) (2.44)

Here, (2.43) follows from (2.42) since we assumed that xχ was a unit vector in X(Cζ+χς). Therefore we have

e(Cζ ,Dµ) ≥ ||t[Cζ ,Dµ]xχ||2 ||xχ||−2
0 (2.45)

= ||t[Cζ+χς ,Dµ]xχ||2 ||xχ||−2
0 (2.46)

= e(Cζ+χς ,Dµ)||xχ||−2
0 (2.47)

≥ e(Cζ+χς ,Dµ)(1 +O(χ))−1 (2.48)

= e(Cζ+χς ,Dµ)(1−O(χ)) (2.49)

= e(Cζ+χς ,Dµ)−O(χ) (2.50)

Here,
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• (2.46) follows from (2.45) since ||t[Cζ+χς ,Dµ]xχ|| is computed in X(Dµ) and hence does not depend on
χ,

• (2.47) follows from (2.46) since we assumed xχ is a unit vector achieving the norm of t[Cζ+χς ,Dµ]

• (2.48) follows from (2.47) by (2.44)

• (2.50) follows from (2.49) since Proposition 2.14 implies e(Cζ+χς ,Dµ) = O(1).

Now, let xχ ∈ X(Cζ) be a unit vector which achieves the norm of t[Cζ ,Dµ+χς ]. We modify the notation || · ||χ
to now refer to the norm of X(Dµ+χς) and write t[Cζ ,Dµ+χς ]xχ = βχT +β′χT

′+x′χ for x′ ∈ core(X(D)•). We
have

e(Cζ ,Dµ+χς) = ||t[Cζ ,Dµ+χς ]xχ||2χ
= ||t[Cζ ,Dµ+χς ]xχ||20 + 2χRe(ςβχβ′χ) (2.51)

≤ e(Cζ ,Dµ) + 2χRe(ςβχβ′χ) +O(χ) (2.52)

≤ e(Cζ ,Dµ) +O(χ) (2.53)

Here, (2.52) follows from (2.51) since xχ is a unit vector in X(Cζ) and (2.53) follows from (2.52) since
||t[Cζ ,Dµ+ςχ]xχ|| = O(1) and therefore Proposition 2.14 shows max(|βχ|, |β′χ|) = O(1).

2.5.5 Differentiability of the energy

We emphasize that for any extension parameter λ, the space X(Cλ) has a canonical basis as in (2.11).

Proposition 2.16. Suppose the space of vectors which achieve the norm of t[C,D] is one dimensional and let
ς ∈ ∂D. Then for sufficiently small χ the quantity e(Cζ+χς ,Dµ) is a differentiable function of χ. Moreover,
for every such χ there is a vector xχ ∈ X(Cζ+χς) which achieves the norm of t[Cζ+χς ,Dµ] and such that the
coordinates of xχ with respect to the canonical basis are differentiable functions of χ.

Similarly, for sufficiently small χ the quantity e(Cζ ,Dµ+χς) is a differentiable function of χ. Moreover, for
every such χ there is a vector yχ ∈ X(Dµ+χς) which is the image of a vector achieving the norm of t[Cζ ,Dµ+χς ]
and such that the coordinates of yχ with respect to the canonical basis are differentiable functions of χ. We
may assume that y0 is the image of a unit vector.

Proof of Proposition 2.16. We establish Proposition 2.16 for perturbations of ζ. The case of perturbations
of µ can be established using a similar method. Let Bχ be the orthonormal basis for X(Cζ+χς) obtained by
applying the Gram-Schmidt orthonormalization procedure to the basis

{ΘC(h)m : (h,m) ∈ P(g, d, j, k)} ∪ {ΘC(e)k, ςΘC(g)j} (2.54)

Let Nχ be the matrix which changes coordinates from the basis in (2.54) to Bχ. Since we have introduced
the phase ς to these bases, the matrix Nχ is a real perturbation of the matrix N0.

Also let D be the orthonormal basis for X(Dµ) obtained by applying the Gram-Schmidt orthonormalization
procedure to the basis {ΘD(h)m : (h,m) ∈ Q(g, d, j, k)} and let Ω be the matrix which changes coordinates
from the basis in (2.54) to D. With respect to the bases Bχ and D the matrix of the transport operator
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t[Cζ+χς ,Dµ] is given by ΩN−1
χ . The advantage of writing the matrix with respect to these orthonormal bases

is that the matrix of the adjoint t[Cζ+χς ,Dµ]∗ is given by the conjugate transpose of the matrix ΩN−1
χ , which

we denote simply by (ΩN−1
χ )∗. Let ξχ = (ΩN−1

χ )∗ΩN−1
χ

The second clause in 2.8 implies the entries of ξχ are differentiable functions of χ. Therefore Theorem
6.1 in [9] implies that there differentiable functions κ1(χ), . . . , κn(χ) which represent the eigenvalues of ξχ for
sufficiently small values of χ. We may assume that κm(0) ≥ κm+1(0) for all m ∈ [n−1]. Since κ1(0) > κ2(0),
for all sufficiently small χ the function κ1(χ) represents the norm of ξχ. This complete the proof of the first
claim in Proposition 2.16.

Recall that the index set for the matrix ξχ is Q(g, d, j, k). Theorem 6.1 in [9] also implies that for each
χ there are vectors ϕ1(χ), . . . , ϕn(χ) ∈ `2(Q(g, d, j, k)) such that ϕm(χ) is an eigenvector of ξχ with eigen-
value κm(χ) and such that the coordinates of ϕm(χ) are differentiable functions of χ. These numerical vectors
represent the coordinates of the singular vectors for t[Cζ+χς ,Dµ] in the basis Bχ. In order to change the
coordinates back to the basis in (2.54) we need to multiply ϕm(χ) by N−1

χ . Since the entries of N−1
χ are

differentiable functions of χ the second claim in Proposition 2.16 follows.

2.5.6 Calculation of derivatives

Proposition 2.17. Suppose that for all sufficiently small χ the space of vectors which achieve the norm of
t[Cζ+ςχ,Dµ] is one-dimensional. Let x ∈ X(Cζ) be a unit vector which achieves the norm of t[Cζ ,Dµ] and
write x = αS + α′S′ + x′ for x′ ∈ core(X(C)•). Then we have

d

dχ
e(Cζ+ςχ,Dµ)

∣∣∣∣
χ=0

= −2 e(Cζ ,Dµ) Re(ςαα′)

Also let y ∈ X(Dµ) be given by y = t[Cζ ,Dµ]x and write y = βT + β′T ′ + y′ for y′ ∈ X(D). Then we have

d

dχ
e(Cζ ,Dµ+ςχ)

∣∣∣∣
χ=0

= 2 Re(ςββ′)

Proof of Proposition 2.17. Let xχ ∈ X(Cζ+χς) be as in Proposition 2.16. Write xχ = αχS + α′χS
′ + x′χ for

x′χ ∈ core(X(C)•).

In order to distinguish between the norms on different spaces, we will write || · ||χ for the norm on X(Cζ+χς).
We have

||xχ||2χ = ||xχ||20 + 2χRe(ςαχα′χ)

= ||xχ||20 + 2χRe(ς(αχ − α)α′χ) + 2χRe(ςα(α′χ − α′)) + 2χRe(ςαα′) (2.55)

By Proposition 2.16 we see that αχ = α + o(1) and α′χ = α′ + o(1). Therefore in (2.55) we have that the
terms

2χRe(ς(αχ − α)α′χ)

and
2χRe(ςα(α′χ − α′))
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are o(χ). It follows that
||xχ||2χ = ||xχ||20 + 2χRe(ςαα′) + o(χ) (2.56)

We compute

e(Cζ+χς ,Dµ) = ||t[Cζ+χς ,Dµ]xχ||2 ||xχ||−2
χ (2.57)

= ||t[Cζ+χς ,Dµ]xχ||2(||xχ||20 + 2χRe(ςαα′) + o(χ))−1 (2.58)

= ||t[Cζ+χς ,Dµ]xχ||2 ||xχ||−2
0 (1 + 2χ||xχ||−2

0 Re(ςαα′) + o(χ))−1 (2.59)

= ||t[Cζ+χς ,Dµ]xχ||2 ||xχ||−2
0 (1− 2χ||xχ||−2

0 Re(ςαα′) + o(χ)) (2.60)

= ||t[Cζ+χς ,Dµ]xχ||2 ||xχ||−2
0 (1− 2χRe(ςαα′) + o(χ)) (2.61)

= ||t[Cζ ,Dµ]xχ||2 ||xχ||−2
0 (1− 2χRe(ςαα′) + o(χ)) (2.62)

≤ e(Cζ ,Dµ)(1− 2χRe(ςαα′) + o(χ)) (2.63)

This computation can be justified as follows.

• (2.58) follows from (2.57) by (2.56)

• (2.59) follows from (2.58) since Proposition 2.16 together with the hypothesis that ||x||0 = 1 implies
||xχ||0 = 1 + o(1), so that ||xχ||0 can be absorbed into the o(χ) term.

• (2.60) follows from (2.59) since the higher terms in the geometric series can be absorbed into the o(χ)
term

• (2.61) follows from (2.60) again since ||xχ||0 = 1 + o(1)

• (2.62) follows from (2.61) since ||t[Cζ+χς ,Dµ]xχ|| is computed in X(Dµ)

From the above computation we see that

d

dχ
e(Cζ+χς)

∣∣∣∣
χ=0

≤ −2 e(Cζ ,Dµ) Re(ςαα′) (2.64)

On the other hand, we have

e(Cζ+χς ,Dµ) ≥ ||t[Cζ+χς ,Dµ]x||2 ||x||−2
χ (2.65)

= ||t[Cζ ,Dµ]x||2 ||x||−2
χ (2.66)

= e(Cζ ,Dµ)||x||−2
χ (2.67)

= e(Cζ ,Dµ)(1 + 2χRe(ςαα′))−1 (2.68)

= e(Cζ ,Dµ)(1− 2χRe(ςαα′) + o(χ)) (2.69)

The above computation can be justified as follows.

• (2.66) follows from (2.65) since ||t[Cζ+χς ,Dµ]x|| is computed in X(Dµ) and hence is independent of χ

• (2.67) follows from (2.66) since we assumed x was a unit vector in X(Cζ) which achieves the norm of
t[Cζ ,Dµ],
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• (2.69) follows from (2.68) since the higher terms in the geometric series can be absorbed into the o(χ)
term.

From the above computation and (2.64) we obtain

d

dχ
e(Cζ+χς)

∣∣∣∣
χ=0

= −2 e(Cζ ,Dµ) Re(ςαα′)

This establishes Proposition 2.17 for perturbations of ζ.

Now, let yχ ∈ X(Dµ+χς) be as in Proposition 2.16, so that yχ is the image of a vector which achieves
the norm of t[Cζ ,Dµ+χς ] and the coordinates of yχ with respect to the canonical basis (2.11) are continuous
functions of χ. Write yχ = βχT + β′χT

′ + y′χ for y′ ∈ core(X(D)•). We will alter the notation || · ||χ to now
refer to the norm on Dµ+χς . We have

||yχ||χ = ||yχ||0 + 2χRe(ςβχβ′χ)

so that the same argument used to establish (2.56) shows that

||yχ||χ = ||yχ||0 + 2χRe(ςββ′) + o(χ) (2.70)

We compute

e(Cζ ,Dµ+χς) = ||yχ||2χ||t[Dµ+χς ,C]yχ||−2 (2.71)

= ||yχ||2χ||t[Dµ,Cζ ]yχ||−2 (2.72)

= (||yχ||20 + 2χRe(ςββ) + o(χ))||t[Dµ,Cζ ]yχ||−2 (2.73)

= ||yχ||20||t[Dµ,Cζ ]yχ||−2 + 2χRe(ςββ)||t[Dµ,Cζ ]yχ||−2 + o(χ) (2.74)

≤ e(Cζ ,Dµ) + 2χRe(ςββ)||t[Dµ,Cζ ]yχ||−2 + o(χ) (2.75)

= e(Cζ ,Dµ) + 2χRe(ςββ)(1 + o(1)) + o(χ) (2.76)

= e(Cζ ,Dµ) + 2χRe(ςββ) + o(χ)

This computation can be justified as follows.

• (2.72) follows from (2.71) since ||t[Dµ,Cζ ]yχ|| is computed in X(Cζ)

• (2.73) follows from (2.72) by (2.70)

• (2.74) follows from (2.73) since y0 was assumed to be the image of a unit vector in X(Cζ) and therefore
Proposition 2.16 implies

||t[Dµ,Cζ ]yχ||−2 = 1 + o(1)

• (2.76) follows from (2.75) by the same reasoning as in the previous bullet.

The above computation shows that

d

dχ
e(Cζ ,Dµ+χς)

∣∣∣∣
χ=0

≤ 2 Re(ςββ) (2.77)
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On the other hand, we have

e(Cζ ,Dµ+χς) ≥ ||y||2χ||t[Dµ+ςχ,Cζ ]y||−2 (2.78)

= ||y||2χ (2.79)

= ||y||20 + 2χRe(ςββ′) (2.80)

= e(Cζ ,Dµ) + 2χRe(ςββ′) (2.81)

Here, (2.79) follows from (2.78) since y was assumed to be the image of a unit vector in X(Cζ) and (2.81)
follows from (2.80) since y was assumed to achieve the norm of t[Cζ ,Dµ].

2.5.7 Relationship between extension scalars before and after transport

Proposition 2.18. Let x ∈ X(C)• and write x = αS + α′S′ + x′ for x′ ∈ core(X(C)•). Let ζ, µ ∈ D be
arbitrary and write t[Cζ ,Dµ]x = βT + β′T ′ + y′ for y′ ∈ X(D). Then we have

ββ′ = αα′
||(I − p)ΘC(g)j || ||(I − p)ΘC(e)k||
||(I − p)ΘD(g)j || ||(I − q)ΘD(e)k||

(2.82)

Proof of Proposition 2.18. Inspecting the definition (2.32) we see that the quantity α||(I − p)ΘC(g)j || is the
coefficient of ΘC(g)j in the expression of x with respect to the canonical basis (2.11) for X(C)•. From
Definition 2.2 we see that α||(I − p)ΘC(g)j || is the coefficient of ΘD(g)j in the expression of t[Cζ ,Dµ]x with
respect to the canonical basis (2.11) for X(D)•. Thus from (2.34) we see that

β = α
||(I − p)ΘC(g)j ||
||(I − p)ΘD(g)j ||

Similarly, we have

β′ = α′
||(I − p)ΘC(e)k||
||(I − p)ΘD(e)k||

and Proposition 2.18 follows.

2.5.8 Proof of Lemma 2.3 for a tree

We can now obtain the following strong form of Lemma 2.3 for a single edge.

Proposition 2.19. Let g ∈ F, let d ∈ N and let j, k ∈ [d]. Let C and D be elements of NSPD(g, d, j, k)
such that the pair (C,D) has singular degeneracies. Then for any µ ∈ D there exists ζ ∈ D such that
e(Cζ ,Dµ) = e(C,D).

Proof of Proposition 2.19. Let g, d, j, k,C and D be as in Statement 2.19. Fix µ ∈ D. The hypothesis of
completely singular degeneracies implies that the function ζ 7→ e(Cζ ,Dµ) attains its minimum on D. Fix ζ at
which this minimum is attained and suppose toward a contradiction that e(Cζ ,Dµ) > e(C,D). Let x ∈ X(Cζ)
be a unit vector which achieves the norm of t[Cζ ,Dµ] and write x = αS + α′S′ + x′ for x′ ∈ core(X(C)•).
Since we must have

d

dχ
e(Cζ+χς ,Dµ)

∣∣∣∣
χ=0

= 0

for all ς ∈ ∂D, the first clause in Proposition 2.17 implies Re(ςαα′) = 0 for all ς ∈ ∂D. Therefore αα′ = 0.
Using Proposition 2.12 this contradicts the hypothesis that ||t[Cζ ,Dµ]x||2 > e(C,D).
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By applying Proposition 2.19 to each edge moving backwards from the root, we obtain the statement of
Lemma 2.3 for a tree directed toward a root.

2.5.9 Proof of Lemma 2.3 for a cycle

Let g ∈ F, let d,N ∈ N and let j, k ∈ [d]. To simplify notation, in Segment 2.5.9 we assume that all indexes
in [N ] are taken modulo N . Let D1, . . . ,DN ∈ NSPD(g, d, j, k) have completely singular degeneracies. This
hypothesis ensures that the function

f(ζ1, . . . , ζN ) =

N∑
n=1

(
e(Dζnn ,D

ζn+1

n+1 )− e(Dn,Dn+1)
)2

from DN to [0,∞) attains its minimum. Fix ζ1, . . . , ζn at which this minimum is attained.

For n ∈ [N ] we define Sn and S′n as in (2.32) and (2.33) relativized to D1, . . . ,Dn. If the space of vec-

tors achieving the norm of t[Dζnn ,D
ζn+1

n+1 ] is one-dimensional we let x be a unit vector achieving this norm and
write x = αnSn+α′nS

′
n+x′ for x′ ∈ core(X(Dn)•). The scalars αn and α′n may depend on x but the quantity

αnα′n is well-defined. We also write t[Dζnn ,D
ζn+1

n+1 ]x = βnSn + β′nS
′
n + y for y ∈ core(X(Dn+1)•). If the space

of vectors achieving the norm of t[Dn,Dn+1] has dimension greater than one we set αn = α′n = βn = β′n = 0.

Write fn = e(Dζnn ,D
ζn+1

n+1 − e(Dn,Dn+1) and en = e(Dn,Dn+1). From Proposition 2.17 we find

d

dχ
f(ζ1, . . . , ζn + χς, . . . , ζN )

∣∣∣∣
χ=0

= 4Re
(
ς
(
fn−1βn−1β′n−1 − fnenαnα′n

))
Thus from the minimization hypothesis we find

fn−1βn−1β′n−1 = fnenαnα′n (2.83)

for all n ∈ [N ]. Define
pn = ||(I − p)ΘDn(g)j || ||(I − p)ΘDn(e)k||

From Proposition 2.18 we find
βnβ′n = pnp

−1
n+1αnα

′
n (2.84)

From (2.83) and (2.84) we have
fn−1pn−1p

−1
n αn−1α′n−1 = fnenαnα′n

By induction we obtain

fn−mpn−mp−1
n αn−mα′n−m =

(
m−1∏
l=0

en−l

)
fnαnα′n

and therefore choosing m = N we obtain

αnα′n =

(
N=1∏
l=0

en−l

)
αnα′n

It is clear that the hypothesis of completely singular degeneracies implies em > 1 for all m ∈ [N ]. Therefore
we obtain αnα′n = 0 and the proof of Lemma 2.3 is complete.
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3 Proof of Theorem 1.2

In Section 3 we prove Theorem 1.2.

3.1 Representation theory of F× F
In Subsection 3.1 we conduct an analysis of unitary representations of F× F

3.1.1 Unitary approximate conjugacy of representations

We will use the theory of weak containment of unitary representations of countable discrete groups, for which
we refer the reader to Appendix H of [10]. We will say that a unitary representation of a countable discrete
group G is maximal if it weakly contains every other unitary representation of G.

If G is a countable discrete group, X is a Hilbert space and ρ : G → U(X) is a unitary representation,
there is a unique extension of ρ to a ∗-homomorphism from C∗(G) to the algebra B(X) of bounded operators
on X. We denote this extension by ρ̃. Let ξ : G→ U(Y) be another unitary representation, potentially on a

different Hilbert space. By Theorem F.4.4 in [3], if ξ is weakly contained in ρ then ||ξ̃(s)||op ≤ ||ρ̃(s)||op for
all s ∈ C∗(G). It follows that if ρ is a maximal unitary representation then ρ̃ is injective. We now recall a
different notion of approximation for representations.

Definition 3.1. Unitary representations ρ : G → U(X) and ξ : G → U(Y) are said to be unitarily ap-
proximately conjugate if there is a sequence of unitary operators un : X→ Y such that for each g ∈ G we
have

lim
n→∞

||u−1
n ξ(g)un − ρ(g)||op = 0.

The following is a special case of Corollary 1.7.5 in [4].

Theorem 3.1 (Voiculescu). Let G be a countable discrete group. Suppose ξ and ρ are unitary representations

of G such that ξ̃ and ρ̃ are injective and such that ξ̃(C∗(G)) and ρ̃(C∗(G)) contain no nonzero compact
operators. Then ξ and ρ are unitarily approximately conjugate.

We can now connect weak containment and unitary approximate conjugacy.

Proposition 3.1. Suppose ξ and ρ are maximal unitary representations of F. Then ξ and ρ are unitarily
approximately conjugate.

Proof of Proposition 3.1. By Corollary VII.6.7 in [5] the image of an injective representation of C∗(F) con-
tains no nonzero compact operators. Thus Proposition 3.1 follows from Theorem 3.1.

3.1.2 The negation of Connes’ embedding conjecture

We now translate the negation of Connes’ embedding conjecture into a representation theoretic statement.

Definition 3.2. Let X be a Hilbert space and let G,H be countable discrete groups. We define a linear
representation ζ : G × H → GL(X) to be half finite if there exist a finite quotient Γ of G and a linear
representation ζ• : Γ ×H → GL(X) such that ζ factors as ζ• precomposed with Π × ι, where Π : G � Γ is
the quotient map and ι is the identity map on H.
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Definition 3.3. Let X be a Hilbert space, let ρ : G ×H → U(X) be a unitary representation and let x ∈ X

be a unit vector. Let E be a finite subset of G and F be a finite subset of H and let ε > 0. We define a
half-finite approximation to (ρ, x,E, F, ε) to be a Hilbert space Y, a finite quotient Γ of G, a half finite
unitary representation ζ : G×H → Γ×H → U(Y) and a unit vector y ∈ Y such that

|〈ρ(g, g′)x, x〉 − 〈ζ(g, g′)y, y〉| ≤ ε

for all g ∈ E and g′ ∈ F . We define the pair (G,H) to have the half-finite approximation property if
there exists a half-finite approximation for every (ρ, x,E, F, ε) as above.

If A and B are C∗-algebras, we will write A ⊗max B for the maximal tensor product and A ⊗min B for the
minimal tensor product. For information about tensor products of operator algebras we refer the reader to
Chapter 11 of [8]. If G is a countable discrete group, we will write C∗(G) for the full group C∗-algebra of G.
For information about group C∗-algebras we refer the reader to Chapter VII of [5].

Proposition 3.2. Suppose (G,H) has the half-finite approximation property. Then

C∗(G)⊗max C
∗(H) = C∗(G)⊗min C

∗(H)

Proof of Proposition 3.2. Write || · ||max for the norm on C∗(G) ⊗max C
∗(H) and || · ||min for the norm on

C∗(G)⊗min C
∗(H). Fix an element φ in the group ring C[G×H] such that ||φ||max = 1. In order to prove

Theorem ?? suffices to show that ||φ||min = 1. To this end, let σ > 0.

Since ||φ||max = 1 we can find a Hilbert space X, a unitary representation ρ : G × H → U(X) and a
unit vector x ∈ X such that ||ρ(φ)x||2 ≥ 1− σ. Write

φ =
∑
g∈E

∑
h∈F

αg,h(g, h)

for finite sets E ⊆ G and F ⊆ H and complex numbers (αg,h)g∈E,h∈F . Let ε > 0 be such that

ε

∑
g∈E

∑
h∈F

|αg,h|

2

≤ σ

Apply the half-finite approximation property to find a half-finite approximation to (ρ, x,E−1E,F−1F, ε). We
obtain Y,Γ, ζ and y. We have

|〈ρ(φ)x, ρ(φ)x〉 − 〈ζ(φ)y, ζ(φ)y〉|

=

∣∣∣∣∣
〈∑

g∈E

∑
h∈F

αg,hρ(g, h)

x,

∑
g′∈E

∑
h′∈F

αg′,h′ρ(g′, h′)

x

〉

−

〈∑
g∈E

∑
h∈F

αg,hζ(g, h)

 y,

∑
g′∈E

∑
h′∈F

αg′,h′ζ(g′, h′)

 y

〉∣∣∣∣∣
=

∣∣∣∣∣ ∑
g,g′∈E

∑
h,h′∈F

αg,hαg′,h′〈ρ(g, h)x, ρ(g′, h′)x 〉
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−
∑

g,g′∈E

∑
h,h′∈F

αg,hαg′,h′
〈
ζ(g, h)y, ζ(g′, h′)y

〉∣∣∣∣∣
=

∣∣∣∣∣ ∑
g,g′∈E

∑
h,h′∈F

αg,hαg′,h′
〈
ρ
(
(g′)−1g, (h′)−1h

)
x, x

〉
−
∑

g,g′∈E

∑
h,h′∈F

αg,hαg′,h′
〈
ζ
(
(g′)−1g, (h′)−1h

)
y, y
〉∣∣∣∣∣

≤
∑

g,g′∈E

∑
h,h′∈F

|αg,h||αg′,h′ |
∣∣〈ρ((g′)−1g, (h′)−1h

)
x, x

〉
−
〈
ζ
(
(g′)−1g, (h′)−1h

)
y, y
〉∣∣

≤ ε
∑

g,g′∈E

∑
h,h′∈F

|αg,h||αg′,h′ |

= ε

∑
g∈E

∑
h∈F

|αg,h|

2

≤ σ

Therefore we obtain ||ζ(φ)y||2 ≥ ||ρ(φ)x||2 − σ so that ||ζ(φ)||2op ≥ 1− 2σ.

There is a natural commutative diagram

C∗(G)⊗max C
∗(H) //

��

C∗(G)⊗min C
∗(H)

��

C∗(G)⊗max C
∗(H) // C∗(Γ)⊗min C

∗(H)

where all the arrows represent surjective ∗-homomorphisms. Moreover, there are canonical copies of φ in
each of the above algebras. Since ζ factors through Γ × H, we see that the norm of φ in the bottom left
corner is at least

√
1− 2σ. Since C∗(Γ) is finite dimensional, Lemma 11.3.11 in [8] implies the arrow across

the bottom of the above diagram is an isomorphism. It follows that the norm of φ in the bottom right corner
is at least

√
1− 2σ and so ||φ||min ≥

√
1− 2σ. Since σ > 0 was arbitrary we obtain ||φ||min = 1 as required.

In [12] Kirchberg showed that Connes’ embedding conjecture is equivalent to the statement

C∗(F)⊗max C
∗(F) = C∗(F)⊗min C

∗(F)

Thus from Proposition 3.2 and the negation of Connes’ embedding conjecture we find that the pair (F,F)
fails to have the half-finite approximation property. For the remainder of Section 3 we fix a Hilbert space X,
a unitary representation ρ : F×F→ U(X), a unit vector x ∈ X, ε > 0 and finite sets E,F ⊆ F which witness
this failure. It is clear that we may assume ρ is a maximal representation of F× F, and indeed we make this
assumption.

3.1.3 Choosing initial parameters

Consider the group F×F. In order to keep a distinction between the factors, we will write F/ for the left copy
and F. for the right copy. We again fix free generators for each copy and endow them with the corresponding
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word lengths. We will consistently use the letters g, h for elements of F/ and g′, h′ for elements of F.. If X
is a Hilbert space, ρ : F/ × F. → GL(X) is a linear representation and  ∈ {/, .} we will write ρ for the
restriction of ρ to F. We will also write Br, for the ball of radius r around the identity in F.

Let r ∈ N be such that E ⊆ Br,/ and F ⊆ Br,.. We may assume that r ≥ 5. We suppose toward a
contradiction that encostr,ε(F) = M <∞ for our chosen values of r and ε.

Choose R ∈ N such that
45Kr

R
≤ ε (3.1)

Write
Lr,R =

(
1 + exp

(
8R2(4R+ 1)3(10R+ 1) log(2M)

))
R (3.2)

Choose δ > 0 such that if we write

sδ = 1536rKr(4R+ 1)3R3δ (3.3)

then we have

160L10
r,R(esδ − 1) ≤ 1

R
(3.4)

The rest of the proof of Theorem 1.2 is structured as follows. In the remainder of Subsection 3.1 we continue
to analyze unitary representations of F× F. In Subsection 3.2 we construct a 4-regular directed graph Θ. In
Subsections 3.3 - 3.5 we will use the hypothesis that encostr,ε(Θ) ≤ M produce a half-finite approximation
to (ρ, x,E, F, ε), thereby contradicting our choice of these data.

3.1.4 Approximate conjugacy with the profinite completion

Let F denote the profinite completion of F and let µ be its Haar probability measure. For each finite quotient
Λ of F, there exists a canonical projection ΠΛ : F � Λ. Writing 1B for the indicator function of a subset B
of F, for each λ ∈ Λ we have ∣∣∣∣∣∣1Π−1

Λ (λ)

∣∣∣∣∣∣
2

=

(∫
F

∣∣∣1Π−1
Λ (λ)(ω)

∣∣∣2 dµ(ω)

) 1
2

=
√
µ
(
Π−1

Λ (λ)
)

=
1√
|Λ|

Moreover, if λ and λ′ are distinct elements of Λ then the sets Π−1
Λ (λ) and Π−1

Λ (λ′) are disjoint, so that 1Π−1
Λ (λ)

and 1Π−1
Λ (λ′) are orthogonal in L2(F, µ). Therefore the set of functions{√

|Λ|1ΠΛ−1(λ)
: λ ∈ Λ

}
is orthonormal.

The profinite structure of F guarantees that the collection of sets{
Π−1

Λ (λ) : λ ∈ Λ, Λ is a finite quotient of F
}
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generates the Borel σ-algebra of F. Therefore we have that the span of the functions{√
|Λ|1Π−1

Λ (λ) : λ ∈ Λ, Λ is a finite quotient of F
}

(3.5)

is dense in L2(F, µ). Choose a sequence (Λn)∞n=1 of finite quotients of F such Λn is a quotient of Λn+1 and
such that any finite quotient Λ of F is a quotient of Λn for some n ∈ N. Write Πn for ΠΛn . Then the span
of the set of functions

∞⋃
n=1

{√
|Λn|1Π−1

n (λ) : λ ∈ Λn

}
(3.6)

is equal to the span of the set of functions in (3.5). Hence the span of the set of functions in (3.6) is dense
in L2(F, µ). Moreover, the spans of each of the sets inside the union in (3.6) are increasing.

By considering induced representations, we see that since ρ is a maximal representation of F/ × F. we
must have that ρ/ is a maximal representation of F/. By Theorem 3.1 in [11], the left translation action of
F on (F, µ) is maximal in the order of weak containment among measure preserving actions of F. We refer
the reader to Chapter 10 of [10] for information on this variant of weak containment, but all we will need to
know about it is that Proposition 10.5 and Theorem E.1 in [10] imply that the Koopman representation of a
maximal action is a maximal representation. Write κ : F→ U(L2(F, µ)) for the Koopman representation of
the left translation action, so that Proposition 3.1 implies ρ/ and κ are unitarily approximately conjugate.
Let u : X→ L2(F, µ) be a unitary operator such that

||u−1κ(g)u− ρ/(g)||op ≤ δ

for all g ∈ B1,/.

Consider the vector ux. Our previous discussion of (3.6) implies that we can find n ∈ N and a function
α : Λn → C with ∣∣∣∣∣

∣∣∣∣∣ux− ∑
λ∈Λn

α(λ)
√
|Λn|1Π−1

n (λ)

∣∣∣∣∣
∣∣∣∣∣
2

≤ δ

We may assume n is large enough that the balls of radius 4R in F/Λn are isomorphic to the balls of radius
4R in F.

The partition {Π−1
n (λ) : λ ∈ Λn} of F is permuted by the left translation action of F on F so that

gΠ−1
n (λ) = Π−1

n (gλ) for all g ∈ F and λ ∈ Λn. Thus we have κ(g)1Π−1
n (λ) = 1Π−1

n (gλ). Since the vec-
tors {√

|Λn|1Π−1
n (λ) : λ ∈ Λn

}
are orthonormal and x is a unit vector, we may assume that∑

λ∈Λn

|α(λ)|2 = 1

Enumerate Λn = {λ1, . . . , λd} and for j ∈ [d] let

xj = u−1
√
d1Π−1

n (λj)

We may assume without loss of generality that d ≥ R. Write κ = u−1κu. We summarize the objects we have
just constructed.
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• An orthonormal set of vectors x1, . . . , xd in X and an element α ∈ Cd with

d∑
j=1

|αj |2 = 1 (3.7)

such that
||x− α1x1 − · · · − αdxd|| ≤ δ (3.8)

• An action σ : F/ → Sym(d).

• A unitary representation κ : F/ → U(X) such that

||κ(g)− ρ/(g)||op ≤ δ (3.9)

for all g ∈ B1,/ and such that
κ(g)xj = xσ(g)j (3.10)

for all g ∈ F/ and all j ∈ [d].

3.1.5 Proximity between inner products at individual nodes

Proposition 3.3. Let g′, h′ ∈ Br,. and let β, η ∈ Cd. Also let g ∈ B1,/ and let ς ∈ Sym(d). We have∣∣∣∣∣
〈
ρ.(g

′)

d∑
j=1

βjxςj , ρ.(h
′)

d∑
k=1

ηkxςk

〉
−

〈
ρ.(g

′)

d∑
j=1

βjxσ(g)ςj , ρ.(h
′)

d∑
k=1

ηkxσ(g)ςk

〉∣∣∣∣∣
≤ 2δ||β||2||η||2

Proof of Proposition 3.3. All norms and inner products in the proof of Proposition 3.3 will be in X. From
(3.10) we have∣∣∣∣∣

〈
ρ.(g

′)

d∑
j=1

βjxςj , ρ.(h
′)

d∑
k=1

ηkxςk

〉
−

〈
ρ.(g

′)

d∑
j=1

βjxσ(g)ςj , ρ.(h
′)

d∑
k=1

ηkxσ(g)ςk

〉∣∣∣∣∣
=

∣∣∣∣∣
〈
ρ.(g

′)

d∑
j=1

βjxςj , ρ.(h
′)

d∑
k=1

ηkxςk

〉
−

〈
ρ.(g

′)κ(g)

d∑
j=1

βjxςj , ρ.(h
′)κ(g)

d∑
k=1

ηkxςk

〉∣∣∣∣∣ (3.11)

Write xβ for
∑d
j=1 βjxςj and xη for

∑d
k=1 ηkxςk. We compute

(3.11) ≤
∣∣〈ρ.(g′)xβ , ρ.(h′)xη〉− 〈ρ.(g′)ρ/(g)xβ , ρ.(h

′)ρ/(g)xη
〉∣∣ (3.12)

+
∣∣〈ρ.(g′)κ(g)xβ , ρ.(h

′)κ(g)xη
〉
−
〈
ρ.(g

′)ρ/(g)xβ , ρ.(h
′)ρ/(g)xη

〉∣∣
=
∣∣〈ρ.(g′)xβ , ρ.(h′)xη〉− 〈ρ/(g)ρ.(g

′)xβ , ρ/(g)ρ.(h
′)xη

〉∣∣ (3.13)

+
∣∣〈ρ.(g′)κ(g)xβ , ρ.(h

′)κ(g)xη
〉
−
〈
ρ.(g

′)ρ/(g)xβ , ρ.(h
′)ρ/(g)xη

〉∣∣ (3.14)

=
∣∣〈ρ.(g′)κ(g)xβ , ρ.(h

′)κ(g)xη
〉
−
〈
ρ.(g

′)ρ/(g)xβ , ρ.(h
′)ρ/(g)xη

〉∣∣ (3.15)

≤
∣∣〈ρ.(g′)κ(g)xβ , ρ.(h

′)κ(g)xη
〉
−
〈
ρ.(g

′)κ(g)xβ , ρ.(h
′)ρ/(g)xη

〉∣∣
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+
∣∣〈ρ.(g′)κ(g)xβ , ρ.(h

′)ρ/(g)xη
〉
−
〈
ρ.(g

′)ρ/(g)xβ , ρ.(h
′)ρ/(g)xη

〉∣∣
=
∣∣〈ρ.(g′)κ(g)xβ , ρ.(h

′)(κ(g)− ρ/(g))xη
〉∣∣

+
∣∣〈ρ.(g′)(κ(g)− ρ/(g))xβ , ρ.(h

′)ρ/(g)xη
〉∣∣

≤ ||ρ.(g′)κ(g)xβ || ||ρ.(h′)(κ(g)− ρ/(g))xη|| (3.16)

+ ||ρ.(g′)(κ(g)− ρ/(g))xβ || ||ρ.(h′)ρ/(g)xη|| (3.17)

= ||xβ || ||(κ(g)− ρ/(g))xη||+ ||(κ(g)− ρ/(g))xβ || ||xη|| (3.18)

≤ 2 ||κ(g)− ρ/(g)||op||xβ || ||xη|| (3.19)

= 2 ||κ(g)− ρ/(g)||op||β||2||η||2 (3.20)

≤ 2δ||β||2||η||2 (3.21)

Here,

• (3.12) is equal to (3.13) since ρ/ and ρ. commute,

• (3.15) follows from (3.13) - (3.14) since ρ/ is unitary and therefore (3.13) is 0,

• (3.18) follows from (3.16) - (3.17) since ρ. and κ are unitary,

• (3.20) follows from (3.19) since x1, . . . , xd is orthonormal,

• and (3.21) follows from (3.20) by (3.9)

Proposition 3.3 follows by combining (3.11) with (3.21).

3.1.6 Constructing a family of permuted positive definite functions

For ς ∈ Sym(d) define a positive definite function Cς : B2r,. → Matd×d(C) by setting

Cς
(
(h′)−1g′

)
j,k

= 〈ρ.(g′)xςj , ρ.(h′)xςk〉 (3.22)

for g′, h′ ∈ Br,.. Also define ∆r : B2r,. → Matd×d(C) by setting

∆r(g
′) =

{
Id if g′ = e

0d if g′ ∈ B2r \ {e}

where 0d denotes the d × d zero matrix. Let Dς = (1 − R−1)Cς + R−1∆r. Note that for any function
β : Br,. → Cd we have∣∣∣∣∣∣

∣∣∣∣∣∣
∑

g′∈Br,.

d∑
j=1

β(g′)jΦDς (g
′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3.23)

=

(
1− 1

R

) ∣∣∣∣∣∣
∣∣∣∣∣∣
∑

g′∈Br,.

d∑
j=1

β(g′)jΦCς (g
′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

R

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

g′∈Br,.

d∑
j=1

β(g′)jΦ∆r
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3.24)

≥ 1

R

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

g′∈Br,.

d∑
j=1

β(g′)jΦ∆r
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3.25)
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=
1

R

 ∑
g′∈Br,.

d∑
j=1

|β(g′)j |2
 (3.26)

Here, (3.26) follows from (3.25) since the set

{Φ∆r (g
′)j : g′ ∈ Br,., j ∈ [d]}

is orthonormal.

3.1.7 Establishing bounds on transport operators

Proposition 3.4. We have e(Dς ,Dσ(g)ς) ≤ 1 + 2KrRδ for all ς ∈ Sym(d) and all g ∈ B1,/.

Proof of Proposition 3.4. Let ς ∈ Sym(d) and g ∈ B1,/ Let β : Br,. → Cd be such that if we write

y =
∑

g′∈Br,.

d∑
j=1

β(g′)jΦDς (g
′)j

then y is a unit vector in X(Dς). Thus from (3.26) we have

1 ≥ 1

R

 ∑
g′∈Br,.

d∑
j=1

|β(g′)j |2
 (3.27)

We compute

∣∣||t[Dς ,Dσ(g)ς ]y||2 − 1
∣∣

=

∣∣∣∣∣
〈 ∑
g′∈Br,.

d∑
j=1

β(g′)jΦDσ(g)ς
(g′)j ,

∑
h′∈Br,.

d∑
k=1

β(h′)kΦDσ(g)ς
(h′)k

〉

−

〈 ∑
g′∈Br,.

d∑
j=1

β(g′)jΦDς (g
′)j ,

∑
h′∈Br,.

d∑
k=1

β(h′)kΦDς (h
′)k

〉∣∣∣∣∣ (3.28)

=

∣∣∣∣∣ ∑
g′,h′∈Br,.

d∑
j,k=1

β(g′)jβ(h′)kDσ(g)ς

(
(h′)−1g′

)
j,k

−
∑

g′,h′∈Br,.

d∑
j,k=1

β(g′)jβ(h′)kDς
(
(h′)−1g′

)
j,k

∣∣∣∣∣ (3.29)

≤
∑

g′,h′∈Br,.

∣∣∣∣∣∣
d∑

j,k=1

β(g′)jβ(h′)k

(
Dσ(g)ς

(
(h′)−1g′

)
j,k
− Dς

(
(h′)−1g′

)
j,k

)∣∣∣∣∣∣ (3.30)

=

(
1− 1

R

) ∑
g′,h′∈Br,.

∣∣∣∣∣∣
d∑

j,k=1

β(g′)jβ(h′)k

(
Cσ(g)ς

(
(h′)−1g′

)
j,k
− Cς

(
(h′)−1g′

)
j,k

)∣∣∣∣∣∣ (3.31)
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≤
∑

g′,h′∈Br,.

∣∣∣∣∣∣
d∑

j,k=1

β(g′)jβ(h′)k

(
Cσ(g)ς

(
(h′)−1g′

)
j,k
− Cς

(
(h′)−1g′

)
j,k

)∣∣∣∣∣∣ (3.32)

=
∑

g′,h′∈Br,.

∣∣∣∣ d∑
j,k=1

β(g′)jβ(h′)k
(
〈ρ.(g′)xσ(g)ςj , ρ.(h

′)xσ(g)ςk〉 − 〈ρ.(g′)xςj , ρ.(h′)xςk〉
)∣∣∣∣ (3.33)

=
∑

g′,h′∈Br,.

∣∣∣∣∣
(〈

ρ.(g
′)

d∑
j=1

β(g′)jxσ(g)ςj , ρ.(h
′)

d∑
k=1

β(h′)kxσ(g)ςk

〉

−

〈
ρ.(g

′)

d∑
j=1

β(g′)jxςj , ρ.(h
′)

d∑
k=1

β(h′)kxςk

〉)∣∣∣∣∣ (3.34)

≤ 2δ
∑

g′,h′∈Br,.

 d∑
j=1

|β(g′)j |2
 1

2 ( d∑
k=1

|β(h′)k|2
) 1

2

(3.35)

≤ 2Krδ

 ∑
g′∈Br,.

d∑
j=1

|β(g′)j |2
 (3.36)

≤ 2KrRδ (3.37)

Here,

• (3.29) follows from (3.28) using (1.2)

• (3.31) follows from (3.30) since the ∆r components in the definitions of Dς and Dσ(g)ς cancel,

• (3.33) follows from (3.32) by (3.22)

• (3.35) follows from (3.34) by Proposition 3.3

• and (3.37) follows from (3.36) by (3.27).

3.2 Constructing the graph

Let τ0 be the action of F/ on Sym(d) given by letting g according to left multiplication by σ(g). Let Θ0 be
the directed graph on Sym(d) with directed edges corresponding to left multiplication by τ0(a) and τ0(b). By
our choice of Λn in Segment 3.1.4 we have that the balls of radius 4R in Θ0 are isomorphic to the balls of
radius 4R in F. In particular, this implies that every cycle in Θ0 has length at least 4R. We will now modify
τ0 to obtain a new action of F/ on a finite set.

If V is the vertex set of a graph Θ and J ⊆ V we write Θ � J for the induced subgraph of Θ on J .

Proposition 3.5. There exists a finite superset V of Sym(d) with |V \ Sym(d)| ≤ 9R−1d! and an action
τ : F/ → Sym(V ) with the following properties. Below Θ denotes the directed graph on V corresponding to
the actions of τ(a) and τ(b).
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(G− 1) There exists a subset W of V with |W | ≥ (1−20KrR
−1)d! such that if w ∈W then the r-ball around

w in Θ can be identified with the r-ball around w in Θ0.

(G− 2) There exists a subset B of V with |B| ≤ R−1d! which forms a single τ(b)-cycle. With the exception
of the b-cycle corresponding to the vertexes in B, all a and b cycles in Θ have length at most 2(4R+ 1).

(G− 3) If v, w ∈ Sym(d) then the undirected distance from v to w in Θ0 is at most (4R + 1)R2 times the
undirected distance from v to w in Θ � (V \B).

(G− 4) For every v ∈ V there exists w ∈ B and a directed path in Θ from w to v with length at most
8(4R+ 1)2(10R+ 1).

(G− 5) If g ∈ Br and v, τ(g)v ∈ Sym(d) there exists a directed path in Θ from v to τ(g)v with length at most
256r(4R+ 1)2 which does not pass through an element of B.

(G− 6) Each element of V \ Sym(d) is adjacent in Θ to an element of Sym(d).

(G− 7) The τ(a) and τ(b) cycles in Θ have length at least 4.

Proof of Proposition 3.5. We will construct Θ with three stages of modifications to Θ0. The first stage of
modifications will be designed to shorten the length of a-cycles, and its results are summarized in the con-
ditions (G2 − 1) through (G2 − 5). The second stage of modifications will be designed to shorten the length
of b-cycles, and its results are summarized in the conditions (G3 − 1) through (G3 − 5). The third and final
stage of modifications will be designed to produce a single anomalously long b-cycle which passes somewhat
close to every vertex in the graph. We wish to perform these modifications without dramatically increasing
the distance between nearby vertexes. Therefore in each set of modifications we will cut and move certain
edges, and then construct ‘bypasses’ around the cut edges so as to limit the increase in distance resulting
from the modification.

We now describe the first set of modifications in order to construct a new action τ1 of F on Sym(d). Let
P1, . . . , Pn be the τ0(a)-cycles in the graph Θ0. We have that |Pm| ≥ R for all m ∈ [n]. For each m ∈ [n] let
Pm,◦ be a set of vertexes in Pm which is maximal among subsets of Pm which are R-separated in Pm. By an
R-separated set in Pm we mean a subset S of Pm such that for two vertexes v, w in S the minimal value of
n such that τn0 (a)v = w is at least R. The maximality condition guarantees the distance between two con-
secutive vertexes in Pm,◦ is no more than 2R. Therefore our hypothesis that |Pm| ≥ 4R implies that Pm,◦ ≥ 2.

For each v ∈ Pm,◦ cut the τ0(a)-edge coming out of v. Then place a new τ1(a)-labelled edge from v to
the vertex following the previous element of Pm,◦. Call the graph so obtained Θ1. Since we cut the τ0(a)-
edge coming into the vertex following the previous element of Pm,◦, each vertex in the graph Θ1 has four
edges incident to it. These edges are appropriately labelled a, b, a−1, b−1 so this graph defines an action of
F/ on Sym(d), which we refer to as τ1.

We now construct bypasses around the edges cut in the previous step. Let D be a set disjoint from Sym(d)
with

D =

∣∣∣∣∣ ⋃
m∈J

Pm,◦

∣∣∣∣∣
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Let D′ be a disjoint copy of D. Let

f :
⋃
m∈J

Pm,◦ → D

and let
f ′ :

⋃
m∈J

Pm,◦ → D′

be bijections. For each v ∈ Pm,◦ cut the τ1(b)-edge coming out of v in the middle. Place f(v) in the middle
of this edge, so that there is a b-labelled edge from v to f(v) and from f(v) to τ1(b)v. Also, for each v ∈ Pm,◦
cut the τ1(b)-edge coming out of τ0(a)2v in the middle. Place f ′(v) in the middle of this edge, so there is a
b-labelled edge from τ0(a)2v to f ′(v) and from f ′(v) to τ1(b)τ2

0 (a)v. Place a τ2(a)-labelled edge from f(v) to
f ′(v). Our hypothesis that the distance in the τ0(a)-cycle between consecutive elements of Pm,◦ is at least R
implies that there are no conflicts arising in this modification. At this stage of the modification the vertexes
f(v) are missing an incoming τ2(a) edge and the vertexes f ′(v) are missing an outgoing τ2(a) edge.

Since |Pm,◦| ≥ 2 we can divide the set Pm,◦ into subsets consisting of pairs and at most one triple of
vertexes which are consecutive in the τ0(a)-ordering. If v1, v2 is such a pair, place a τ2(a) edge from f ′(v1)
to f(v2) and from f ′(v2) to f(v1). If v1, v2, v3 is such a triple, place a τ2(a) edge from f ′(v1) to f(v2), from
f ′(v2) to f(v3), from f ′(v3) to f(v1).

Denote the resulting graph by Θ2. Again, for each element v of Sym(d)∪D there exist exactly four edges in
Θ2 incident to v, labelled by a, b, a−1, b−1. Therefore Θ2 defines an action of F/ on Sym(d) ∪D ∪D′, which
we denote τ2. We make the following claims about Θ2 and τ2.

(G2 − 1) In passing from Θ0 to Θ2 we have modified the edges incident to at most 5R−1d! vertexes.

(G2 − 2) The a-cycles in Θ2 have length at most 2R.

(G2 − 3) If v, w ∈ Sym(d) then the undirected distance from v to w in Θ2 is at most 4 times the undirected
distance from v to w in Θ0.

(G2 − 4) If v, w ∈ Sym(d) then the undirected distance from v to w in Θ0 is at most R times the undirected
distance from v to w in Θ2.

(G2 − 5) All τ2(a) cycles in Θ2 have length at least 4. All τ2(b) cycles in Θ2 have length at least 4R.

We first verify the condition (G2 − 1). The separation hypothesis on each Pm,◦ guarantees that the size of
the union of the Pm,◦ is at most R−1d!. For each vertex v ∈ Pm,◦ we modified the a-edge coming out of v.
This gives 2R−1d! vertexes whose incident edges were modified. When inserting the elements of D and D′

we modified the b edges incident to v and τ0(a)2v. Since we have already accounted for v this gives 3R−1d!
additional vertexes incident to modified edges. Thus the condition (G2 − 1) holds.

The condition (G2− 2) holds by construction. We now verify the condition (G2− 3). Let v, w ∈ Sym(d) and
let S be an undirected path from v to w in Sym(d). Suppose the path S passes through a τ0(a)-edge coming
out of some u ∈ Pm,◦. This edge was cut in passing from Θ0 to Θ1. However, we can bypass this cut in Θ2

by using the route

u→ τ2(b)u = f(u)→ τ2(a)τ1(b)u = f ′(u)→ τ1(b)−1f ′(u) = τ0(a)2u
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Since τ0(a)2u = τ2(a)τ0(a)u , we see from condition (G2 − 2) that bypassing a cut τ0(a)-edge can be done in
4 undirected steps. Thus the condition (G2 − 3) is verified.

The condition (G2 − 4) is clear since in passing from Θ0 to Θ1 we placed an edge between the begin-
ning and end of a τ0(a)-path of length R. The first item in the condition (G2 − 5) holds by the way we
placed τ2(a) edges between the vertexes of D and D′. The second item in the condition (G2 − 5) holds since
in passing from Θ0 to Θ2 we only lengthened the b cycles.

We now perform a second set of modifications to obtain a new action τ3 of F on Sym(d)∪D∪D′. This second
set of modifications will be analogous to the first set, with b replacing a. Let Q1, . . . , Q` be the τ2(b)-cycles in
the graph Θ2. Let I ⊆ [`] be the set of indexes m such that |Qm| ≥ R. If m ∈ [`] let Qm,◦ be a set of vertexes
in Qm which maximal among R-separated subsets of Qm. The second item in the condition (G2−5) guaran-
tees that |Qm◦ | ≥ 2. For each v ∈ Qm,◦ cut the τ2(b)-edge coming out of v. Then place a new τ2(b)-labelled
edge from v to the vertex following the previous element Qm,◦. Note that we cut the τ2(b)-edge coming into
the vertex following the previous element of Qm,◦, so this graph again has the appropriate quartet of labelled
edges incident to each vertex.

Now, let E be a set disjoint from Sym(d) ∪D ∪D′ with

|E| =

∣∣∣∣∣ ⋃
m∈I

Qm,◦

∣∣∣∣∣
Let E′ be a disjoint copy of E and let

h :
⋃
m∈I

Qm,◦ → E

and
h′ :

⋃
m∈I

Qm,◦ → E′

be bijections. For each v ∈ Qm,◦ cut the τ2(a)-edge coming out of v in the middle. Place h(v) in the middle
of this cut edge, so that there is an a-labelled edge from v to h(v) and from h(v) to τ2(a)v. Also cut the
τ2(a)-edge coming out of τ2(b)2v in the middle. Place h′(v) in the middle of this cut edge, so that there
is an a-labelled edge from τ2(b)2v to h′(v) and from h′(v) to τ2(a)τ2(b)2v. The first item in the condition
(G2−5) guarantees that there are no idempotent edges in θ2, so this construction does not cause any conflicts.

Since |Qm,◦| ≥ 2 we can divide the set Qm,◦ into subsets consisting of pairs and at most one triple of
vertexes which are consecutive in the τ2(b)-ordering. If v1, v2 is such a pair, place a τ2(b) edge from h′(v1)
to h(v2) and from h′(v2) to h(v1). If v1, v2, v3 is such a triple, place a τ2(b) edge from h′(v1) to h(v2), from
h′(v2) to h(v3), from h′(v3) to h(v1). Call the graph so obtained Θ3. Again, we have four edges with the
appropriate labels attached to every vertex, so Θ3 defines an action τ3 of F/ on Sym(d) ∪D ∪D′ ∪ E ∪ E′.
We make the following claims about Θ3 and τ3.

(G3 − 1) In passing from Θ0 to Θ3 we have modified the edges incident to at most 10R−1d! vertexes.

(G3 − 2) Each a-cycles and each b-cycle in Θ2 has length at most 4R.

(G3 − 3) If v, w ∈ Sym(d) then the undirected distance v to w in Θ3 is at most 16 times the undirected
distance from v to w in Θ0.
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(G3 − 4) If v, w ∈ Sym(d) then the undirected distance from v to w in Θ0 is at most R2 times the undirected
distance from v to w in Θ3.

(G3 − 5) The τ3(a) and τ3(b) cycles in Θ3 have length at least 4.

We first verify the condition (G3 − 1). The separation hypothesis on each Qm,◦ guarantees that the size of
the union of the Qm,◦ is at most R−1d. For each vertex v ∈ Qm,◦ we modified the b-edge coming out of v.
This gives 2R−1d! vertexes whose incident edges were modified. When inserting the elements of E and E′

we modified the a edges incident to v to and τ0(b)v. Since we have already accounted for v this gives 3R−1d!
additional vertexes incident to modified edges. Combining this with (G2−1) we obtain the condition (G3−1).

By construction, in the graph Θ3 each b-cycle has length at most 2R. In passing from Θ2 to Θ3 we modified
a-edges only by sometimes inserting a single vertex in the middle. Thus from the condition (G2 − 2) we
obtain the condition (G3 − 2).

Let v, w ∈ Sym(d) and let S be an undirected path from v to w in Θ2. Suppose the path S passes through
a τ2(b)-edge coming out of some u ∈ Qm,◦. This edge was cut in passing from Θ2 to Θ3. However, we can
bypass this cut in Θ3 by using the route

u→ τ3(a)u = h(u)→ τ3(b)τ3(a)u = h′(u)→ τ3(a)−1h′(u) = τ2
2 (b)u

Since τ2
2 (b)u = τ3(b)τ2(b)u, we see using condition (G3 − 2) that we can bypass a cut τ2(b)-edge in 4 undi-

rected steps. Thus condition (G3 − 3) follows from condition (G2 − 3). The condition (G3 − 4) follows from
the condition (G2 − 4) since in passing from Θ2 to Θ3 we placed edges between the endpoints of τ2(b)-paths
of length at most R.

We now perform a third set of modifications. Choose a subset A of Sym(d) ∪ D ∪ D′ ∪ E ∪ E′ which is
maximal among subsets which are 10R-separated according to the undirected version of Θ3, in the sense
that any pair of distinct elements of A are at distance at least 10R in Θ3. The hypothesis that the distance
between any pair of distinct vertexes v and w in A is at least 10R implies that no vertex can be at distance
less than 4R from both v and w. Thus the balls of radius 4R in Θ3 around the elements of A are pairwise
disjoint. Recalling that the balls of radius 4R in Θ0 are isomorphic with balls of radius 4R in F, it is clear
that in passing from Θ0 to Θ3 we maintained the existence of a path of length R in the ball of radius 4R
around any given point. Thus the balls of radius 4R around the elements of A have size at least R and so
we have

|A| ≤ R−1(d! + 2|D|+ 2|E|) ≤ 5R−1d!

Furthermore, the hypothesis that A is maximal among 10R-separated sets implies that every element of
Sym(d) ∪D ∪D′ ∪ E ∪ E′ has distance at most 10R from an element of A.

Let B be a set disjoint from Sym(d) ∪ D ∪ D′ ∪ E ∪ E′ with |B| = |A|. Let ` : A → B be a bijection.
For each element v of A, cut the edge between τ3(a)−1v and v in the middle. Insert `(v) in between the two
pieces of the cut edge, so that there is an a-labelled edge from τ3(a)−1v to `(v) and from `(v) to v. Also
let {v1, . . . , vs} be an enumeration of B and place a b-labelled edge from vm to vm+1 for m ∈ [s], where the
indexes m are taken modulo s. Write V = Sym(d) ∪D ∪D′ ∪E ∪E′ ∪B. Call the graph on V so obtained
Θ4. Let τ4 be the action of F/ on V associated to Θ4.
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Now, for each vertex v ∈ A let Cv be the τ4(b)-cycle containing v and let C ′v be the τ4(b)-cycle contain-
ing τ−1

3 (a)v = τ−2
4 (a)v. The condition (G3 − 5) guarantees that there exist vertexes in these cycles which

are not elements of A. Choose a vertex w(v) ∈ Cv and w′(v) ∈ C ′v which are not elements of A. Cut the
τ4(b)-edge going out of w(v) and going out of w′(v). Place an b edge from w(v) to τ4(b)w′(v) and from
w′(v) to τ4(b)w(v). Thus Cv and C ′v become a single b-cycle. Note that since A was 10R-separated in
the undirected version of Θ4, the cycles Cv and C ′v contain no elements of B. Let Θ be the resulting graph
and let τ be the corresponding action. We now verify that the conditions (G−1) through (G−6) holds for Θ.

In passing from Θ3 to Θ4 we modified the edges incident to at most 2|A| ≤ 10R−1d! vertexes. In com-
bination with the condition (G3− 2) we see that in passing from Θ0 to Θ4 we modified the edges incident to
at most 20R−1d! vertexes. We can take W to be the complement in Sym(d) of the balls of radius r around
vertexes incident to modified edges. Thus the condition (G− 1) is verified.

By construction the a and b cycles in Θ3 have length at most 4R. In passing from Θ3 to Θ4 we added
at most 1 edge to an a-cycle and no edges to a b-cycle. In passing from Θ4 to Θ we at most doubled the
length of a cycle. Thus condition (G− 2) is verified.

We have that Θ4 � (V \ B) is a subgraph of Θ3. Therefore if v, w ∈ Sym(d) we see from the condition
(G3 − 4) that the undirected distance from v to w in Θ0 is at most R2 times the undirected distance from
v to w in Θ4 � (V \ B). In passing from Θ4 to Θ we connected pairs of τ3(b)-cycles which were joined by a
τ3(a)-edge. Using the condition (G3 − 2) we see that the undirected distance from v to w in Θ4 � (V \ B)
is at most 4R+1 times the undirected distance from v to w in Θ � (V \B). This implies the condition (G−3).

The maximality of A guarantees that for every v ∈ V there exists u ∈ A and an undirected path from
u to v in Θ3 with length at most 10R. Therefore if we set w = τ(a)−1(u) ∈ B then there exists an undirected
path from w to v in Θ3 with length at most 10R+ 1. In passing from Θ3 to Θ4 we may have placed vertexes
in the middle of τ3(a)-edges, thereby at most doubling the length of this path. Thus we obtain an undirected
path from w to v of length at most 2(10R+ 1) in Θ4. In passing from Θ4 to Θ we combined certain pairs of
cycles, and therefore we multiplied the length of any path by at most the length of a cycle in Θ4. Condition
(G− 2) guarantees the length of such a cycle is at most 4R+ 1, so we obtain an undirected path from w to
v in Θ of length at most 2(4R+ 1)(10R+ 1). Using condition (G− 2) we obtain condition (G− 4).

Let g ∈ Br,/ and let v ∈ Sym(d). The condition (G3 − 3) guarantees there exists an undirected path
from v to τ0(g)v in Θ3 with length at most 16r which might pass through an element of B. In passing from
Θ3 to Θ4 we may have placed a vertex in the middle of a τ3(a)-edge on the path. Thus there is an undirected
path from v to τ0(g)v in Θ4 of length at most 32r which might pass through an element of B. Using condition
(G− 2) we see that there exists a directed path from v to τ0(g)v in Θ4 of length at most 64r(4R+ 1) which
might pass through an element of B.

Suppose u is an element of B on this directed path. The modification made in passing from Θ4 to Θ ensures
that by following the τ4(b)-cycles we can travel from τ4(a)−1u to τ4(a)u without meeting an element of B.
Using condition (G−2) we see that this bypass has length at most 4(4R+1). Thus condition (G−5) is verified.

In the three steps of the modification, we inserted vertexes into a-edges twice and into b-edges once. This
observation implies the condition (G−6). The condition (G−7) is immediate from (G3−5). This completes
the proof of Proposition 3.5.
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3.3 Verifying the properties of the graph

3.3.1 Estimating transport operators in the modified graph

Let ı be the identity permutation in Sym(d). Let V and τ be as in Proposition 3.5. For v ∈ V \ Sym(d) let
v̂ be the element of Sym(d) guaranteed by condition (G − 6) in Proposition 3.5, so that v̂ is adjacent to v.
Define positive definite functions (Ev)v∈V by setting

Ev =


Dv if v ∈ Sym(d)

Dı if v ∈ B
Dv̂ if v ∈ V \ (Sym(d) ∪B)

(3.38)

Using the hypothesis that encostr,ε(Θ) ≤M we can find positive definite functions (Êv)v∈V defined on all of
F. such that

||Ev − (Êv � Br)||1 ≤ ε (3.39)

for all v ∈ V and such that

e
(
Êv, Êτ(a)v

)
− 1 ≤M

(
e(Ev,Eτ(a)v)− 1

)
(3.40)

and
e
(
Êv, Êτ(b)v

)
− 1 ≤M

(
e(Ev,Eτ(b)v)− 1

)
(3.41)

for all v ∈ V . We regard each Êv as a function from F. to Matd×d(C). From Proposition 3.4 and (3.40) and
(3.41) we obtain

e
(
Êv, Êτ(a)v

)
≤ 1 + 2MKrδ (3.42)

and
e
(
Êv, Êτ(b)v

)
≤ 1 + 2MKrδ (3.43)

for all v ∈ V .

Suppose g ∈ Br,/ and v, τ(g)v ∈ Sym(d). Let

P = (v1 = v, v2, . . . , vn−1, vn = τ(g)v)

be the directed path guaranteed by the condition (G− 5) in Proposition 3.5. Using the condition (G− 3) in
Proposition 3.5 we see that if vm, vm+1 ∈ Sym(d) then vm was at undirected distance at most (4R + 1)R2

from vm+1 in Θ0. Moreover if vm, vm+1 ∈ V \ (Sym(d) ∪B) we see that the undirected distance from v̂m to
v̂m+1 in Θ � (V \B) is at most 3, so again using the condition (G− 3) in Proposition 3.5 we see that v̂m was
at undirected distance at most 3(4R+1)R2 from v̂m+1 in Θ0. A similar argument applies when vm ∈ Sym(d)
and vm+1 ∈ V \ (Sym(d) ∪ B), and when v ∈ V \ (Sym(d) ∪ B) and vm ∈ Sym(d). Since the edges in Θ0

correspond to multiplication by σ(a)±1 and σ(b)±1, Proposition 3.4 implies that

e(Dvm ,Dvm+1
) ≤ (1 + 2MKrRδ)

3(4R+1)R2

≤ exp(6M(4R+ 1)KrR
3δ) (3.44)

Thus for g ∈ Br,/ we have
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e(Êv, Êτ(g)v) ≤
n−1∏
m=1

e(Êvm , Êvm+1
) (3.45)

=

n−1∏
m=1

e(Dvm ,Dvm+1) (3.46)

≤
n−1∏
m=1

exp(6(4R+ 1)KrR
3δ) (3.47)

≤ exp(1536rMKr(4R+ 1)3R3δ) (3.48)

= esδ (3.49)

Here,

• (3.46) follows from (3.45) by (3.38) since P does not pass through an element of B,

• (3.47) follows from (3.46) by (3.44),

• and (3.48) follows from (3.47) since the condition (G−5) in Proposition 3.5 guarantees m ≤ 256r(4R+
1)2.

• and (3.49) follows from (3.48) by (3.3)

Furthermore, from the conditions (G− 3) and (G− 4) in Proposition 3.5 we see that for every v ∈ V there
exists w ∈ B such that there is a path P in Θ from w to v of length at most 8R2(4R+1)3(10R+1) such that
each edge in P corresponds to an undirected edge in Θ0. Thus by simplifying the upper bound in Proposition
3.4 to 2 we obtain

e(Êw, Êv) ≤ (2M)8R2(4R+1)3(10R+1) = exp
(
8R2(4R+ 1)3(10R+ 1) log(2M)

)
(3.50)

Define

F̂v =

{
Êv if v ∈ Sym(d)

Êv̂ if v ∈ V \ Sym(d)
(3.51)

From (3.49) and (3.42) we see that for all v ∈ V and all g ∈ Br,/ we have

e(F̂v, F̂τ(g)v) ≤ esδ (3.52)

Fix w◦ ∈ B and write Ê◦ for Êw◦ . We have Ew = E◦ for all w ∈ B and so from (3.42) we obtain

e(Ê◦, Êw) ≤ exp
(
8R2(4R+ 1)3(10R+ 1) log(2M)

)
(3.53)

for all w ∈ B.
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3.3.2 Constructing a representation through permutations

Again let V be as in Proposition 3.5. For v ∈ V we now define Kv = R−1Ê◦+(1−R−1)F̂v. Write Yv for X(Kv)
and let ζ.,v : F. → U(Yv) be the associated representation of Kv. Define Y =

⊕
v∈V Yv and ζ. =

⊕
v∈V ζ.,v.

Define a representation θ : F/ → GL(Y) by setting

θ(g) =
⊕
v∈V

t[Kv,Kτ(g)v]

Note that θ factors through the finite group Γ = τ(F/). Moreover, we have

t[Kv,Kτ(g)v]ζ..v = ζ.,τ(g)vt[Kv,Kτ(g)v]

for all v ∈ V and g ∈ F/. Therefore θ commutes with ζ. so that θ×ζ. is a half-finite linear representation of G.

From (3.52) we see that
||θ(g)||op ≤ esδ (3.54)

for all g ∈ Br,/. Now, let g ∈ F/ be arbitrary. Let β : F. → Cd be such that

∑
g′∈F.

d∑
j=1

β(g′)jΦKv (g′)j

is a unit vector in Yv. Thus we have

1 =

(
1− 1

R

) ∣∣∣∣∣∣
∣∣∣∣∣∣
∑
g′∈F.

d∑
j=1

β(g′)jΦF̂v
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

R

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
g′∈F.

d∑
j=1

β(g′)jΦÊ◦
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ 1

R

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
g′∈F.

d∑
j=1

β(g′)jΦÊ◦
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3.55)

We have∣∣∣∣∣∣
∣∣∣∣∣∣t[Kv,Kτ(g)v]

∑
g′∈F.

d∑
j=1

β(g′)jΦKv (g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
g′∈F.

d∑
j=1

β(g′)jΦKτ(g)v
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

(
1− 1

R

) ∣∣∣∣∣∣
∣∣∣∣∣∣
∑
g′∈F.

d∑
j=1

β(g′)jΦF̂τ(g)v
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

R

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
g′∈F.

d∑
j=1

β(g′)jΦÊ◦
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

(
1− 1

R

) ∣∣∣∣∣∣
∣∣∣∣∣∣
∑
g′∈F.

d∑
j=1

β(g′)jΦÊ◦
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

R

∣∣∣∣∣∣
∣∣∣∣∣∣t[Ê◦, F̂τ(g)v]

∑
g′∈F.

d∑
j=1

β(g′)jΦÊ◦
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2
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≤

(
1− 1

R
+

e(Ê◦, F̂τ(g)v)

R

)∣∣∣∣∣∣
∣∣∣∣∣∣
∑
g′∈F.

d∑
j=1

β(g′)jΦÊ◦
(g′)j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3.56)

≤ (1 + e(Ê◦, F̂τ(g)v))R (3.57)

≤
(
1 + exp

(
8R2(4R+ 1)3(10R+ 1) log(2M)

))
R (3.58)

Here, (3.57) follows from (3.56) by (3.55) and (3.58) follows from (3.57) by (3.53). From (3.2) and (3.58) we
obtain

||θ(g)||op ≤ Lr,R (3.59)

for all g ∈ F/.

3.4 Repairing the representation to be unitary

3.4.1 Conjugation by an average

In Segments 3.4.1 and 3.4.2 we regard θ as a representation of the finite group Γ. Define a positive operator
q ∈ B(Y) by

q =
1

|Γ|
∑
γ∈Γ

θ(γ)∗θ(γ).

By applying (3.59) to g−1 we see that each θ(γ) is invertible. Hence each operator θ(γ)∗θ(γ) is strictly

positive and so q is invertible. Define a representation ζ/ of Γ on Y by setting ζ/(γ) = q
1
2 θ(γ)q−

1
2 . For all

γ ∈ Γ and all g′ ∈ F. we have that ζ.(g
′) commutes with each θ(γ). Since ζ.(g

′) is unitary, this implies that
ζ.(g

′) commutes with θ(γ)∗ and hence ζ.(g
′) commutes with q. Therefore ζ. commutes with ζ/ and so if we

set ζ = ζ/ × ζ. then ζ is a half finite linear representation of G.

We claim that ζ is in fact unitary. Write I for the identity operator on Y. For γ ∈ Γ we have

ζ/(γ)∗ζ/(γ) =
(
q

1
2 θ(γ)q−

1
2

)∗(
q

1
2 θ(γ)q−

1
2

)
= q−

1
2 θ(γ)∗qθ(γ)q−

1
2

= q−
1
2 θ(γ)∗

(
1

|Γ|
∑
ν∈Γ

θ(ν)∗θ(ν)

)
θ(γ)q−

1
2

= q−
1
2

(
1

|Γ|
∑
ν∈Γ

θ(γ)∗θ(ν)∗θ(ν)θ(γ)

)
q−

1
2

= q−
1
2

(
1

|Γ|
∑
ν∈Γ

θ(νγ)∗θ(νγ)

)
q−

1
2

= q−
1
2

(
1

|Γ|
∑
ν∈Γ

θ(ν)∗θ(ν)

)
q−

1
2

= I (3.60)

so that ζ/(γ) is unitary and therefore ζ is a unitary representation.
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3.4.2 Bounding the spectrum of the average

Proposition 3.6. We have spec(q) ⊆ [L−2
r,R, L

2
r,R].

Proof of Proposition 3.6. Using (3.59) we see that for any unit vector y ∈ Y we have

〈qy, y〉 =
1

|Γ|
∑
γ∈Γ

〈
θ(γ)∗θ(γ)y, y

〉
=

1

|Γ|
∑
γ∈Γ

||θ(γ)y||2

≤ L2
r,R (3.61)

By applying (3.59) to g−1 we see that

inf
{
||θ(γ)y||2 : y ∈ Y is a unit vector

}
≥ 1

L2
r,R

and so

inf
{
〈qy, y〉 : y ∈ Y is a unit vector

}
≥ 1

L2
r,R

. (3.62)

Now suppose λ ∈ spec(q). Since q is self-adjoint, there exists a sequence (yn)∞n=1 of unit vectors in Y such
that limn→∞ ||(q − λI)yn|| = 0. This implies that limn→∞〈(q − λI)yn, yn〉 = 0 and so limn→∞〈qyn, yn〉 = λ.
Thus from (3.61) and (3.62) we have L−2

r,R ≤ λ ≤ L2
r,R.

3.4.3 Estimating the distance to the repaired representation

Proposition 3.7. Suppose g ∈ Br,/. Then ||ζ/(g)− θ(g)||op ≤ R−1.

Proof of Proposition 3.7. Fix g ∈ Br,/. By applying (3.54) to g and g−1 we see

e−sδI ≤ θ(g)∗θ(g) ≤ esδI

Since θ(g)∗θ(g) is unitarily conjugate to θ(g)θ(g)∗ we obtain

e−sδI ≤ θ(g)θ(g)∗ ≤ esδI

so that
||θ(g)θ(g)∗ − I||op ≤ esδ − 1 (3.63)

Since q−
1
2 θ(g)∗qθ(g)q−

1
2 = I we have θ(g)∗qθ(g) = q. Therefore

||qθ(g)− θ(g)q||op = ||qθ(g)− θ(g)θ(g)∗qθ(g)||op

≤ ||I − θ(g)θ(g)∗||op||q||op||θ(g)||op (3.64)

≤ 2||I − θ(g)θ(g)∗||op||q||op (3.65)

≤ 2L2
r,R||I − θ(g)θ(g)∗||op (3.66)

≤ 2L2
r,R(esδ − 1) (3.67)

Here,
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• (3.65) follows from (3.64) by (3.54) since esδ ≤ 2,

• (3.66) follows from (3.65) by Proposition 3.6 since q is self-adjoint,

• and (3.67) follows from (3.66) by (3.63).

Let z ∈ C \ spec(q). We compute

||(q − zI)−1θ(g)− θ(g)(q − zI)−1||op

= ||(q − zI)−1θ(g)− (q − zI)−1(q − zI)θ(g)(q − zI)−1||op

≤ ||(q − zI)−1||op||θ(g)− (q − zI)θ(g)(q − zI)−1||op

=
1

dist(z, spec(q))
||θ(g)− (q − zI)θ(g)(q − zI)−1||op

=
1

dist(z, spec(q))

∣∣∣∣∣∣θ(g)− qθ(g)(q − zI)−1 + zθ(g)(q − zI)−1
∣∣∣∣∣∣

op

=
1

dist(z, spec(q))

∣∣∣∣∣∣θ(g)− θ(g)q(q − zI)−1 + zθ(g)(q − zI)−1

+ θ(g)q(q − zI)−1 − qθ(g)(q − zI)−1
∣∣∣∣∣∣

op

=
1

dist(z, spec(q))

∣∣∣∣∣∣θ(g)− θ(g)(q − zI)(q − zI)−1 + θ(g)q(q − zI)−1 − qθ(g)(q − zI)−1
∣∣∣∣∣∣

op

=
1

dist(z, spec(q))
||θ(g)q(q − zI)−1 − qθ(g)(q − zI)−1||op

≤ 1

dist(z, spec(q))
||θ(g)q − qθ(g)||op||(q − zI)−1||op

=
1

dist(z, spec(q))2
||θ(g)q − qθ(g)||op (3.68)

≤
2L2

r,R(esδ − 1)

dist(z, spec(q))2
(3.69)

Here, (3.69) follows from (3.68) by (3.67). Now, let c : [0, 1]→ C be a simple closed contour with the following
properties.

(i) We have Re(c(x)) > 0 for all x ∈ [0, 1].

(ii) The interval [L−2
r,R, L

2
r,R] is enclosed by c.

(iii) We have dist(c(x), [L−2
r,R, L

2
r,R]) ≥ 1

2L
−2
r,R for all x ∈ [0, 1].

(iv) We have sup{|c(x)| : x ∈ [0, 1]} ≤ 2L2
r,R

(v) We have `(c) ≤ 10L2
r,R where `(c) denotes the length of c.

By Clause (i) we can consistently define a square root function on the image of c. Proposition 3.6 together
with Clause (ii) in the definition of c implies that c encloses spec(q). Therefore we can use the holomorphic
functional calculus to make the following computation.
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||θ(g)q
1
2 − q 1

2 θ(g)||op

=
1

2π

∣∣∣∣∣∣∣∣θ(g)

(∫ 1

0

c(x)
1
2 (c(x)I − q)−1 dx

)
−
(∫ 1

0

c(x)
1
2 (c(x)I − q)−1 dx

)
θ(g)

∣∣∣∣∣∣∣∣
op

=
1

2π

∣∣∣∣∣∣∣∣∫ 1

0

c(x)
1
2

(
θ(g)(c(x)I − q)−1 − (c(x)I − q)−1θ(g)

)
dx

∣∣∣∣∣∣∣∣
op

≤ `(c)

2π
sup

0≤x≤1

(
|c(x)| 12

∣∣∣∣∣∣θ(g)(c(x)I − q)−1 − (c(x)I − q)−1θ(g)
∣∣∣∣∣∣

op

)
(3.70)

≤ 10L2
r,R sup

0≤x≤1

(
|c(x)| 12

∣∣∣∣∣∣θ(g)(c(x)I − q)−1 − (c(x)I − q)−1θ(g)
∣∣∣∣∣∣

op

)
(3.71)

≤ 20L3
r,R sup

0≤x≤1

∣∣∣∣∣∣θ(g)(c(x)I − q)−1 − (c(x)I − q)−1θ(g)
∣∣∣∣∣∣

op
(3.72)

≤
40L5

r,R(esδ − 1)

dist(z, spec(q))2
(3.73)

≤ 160L9
r,R(esδ − 1) (3.74)

Here,

• (3.71) follows from (3.70) by Clause (v) in the definition of c,

• (3.72) follows from (3.71) by Clause (iv) in the definition of c,

• (3.73) follows from (3.72) by (3.69),

• and (3.74) follows from (3.73) by Clause (iii) in the definition of c.

Now, since spec(q) ⊆ [L−2
r,R, L

2
r,R], the spectral mapping theorem implies that spec(q−

1
2 ) ⊆ [L−1

r,R, Lr,R]. Since

q−
1
2 is self-adjoint, this implies ||q− 1

2 ||op ≤ Lr,R. Therefore

||ζ/(g)− θ(g)||op = ||q 1
2 θ(g)q−

1
2 − θ(g)||op

= ||q 1
2 θ(g)q−

1
2 − θ(g)q

1
2 q−

1
2 ||op

≤ ||q 1
2 θ(g)− θ(g)q

1
2 ||op||q−

1
2 ||op

≤ 160L10
r,R(esδ − 1)

Therefore Proposition 3.7 follows from (3.4)

3.5 Finding a witness vector

Define a vector y ∈ Y by setting

y =
1

|W |
⊕
ς∈W

d∑
j=1

αςjΦKς (e)j
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where W ⊆ Sym(d) is the set from the condition (G − 1). Since each Kς is normalized we have from (3.7)
that y is a unit vector. Let g ∈ Br,/ and let g′ ∈ Br,.. From Proposition 3.7 we have

〈ζ(g, g′)y, y〉 = 〈ζ/(g)ζ.(g
′)y, y〉 ≈[R−1] 〈θ(g)ζ.(g

′)y, y〉 (3.75)

We have

〈θ(g)ζ.(g
′)y, y〉 =

1

R|W |

〈
θ(g)ζ.(g

′)
⊕
ς∈W

d∑
j=1

αςjΦÊ◦
(e)j ,

⊕
ς∈W

d∑
k=1

αςkΦÊ◦
(e)k

〉

+
1−R−1

|W |

〈
θ(g)ζ.(g

′)
⊕
ς∈W

d∑
j=1

αςjΦF̂ς
(e)j ,

⊕
ς∈W

d∑
k=1

αςkΦF̂ς
(e)k

〉
(3.76)

We have

1

R|W |

∣∣∣∣∣∣
〈
θ(g)ζ.(g

′)
⊕
ς∈W

d∑
j=1

αςjΦÊ◦
(e)j ,

⊕
ς∈W

d∑
k=1

αςkΦÊ◦
(e)k

〉∣∣∣∣∣∣ ≤ 1

R
(3.77)

From (3.75), (3.76) and (3.77) we have

〈ζ(g, g′)y, y〉 ≈[2R−1]
1

|W |

〈
θ(g)ζ.(g

′)
⊕
ς∈W

d∑
j=1

αςjΦF̂ς
(e)j ,

⊕
ς∈W

d∑
k=1

αςkΦF̂ς
(e)k

〉
(3.78)

By construction we have
ζ.(g

′)ΦF̂ς
(e)j = ΦF̂ς

(g′)j (3.79)

We have

1

d!

〈
θ(g)

⊕
ς∈W

d∑
j=1

αςjΦF̂ς
(g′)j ,

⊕
ς∈W

d∑
k=1

αςkΦF̂ς
(e)k

〉

=
1

|W |
∑

ς∈(W∩τ(g)−1W )

〈
d∑
j=1

ατ(g)−1ςjΦF̂ς
(g′)j ,

d∑
k=1

αςkΦF̂ς
(e)k

〉
(3.80)

From (3.78), (3.79) and (3.80) we obtain

〈ζ(g, g′)y, y〉 ≈[2R−1]
1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ατ(g)−1ςjαςk

〈
ΦF̂ς

(g′)j ,ΦF̂ς
(e)k

〉
(3.81)

Using identification given by the condition (G− 1) we have

1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ατ(g)−1ςjαςk

〈
ΦF̂ς

(g′)j ,ΦF̂ς
(e)k

〉

=
1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ασ(g)−1ςjαςk

〈
ΦF̂ς

(g′)j ,ΦF̂ς
(e)k

〉
(3.82)
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From our choice of F̂ς in (3.51) we have

1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ασ(g)−1ςjαςk

〈
ΦF̂ς

(g′)j ,ΦF̂ς
(e)k

〉

=
1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ασ(g)−1ςjαςk

〈
ΦÊς

(g′)j ,ΦÊς
(e)k

〉
(3.83)

From (3.81), (3.82) and (3.83) we have

〈ζ(g, g′)y, y〉 ≈[2R−1]
1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ασ(g)−1ςjαςk

〈
ΦÊς

(g′)j ,ΦÊς
(e)k

〉
(3.84)

Since g′ ∈ Br from (3.39) we have

1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ασ(g)−1ςjαςkÊς(g
′)j,k ≈[R−1]

1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ασ(g)−1ςjαςkEς(g
′)j,k (3.85)

From our choice of E in (3.38) we have

1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ασ(g)−1ςjαςkEς(g
′)j,k =

1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ασ(g)−1ςjαςkDς(g
′)j,k (3.86)

From (3.84), (3.85) and (3.86) we have

〈ζ(g, g′)y, y〉 ≈[2R−1]
1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ασ(g)−1ςjαςkDς(g
′)j,k (3.87)

Since the condition (G− 1) guarantees |W | ≥ (1− 20KrR
−1)d! we have

1

|W |
∑

ς∈(W∩τ(g)−1W )

d∑
j,k=1

ασ(g)−1ςjαςk 〈ΦDς (g
′)j ,ΦDς (e)k〉

≈[40KrR
−1]

1

d!

∑
ς∈Sym(d)

d∑
j,k=1

ασ(g)−1ςjαςk 〈ΦDς (g
′)j ,ΦDς (e)k〉 (3.88)

From the construction of D we have

1

d!

∑
ς∈Sym(d)\B

d∑
j,k=1

ασ(g)−1ςjαςkDς(g
′)j,k ≈[R−1]

1

d!

∑
ς∈Sym(d)\B

d∑
j,k=1

ασ(g)−1ςjαςkCς(g
′)j,k (3.89)

51



From (3.87), (3.88) and (3.89) we have

〈ζ(g, g′)y, y〉 ≈[43KrR
−1]

1

d!

∑
ς∈Sym(d)\B

d∑
j,k=1

ασ(g)−1ςjαςkCς(g
′)j,k (3.90)

We have

1

d!

∑
ς∈Sym(d)

d∑
j,k=1

ασ(g)−1ςjαςkCς(g
′)j,k =

1

d!

∑
ς∈Sym(d)

d∑
j,k=1

ασ(g)−1ςjαςk 〈ρ.(g′)xςj , xςk〉 (3.91)

=
1

d!

∑
ς∈Sym(d)

〈
ρ.(g

′)

d∑
j=1

ασ(g)−1ςjxςj ,

d∑
k=1

αςkxςk

〉
(3.92)

where the equality in (3.91) holds by (3.22). From (3.90) and (3.92) we have

〈ζ(g, g′)y, y〉 ≈[43KrR
−1]

1

d!

∑
ς∈Sym(d)

〈
ρ.(g

′)

d∑
j=1

ασ(g)−1ςjxςj ,

d∑
k=1

αςkxςk

〉
(3.93)

By making the changes of variables j 7→ ς−1σ(g)j in the left sum and k 7→ ς−1k in the right sum of (3.93)
we obtain

(3.93) =
1

d!

∑
ς∈Sym(d)

〈
ρ.(g

′)

d∑
j=1

αjxσ(g)j ,

d∑
k=1

αkxk

〉
or equivalently

(3.93) =

〈
ρ.(g

′)

d∑
j=1

αjxσ(g)j ,

d∑
k=1

αkxk

〉
(3.94)

From (3.93) and (3.94) we obtain

〈ζ(g, g′)y, y〉 ≈[43KrR
−1]

〈
ρ.(g

′)

d∑
j=1

αjxσ(g)j ,

d∑
k=1

αkxk

〉
(3.95)

From (3.10) we have〈
ρ.(g

′)

d∑
j=1

αjxσ(g)j ,

d∑
k=1

αkxk

〉
=

〈
ρ.(g

′)κ(g)

d∑
j=1

αjxj ,

d∑
k=1

αkxk

〉
(3.96)

From (3.9) we have〈
ρ.(g

′)κ(g)

d∑
j=1

αjxj ,

d∑
k=1

αkxk

〉
≈[rδ]

〈
ρ.(g

′)ρ/(g)

d∑
j=1

αjxj ,

d∑
k=1

αkxk

〉
(3.97)

From (3.95), (3.96) and (3.97) we have
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〈ζ(g, g′)y, y〉 ≈[44KrR
−1]

〈
ρ.(g

′)ρ/(g)

d∑
j=1

αjxj ,

d∑
k=1

αkxk

〉
(3.98)

From (3.8) and (3.98) we obtain

〈ζ(g, g′)y, y〉 ≈[45KrR
−1]〈ρ(g, g′)x, x〉

Using (3.1) we see that this completes the proof of Theorem 1.2.
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