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Abstract

A sofic group G is said to be flexibly stable if every sofic approximation to G can converted to a

sequence of disjoint unions of Schreier graphs by modifying an asymptotically vanishing proportion

of edges. We establish that if PSLd(Z) is flexibly stable for some d ≥ 5 then there exists a group

which is not sofic.
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1 Introduction

1.1 Sofic groups

Soficity is a finite approximation property for countable discrete groups which has received consid-

erable attention in recent years. A group is called sofic if it admits a sofic approximation, which is

a sequence of partial actions on finite sets that asymptotically approximates the action of the group

on itself by left-translations. The precise definition appears below. Soficity can be thought of as a

common generalization of amenability and residual finiteness. We refer the reader to [6,13] for surveys.

It is a famous open problem to determine whether every countable discrete group is sofic. It is

also widely open to classify sofic approximations to well-known groups, for example by showing that

every sofic approximation is asymptotically equivalent to an approximation by actions on finite sets

(as opposed to partial actions). If a group has this latter property, it is called flexibly stable. The main

result of this paper is that if PSLd(Z) is flexibly stable for some d ≥ 5 then there is a nonsofic group.

The proof gives an explicit group G, constructed as a quotient of an HNN-extension of PSLd(Z), that

is not sofic if PSLd(Z) is flexibly stable.

We now formulate precise definitions to state the result.

Definition 1.1. Let G be a countable discrete group. A sofic approximation to G consists of a

sequence (Vn)∞n=1 of finite sets and a sequence (σn)∞n=1 of functions σn : G → Sym(Vn) such that the

following conditions hold, where we write σgn instead of σn(g).

• Asymptotic homomorphisms: For every fixed pair g, h ∈ G we have

lim
n→∞

1

|Vn|
|{v ∈ Vn : σgn(σhn(v)) = σghn (v)}| = 1.

• Asymptotic freeness: For every fixed nontrivial element g ∈ G we have

lim
n→∞

1

|Vn|
|{v ∈ Vn : σgn(v) = v}| = 0.

We say that G is sofic if there exists a sofic approximation to G.
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1.2 Flexible stability

Definition 1.2. A sofic approximation (σn : G → Sym(Vn))∞n=1 is perfect if each σn is a genuine

group homomorphism.

If S is a finite generating set for G we can endow Vn with the structure of a S-labelled directed graph

by putting an s-labelled edge from v to σs(v) for each s ∈ S and v ∈ Vn. Accordingly, we refer to the

Vn as the vertex sets of the sofic approximation. With this structure, each connected component of a

perfect sofic approximation to G is a Schreier graph on the cosets of a finite-index subgroup of G.

Definition 1.3. Let Σ = (σn : G → Sym(Vn))∞n=1 and Ξ = (ξn : G → Sym(Vn))∞n=1 be two sofic

approximations to G with the same vertex sets. We say that Σ and Ξ are at edit-distance zero if for

each fixed g ∈ G we have

lim
n→∞

1

|Vn|
|{v ∈ Vn : σg(v) = ξg(v)}| = 1.

Now suppose the vertex sets of Ξ = (ξn : G→ Sym(Wn))∞n=1 are not necessarily the same as the vertex

sets of Σ. We say that Σ and Ξ are conjugate if there exist finite sets Un and injections πn : Vn → Un,

ρn : Wn → Un such that

1 = lim
n→∞

|Vn|
|Un|

= lim
n→∞

|Wn|
|Un|

and such that the sofic approximations (πn∗σn)∞n=1 and (ρn∗ξn)∞n=1 are at edit-distance zero. Here

πn∗σn : G→ Sym(Un) is the map defined by:

(πn∗σn)g(πn(v)) = πn(σgn(v))

for v ∈ Vn and

(πn∗σn)g(u) = u

if u ∈ Un \ πn(Vn). The map ρn∗ξn : G→ Sym(Un) is defined similarly.

Definition 1.4. We say that a sofic group G is flexibly stable if every sofic approximation to G is

conjugate to a perfect sofic approximation to G.

It is clear that a flexibly stable group is residually finite. It is also clear that free groups are flexibly

stable. In [10] it is shown that surface groups are flexibly stable. A group G is said to be strictly
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stable if every sofic approximation is conjugate to a perfect sofic approximation where the conjugacies

π and ρ as in Definition 1.3 are bijections. In [2] it is shown that finitely generated abelian groups are

strictly stable. In [4] it is shown that polycyclic groups are strictly stable. In [3] it is shown that no

infinite property (T) group is strictly stable. The most elementary example for which flexible stability

is unknown seems to be the direct product of the rank two free group with Z.

The main result of this paper is the following.

Theorem 1.1. Suppose that PSLd(Z) is flexibly stable for some d ≥ 5. Then there exists a group

which is not sofic.

The nonsofic group of the theorem has the following form. Let H be a countable discrete group with

subgroups A and B and suppose there is an isomorphism φ : A → B. The HNN extension H∗φ
is defined to be (H ∗ 〈t〉)/N where H ∗ 〈t〉 is the free product of H with a copy of Z and N is the

smallest normal subgroup of H ∗ 〈t〉 containing all elements of the form tat−1φ(a)−1 for a ∈ A. We will

need a mod 2 version of the construction above. So let N2 be the smallest normal subgroup of H ∗ 〈t〉

containing all elements of the form tat−1φ(a)−1 for a ∈ A along with t2. Let H ∗φ /2 = (H ∗ 〈t〉)/N2.

In Section 2, we show that if H is flexibly stable and if H,A,B and φ satisfy certain technical con-

ditions then the group H ∗φ /2 cannot be sofic. This part of the argument is completely general in

that it does not use anything specific to PSLd(Z). The rest of the paper involves constructing two

subgroups A and B of PSLd(Z) and showing that they possess the required properties. This part uses

a ping-pong type argument that originates in the reference [1]. Other precursors to this idea can be

found in work on strong approximation in [11], on maximal subgroups of PSLd(Z) in [9] and on the

congruence subgroup property in [12]. We need that d ≥ 5 only because this condition guarantees that

all PSL2(Z) orbits in PSLd(Z/pZ) have density bounded by a constant which is strictly less than 1.

We do not know whether the result can be improved to d ∈ {3, 4}.

Because Theorem 1.1 uses such heavy machinery, it is natural to wonder whether results of its type can

be found among other groups. For example, if H is a direct product of two free groups then do there
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exist subgroups A and B satisfying the criteria of Theorem 2.1? What if H is a lattice in the isometry

group of quaternionic hyperbolic space? Another interesting case would be to establish Theorem 2.1

for a 2-Kazhdan group such as a higher-rank p-adic lattice. The relevance of this last case is that

in [8] it is shown that 2-Kazhdan groups satisfy the analog of flexible stability for homomorphisms

into finite-dimensional unitary groups with the unnormalized Frobenius metric. It is unknown whether

PSLd(Z) is 2-Kazhdan.

1.3 Acknowledgments

The first author would like to thank Tsachik Gelander for conversations on this problem many years

ago, including a proof that certain groups constructed in a manner similar to the group appearing in

the main theorem are not residually finite and therefore are good candidates for being nonsofic. We

thank Emmanuel Breuillard for helpful discussions related to the proof of Lemma 3.4. We also thank

Yves Stalder for catching some errors in a previous version.

2 General results

Theorem 2.1. Suppose H is a flexibly stable countable discrete group with subgroups A and B satis-

fying the following conditions.

(1) If K ≤ H has finite index, then every B-orbit in H/K is contained in an A-orbit. Explicitly,

this means for every h ∈ H we have BhK ⊆ AhK.

(2) If C is the subgroup generated by A and B then there is an automorphism ω ∈ Aut(C) such that

ω(A) = B and ω2 is the identity.

(3) There is a constant λ > 1 such that if K is a proper finite index subgroup of H then for every

g, h ∈ H we have

|AgK| ≥ λ|BhK| (2.1)

where the cardinality | · | is taken in H/K.
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(4) A has property (τ) with respect to the family of finite index subgroups

{K ∩A : K ≤ H, [H : K] <∞}

Then the group

G = 〈H, t|t2 = 1, tat−1 = ω(a) ∀a ∈ A〉

is not sofic.

The proof of Theorem 2.1 is in Subsection 2.3 below after some preliminaries.

2.1 Property (τ)

This section reviews Property (τ).

Definition 2.1. Let Γ = (V,E) be a finite graph. If W ⊆ V the edge boundary in Γ of W will be

denoted ∂ΓW and consists of all edges (v, w) ∈ E where v ∈ W and w /∈ W . If W is nonempty the

edge isoperimetric ratio of W will be denoted ιΓ(W ) and is defined to be |∂ΓW | |W |−1. The edge

expansion constant of Γ will be denoted e(Γ) and is defined to be the minimum value of ιΓ(E) over

all nonempty subsets W ⊆ V satisfying |W | ≤ 1
2 |V |.

Definition 2.2. Let (Γn)∞n=1 be a sequence of finite connected graphs and let c > 0. We say that

(Γn)∞n=1 forms a family of c-expanders if infn∈N e(Γn) ≥ c. We say that (Γn)∞n=1 forms a family of

expanders if it forms a family of c-expanders for some c > 0.

Definition 2.3. Let G be a group, H ≤ G and S ⊂ G. The Schreier coset graph Schreier(G/H,S)

is the multi-graph with vertex set G/H and edges {gH, sgH} for all gH ∈ G/H and s ∈ S. Multiple

edges and self-loops are allowed.

Definition 2.4. A group G has Property (τ) with respect to a family F of finite index subgroups

of G if there is a finite generating set S ⊂ G and a constant c > 0 such that for every H ∈ F we have

that Schreier(G/H,S) is a c-expander.

It is easy to see that Property (τ) for a family F is does not depend on the choice of S.

6



2.2 Modular HNN extensions

Let H be a countable discrete group with subgroups A,B ≤ H and suppose there is an isomorphism

φ : A→ B. The HNN extension H∗φ is defined to be (H ∗ 〈t〉)/N where H ∗ 〈t〉 is the free product

of H with a copy of Z and N is the smallest normal subgroup of H ∗ 〈t〉 containing all elements of the

form tat−1φ(a)−1 for a ∈ A. We will need a mod 2 version of the construction above. So let N2 be the

smallest normal subgroup of H ∗ 〈t〉 containing all elements of the form tat−1φ(a)−1 for a ∈ A along

with t2. Let H ∗φ /2 = (H ∗ 〈t〉)/N2.

Lemma 2.1. Let C be the subgroup of H generated by A and B. Assume there exists an automorphism

ω of C such that ω2 is the identity and such that ω(a) = φ(a) for all a ∈ A and ω(b) = φ−1(b) for all

b ∈ B. Then the canonical homomorphism from H to H ∗φ /2 is injective.

Proof of Lemma 2.1. Let D be the semidirect product C oZ/2Z where Z/2Z acts on C via the auto-

morphism τ . We claim that H ∗φ /2 can be constructed as the free product of H with D amalgamated

over the common subgroup C. Indeed, H ∗C D is naturally generated by H and the additional gen-

erator t = t−1 of Z/2Z. If a ∈ A then tat is equal to ω(a) = φ(a) and similarly if b ∈ B then tbt is

equal to ω(b) = φ−1(b). Therefore tatφ(a)−1 and tbtφ−1(b)−1 are trivial in H ∗C D for all a ∈ A and

all b ∈ B. By the universal property of free products with amalgamation we see that these relations

suffice to describe H ∗C D and so we have established the claim. Since the factor groups always inject

into an amalgamated free product this completes the proof of Lemma 2.1.

2.3 Proof of Theorem 2.1

We now prove Theorem 2.1. By Lemma 2.1, the canonical homomorphism from H into G is injective.

Thus we identify H as a subgroup of G from now on. Assume toward a contradiction that there exists

a sofic approximation Σ = (σn : G → Sym(Vn))∞n=1 to G. Since H is flexibly stable, we may assume

without loss of generality that the restriction of Σ to H is perfect.

Since A has property (τ) with respect to the family

{K ∩A : K ≤ H, [H : K] <∞}
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there exists a finite generating set S ⊂ A and a constant c > 0 such that for every finite index subgroup

K of H all connected components of the Schreier coset graph Schreier(H/K,S) are c-expanders. Let

Γn be the graph on Vn corresponding to {σsn : s ∈ S}. Explicitly, this means that the edges of Γn are

the pairs {v, σsn(v)} for v ∈ Vn and s ∈ S. By the above remarks, every connected component of Γn is

a c-expander.

Let Λn be the graph on Vn corresponding to {σω(s)
n : s ∈ S}. The hypothesis that every B-orbit

is contained in an A-orbit implies that every Λn-connected component is contained in a Γn-connected

component.

For the remainder of Subsection 2.3 we fix n ∈ N such that σn is a sufficiently good sofic approx-

imation for certain conditions stated later to hold. We suppress the subscript n in notations.

Let Ω1, . . . ,Ωm be an enumeration of the connected components of Γ such that |Ωj | ≥ |Ωj+1| for

all j ∈ {1, . . . ,m− 1}. Let D be the set of all w ∈ V such that w ∈ Ωj and σt(w) ∈ Ωk where j ≤ k. If

σ is a sufficiently good sofic approximation then for at least 9
10 |V | vertices w ∈ V we must have that

(σt)2(w) = w. If the last condition is satisfied then at least one of w and σt(w) is an element of D.

Therefore |D| ≥ 9
20 |V |.

Let I ⊆ {1, . . . ,m} be the set of all indexes j such that |D ∩ Ωj | ≥ 1
10 |Ωj |. We must have

∑
j∈I
|Ωj | ≥

|V |
10
. (2.2)

Fix j ∈ I and consider the set D ∩ Ωj . Let Θ1, . . . ,Θr be the partition of D ∩ Ωj into the intersec-

tions of D ∩ Ωj with σt-pre-images of connected components of Λ. Let q ∈ {1, . . . , r} and suppose

σt(Θq) ⊆ Ωk. Since σt(Θq) is contained in a single connected component of Λ we see from (2.1) that

λ|σt(Θq)| ≤ |Ωk|. Since Θq ⊆ D we have j ≤ k so that |Ωj | ≥ |Ωk| and therefore λ|Θq| ≤ |Ωj | which

implies (λ− 1)|Θq| ≤ |Ωj \Θq|.
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Since Θq ⊂ Ωj we have ∂ΓΘq = ∂Γ(Ωj \Θq). Since every connected component of Γ is a c-expander,

|∂ΓΘq| ≥ cmin (|Θq|, |Ωj \Θq|) ≥ cmin(1, λ− 1)|Θq|.

Let c′ = cmin(1, λ− 1). So

|∂ΓΘ1 ∪ · · · ∪ ∂ΓΘr| ≥
c′

2
(|Θ1|+ · · ·+ |Θr|) =

c′

2
|D ∩ Ωj | ≥

c′

20
|Ωj | (2.3)

Here the first inequality holds because the pairwise disjointness of the Θq guarantees that for any edge

e there are at most two indices q such that e ∈ ∂ΓΘq.

Let q ∈ {1, . . . , r}, let v ∈ Θq and suppose (v, w) is an edge in ∂Θq. If w /∈ D then σt(v) and

σt(w) are in different connected components of Γ, and so in particular they are in different connected

components of Λ. On the other hand, if w ∈ D then by hypothesis σt(v) and σt(w) are in different

connected components of Λ. Hence in either case (σt(v), σt(w)) is not an edge in Λ.

From (2.3) we see that for at least c′

20 |Ωj | edges (v, w) in Γ � Ωj the image (σt(v), σt(w)) is not

an edge in Λ. Summing (2.3) over all j ∈ I we see from (2.2) that there is a set K of edges in Γ with

|K| ≥ c′

200 |V | such that for each (v, w) ∈ K the image (σt(v), σt(w)) is not an edge in Λ. However, if σ

is a sufficiently good sofic approximation then the number of such edges should be an arbitrarily small

fraction of |V |. Thus we have obtained a contradiction and the proof of Theorem 2.1 is complete.

3 Subgroups of special linear groups

In Section 3 we will prove that PSLd(Z) satisfies the conditions of Theorem 2.1 for d ≥ 5, thereby

completing the proof of Theorem 1.1

3.1 Ping-pong arguments

The next Lemma constructs the subgroups A and B that will be used in our application of Theorem

2.1.
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Lemma 3.1. Let d ≥ 3. Identify PSL2(Z) as a subgroup of PSLd(Z) by the homomorphism

M ∈ PSL2(Z) 7→

 M 0

0 Id−2

 ∈ PSLd(Z).

Then there exist subgroups A and B of PSLd(Z) such that the following hold.

(1) A and B are free groups of rank 4,

(2) A is profinitely dense in PSLd(Z),

(3) B is contained in PSL2(Z) and

(4) the subgroup 〈A,B〉 is free of rank 8.

Proof of Lemma 3.1. By the main theorem of [1] there exists a profinitely dense free subgroup A of

PSLd(Z) with rank 4. The construction of this subgroup gives additional information about A that we

will use. To describe this, we recall the following notions from [1].

An element g ∈ PSLd(Z) is hyperbolic if it is semisimple, admits a unique (counting multiplici-

ties) eigenvalue of maximal absolute value and a unique eigenvalue of minimum absolute value. Let

{v1, v2, . . . , vn} be a basis of generalized eigenvectors such that v1 corresponds to the unique maximal

eigenvalue of g and vn corresponds to the unique minimal eigenvalue. Let α(g) = [v1] ∈ RPd−1 and

ρ(g) = [span(v2, . . . , vn)] ⊂ RPd−1. These are the attracting fixed point and repelling hyperplane of

g. Note that α(g−1) = [vn] and ρ(g−1) = [span(v1, . . . , vn−1)]. Although g need not be diagonalizable,

ρ(g) does not depend on the choice of basis {v1, . . . , vn}.

Definition 3.1. Let g0, g1, . . . , gs ∈ PSLd(Z) be hyperbolic elements. Then {g1, . . . , gs} is a g0-rooted

free system if there exist open sets Oi ⊂ RPd−1 for i ∈ {0, 1, . . . , s} such that the following hold.

(1) The sets {Oi}si=0 are pairwise disjoint,

(2) for all j ∈ {0, . . . , s} we have

α(gj) ∪ α(g−1
j ) ⊆ Oi ⊆ Oi ⊆ RPd−1 \ (ρ(g0) ∪ ρ(g−1

0 ))
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(3) α(g0) ∪ α(g−1
0 ) ⊂ O0 ⊆ O0 ⊂ RPd−1 \

(⋃s
j=1 ρ(gi) ∪ ρ(g−1

j )
)

,

(4) and
⋃
n∈Z\{0} g

n
j (Oj) ⊂ Ok for all distinct pairs j, k ∈ {0, . . . , s}.

The standard ping-pong lemma from [14] shows that if {g1, . . . , gs} form a g0-rooted free system then

{g0, . . . , gs} freely generate a free group of rank s + 1. The construction in [1] shows that there exist

hyperbolic elements g0, g1, g2, g3, g4 ∈ PSLd(Z) such that {g1, g2, g3, g4} is a g0-rooted free system and

the subgroup 〈g1, g2, g3, g4〉 is profinitely dense. (The definition of g0-rooted free system that we use

differs slightly from the one used in [1] . However, it is easy to verify that their proof gives a g0-rooted

free system in our sense.) We make the following claim.

Claim 3.1. After conjugating the elements above if necessary, we may assume that ρ(gj)∪ρ(g−1
j ) does

not contain [span(e1, e2)] and α(gj)∪α(g−1
j ) is not contained in [span(e3, e4, e5)] for any j ∈ {0, . . . , 4}.

Proof of Claim 3.1. Let Vj be the set of all h ∈ PSLd(R) such that h(ρ(gj)∪ ρ(g−1
j )) does not contain

[span(e1, e2)]. Let Wj be the set of all h ∈ PSLd(R) such that α(gj) ∪ α(g−1
j ) is not contained in

[span(e3, e4, e5)]. Then both Vj and Wj are Zariski-open and nonempty. Since PSLd(R) is Zariski-

connected and PSLd(Z) is Zariski-dense, the set

PSLd(Z) ∩

 4⋂
j=0

(Vj ∩Wj)

 (3.1)

is non-empty. Let h be an element of the set in (3.1). Replacing each gj with hgjh
−1 proves Claim

3.1.

It is well-known that given any finite subset F of RP1, there exists a hyperbolic element f ∈ PSL2(Z)

which has no fixed point in F . Using Claim 1, this implies the existence of hyperbolic elements

h1, h2, h3, h4 ∈ PSL2(Z) such that the each of following sets is empty. 4⋃
j=1

{α(hj), α(h−1
j )}

 ∩( 4⋃
k=0

(ρ(gk) ∪ ρ(g−1
k ))

)
 4⋃
j=1

{ρ(hj), ρ(h−1
j )}

 ∩( 4⋃
k=0

(α(gk) ∪ ρ(a−1
k ))

)
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{α(hj), α(h−1
j )} ∩ {α(hk), α(h−1

k )} (3.2)

Here, the set in (3.2) should be empty for all distinct pairs j, k ∈ {1, 2, 3, 4}.

Now, let {Oi}4i=0 be open sets witnessing the statement that {g1, . . . , g4} is a g0-rooted free sys-

tem. After replacing g0 with gn0 for some n ∈ N if necessary, we may replace O0 with a smaller open

neighborhood and thereby obtain

O0 ∩

 4⋃
j=1

(ρ(hj) ∪ ρ(h−1
j ))

 = ∅. (3.3)

Let N0 ∈ N be large enough so that

⋃
|n|≥N0

gn0

 4⋃
j=1

(α(hj) ∪ α(h−1
j ))

 ⊂ O0.

Choose open sets Uj for j ∈ {1, . . . , 4} such that the following hold.

• We have

{α(hj), α(h−1
j )} ⊆ Uj ⊆ Ui ⊆ RPd−1 \ (ρ(g0) ∪ ρ(g−1

0 )

• we have O0 ∩ Uj = Uj ∩ Uk = ∅ for all distinct pairs j, k ∈ {1, . . . , 4}

• and we have ⋃
|n|≥N0

4⋃
j=1

gn0Uj ⊆ O0

Let n0 ≥ N0 and let U0 ⊂ O0 be an open neighborhood of {α(g0), α(g−1
0 )} such that we have

∅ = U0 ∩

 4⋃
j=1

g−n0
0

(
Oj ∪ ρ(gj) ∪ ρ(g−1

j )
) (3.4)

and gn0
0 U0 ⊆ O0. Choose N1 ∈ N large enough so that
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⋃
|n|≥N1

4⋃
j=1

g−n0 (Oj ∪ Uj) ⊆ U0. (3.5)

Let n1 ≥ n0 +N1. Finally, choose N2 ∈ N large enough so that

⋃
|m|≥N2

⋃
6̀=j

4⋃
k=1

hmj (g−n0
0 Ok ∪ U0 ∪ U`) ⊆ Uj (3.6)

for all j ∈ {1, . . . , 4}. After replacing hj with hN2
j for all j ∈ {1, . . . , 4}, we may assume N2 = 1.

Set h0 = gn1
0 , h4+j = g−n0

0 gjg
n0
0 and U4+j = g−n0

0 Oj for j ∈ {1, . . . , 4}. We claim that the sets

{Uj}8j=0 witness the fact that {hj}8i=1 is an h0-rooted free system. Proposition 3.1 will follow by set-

ting A = 〈h5, h6, h7, h8〉 and B = 〈h1, h2, h3, h4〉.

To verify Condition (1) in Definition 3.1, let 0 ≤ j < k ≤ 8. We must show Uj ∩ Uk = ∅. We

consider five cases.

• Suppose j = 0 and k ≤ 4. Since U0 ⊂ O0 and O0 ∩ Uk = ∅, U0 ∩ Uk = ∅.

• Suppose j = 0 and k > 4. Then U0 ∩ Uk = U0 ∩ g−n0
0 Ok−4 = ∅ by (3.4).

• Suppose 1 ≤ j < k ≤ 4. Then Uj and Uk are disjoint by our choice of Uj and Uk.

• Suppose 1 ≤ j ≤ 4 < k ≤ 8. Then we have

Uj ∩ Uk = g−n0
0 (gn0

0 Uj ∩Ok−4) ⊂ g−n0
0 (O0 ∩Ok−4) = ∅

• Finally, suppose 4 < i < j ≤ 8. We have Uj = g−n0
0 Oj−4 and Uk = g−n0

0 Ok−4 and Oj−4∩Ok−4 = ∅

by assumption.

Thus we have verified Condition (1) in Definition 3.1

Now, let j ∈ {0, . . . , 8}. To verify Condition (2) in Definition 3.1, we must show that

α(hj) ∪ α(h−1
j ) ⊆ Uj ⊆ Uj ⊆ RPd−1 \ (ρ(g0) ∪ ρ(g−1

0 )) (3.7)
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If j = 0 this follows from U0 ⊂ O0 and the corresponding fact about O0. For j ∈ {1, . . . , 4}, this follows

from the choice of Uj . For j ∈ {5, . . . , 8} we have

α(hj) ∪ α(h−1
j ) = g−n0

0 [α(gj−4) ∪ α(g−1
j−4)]

Since Uj = g−n0
0 Oj−4, this implies the first two inclusions in (3.7). The last inclusion in (3.7) is

equivalent to

g−n0
0 Oj−4 ⊆ RPd−1 \ (ρ(g0) ∪ ρ(g−1

0 ))

which holds since Oj−4 ⊆ RPd−1\(ρ(g0)∪ρ(g−1
0 )). Thus we have verified Condition (2) in Definition 3.1.

Condition (3) in Definition 3.1 follows immediately from the following observations.

• We have U0 ⊂ O0.

• The set O0 is disjoint from
⋃4
j=1 ρ(hj) ∪ ρ(h−1

j ) by (3.3).

• The set U0 is disjoint from
⋃4
j=1 g

−n0
0 [Oj ∪ ρ(gj) ∪ ρ(g−1

j )] by (3.4).

To verify Condition (4) in Definition 3.1 let j, k ∈ {0, . . . , 8} be distinct. We must check that⋃
m∈Z\{0}

hmi (Uk) ⊂ Uj

If j = 0 then this follows from

8⋃
k=1

⋃
m∈Z\{0}

hm0 (Uk) =

8⋃
k=1

⋃
m∈Z\{0}

gn1m
0 (Uk)

=

4⋃
k=1

⋃
m∈Z\{0}

gn1m
0 (Uk ∪ g−n0

0 Ok)

and (3.5). If j ∈ {1, . . . , 4}, then Condition (4) follows from (3.6) since N2 = 1. Finally, let j ∈

{5, . . . , 8}. If also k ∈ {5, . . . , 8}, then since the Oj ’s witness that {g1, . . . , g4} is a g0-rooted free

system we have ⋃
m∈Z\{0}

hmj (Uk) =
⋃

m∈Z\{0}

g−n0
0 gmj g

n0
0 g−n0

0 (Ok)
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=
⋃

m∈Z\{0}

g−n0
0 gmj (Ok)

⊆ g−n0
0 Oj = Uj

If k ∈ {0, . . . , 4} then by our choice of n0 and U0 we have⋃
m∈Z\{0}

hmj (Uk) =
⋃

m∈Z\{0}

g−n0
0 gmj g

n0
0 (Uk)

⊆
⋃

m∈Z\{0}

g−n0
0 gmj O0

⊆ g−n0
0 Oj = Uj

This completes the verification of Condition (4) and thereby completes the proof of Lemma

3.2 Expansion in quotients of PSLd(Z)

Lemma 3.2. Let d ≥ 3. Let A be a profinitely dense subgroup of PSLd(Z). Then A has property (τ)

with respect to the family

{K ∩A : K ≤ PSLd(Z), [PSLd(Z) : K] <∞}

Proof. Because A is profinitely dense, it is Zariski dense. Let S ⊂ A be a finite generating set. Theorem

1 in [5] asserts that the Cayley graphs of PSLd(Z/qZ) with respect to S form a family of c-expanders for

some c > 0. Let K ≤ PSLd(Z) have finite index. By the congruence subgroup property as established

in [12], there exists a q ∈ N such that K contains the kernel Γq of the natural surjection

PSLd(Z) � PSLd(Z/qZ).

It follows that the quotient map PSLd(Z/qZ) � PSLd(Z)/K induces a covering space

Schreier(PSLd(Z/qZ), S) � Schreier(PSLd(Z)/K, S)

Therefore the preimage of a subset D of PSLd(Z/qZ)/K has the same edge isoperimetric ratio as D.

Since Schreier(PSLd(Z/qZ), S) is a c-expander, so is Schreier(PSLd(Z)/K, S).
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3.3 Bounds on the density of PSL2(Z)-orbits in finite quotients of PSLd(Z)

The main result of this section is Lemma 3.4, which provides an upper bound on densities of PSL2(Z)-

orbits in finite quotients of PSLd(Z). First we prove a lemma that allows us to reduce the general case

to the PSLd(Z/pZ) case.

Lemma 3.3. Let q ∈ N and let K ≤ PSLd(Z/qZ) be a proper subgroup. Then there is a prime factor

p of q such that the image of K under reduction mod p is a proper subgroup of PSLd(Z/pZ).

Proof. It suffices to consider the special case in which K is a maximal proper subgroup. Suppose

toward a contradiction that the proposition fails for K. We may assume without loss of generality that

q has the minimal number of distinct prime factors among all r ∈ N such that the proposition fails for

some subgroup of PSLd(Z/rZ).

Recall that if G is a finite group then the Frattini subgroup Φ(G) is the intersection of all maxi-

mal proper subgroups of G. If G and H are finite groups we have Φ(G × H) = Φ(G) × Φ(H). Let

q = pn1
1 · · · p

nk
k be the prime factorization of q. By the Chinese remainder theorem, we have that

PSLd(Z/qZ) is isomorphic to PSLd(Z/pn1
1 Z) × · · · × PSLd(Z/pnk

k Z). Since the Frattini subgroup is

normal and PSLd(Z/pZ) is simple, we have that PSLd(Z/p
nj

j Z)/Φ(PSLd(Z/p
nj

j Z)) is isomorphic to

PSLd(Z/pjZ). Therefore PSLd(Z/qZ)/Φ(PSLd(Z/qZ)) is isomorphic to

PSLd(Z/p1Z)× · · · × PSLd(Z/pkZ). (3.8)

Since Φ(PSLd(Z/qZ)) ≤ K we may assume without loss of generality that nj = 1 for all j ∈ {1, . . . , k}.

Let Gj be the product in (3.8) where the jth factor is replaced by the trivial group. Write πj for

the projection from PSL(Z/qZ) onto Gj . If πj(K) is a proper subgroup of Gj then by the minimality

assumption on the number of prime factors of q we see that the projection of πj(K) to some factor

PSLd(Z/pmZ) for m ∈ {1, . . . , k} \ {j} is not surjective. Thus we may assume that πj(K) = Gj for all

j ∈ {1, . . . , k}.
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For each j ∈ {1, . . . , k} the intersection K ∩ Gj is a normal subgroup of K. Since πj is surjective

from K to Gj we see that πj(K ∩ Gj) is a normal subgroup of Gj . Since πj(K ∩ Gj) = K ∩ Gj we

obtain that K ∩ Gj is a normal subgroup of Gj . Since each group PSLd(Z/pjZ) is simple we obtain

that K ∩Gj is equal to a product ∏
m∈Sj

PSL(Z/pmZ)

for a set Sj ⊆ {1, . . . , k} \ {j}. (We regard this product as a subset of PSLd(Z/qZ) by replacing the

missing factors with the trivial group.) If Sj = {1, . . . , k} \ {j} then since K is a proper subgroup of

PSLd(Z/qZ) we must have that the projection of K onto PSLd(Z/pjZ) is not surjective and thus we

are done in this case. Therefore we may assume that Sj is a proper subset of {1, . . . , k} \ {j}.

Let S =
⋃k
j=1 Sj . Then K contains the product∏

m∈S
PSLd(Z/pmZ) (3.9)

and K ∩ PSLd(Z/pmZ) is trivial when m /∈ S. After passing to the quotient of PSLd(Z/qZ) by the

subgroup in (3.9) we reduce to the case when K∩Gj is trivial for all j ∈ {1, . . . , k}. However, K∩Gj is

the kernel of the projection from PSLd(Z/qZ) onto PSLd(Z/pjZ). Thus we obtain that K is isomorphic

to PSLd(Z/pjZ) for all j. This contradiction completes the proof of Lemma 3.3.

Lemma 3.4. Let d ≥ 5 and let Σ = (σn : PSLd(Z) → Sym(Wn))∞n=1 be a perfect sofic approximation

to PSLd(Z). Let B be a subgroup of the copy of PSL2(Z) in the upper left corner of PSLd(Z). Then

for all sufficiently large n the maximal size of a σn(B)-orbit in Wn is at most 1
16 the size of the

σn(PSLd(Z))-orbit which contains it.

Proof. It suffices to consider the case when the action of PSLd(Z) on Wn is transitive. Thus we may

assume that Wn = PSLd(Z)/Hn for finite-index subgroups (Hn)∞n=1 of PSLd(Z) and σn is the left-

translation action. Using the congruence subgroup property we see that it suffices to show that if

q ≥ 2 then for any proper subgroup K of PSLd(Z/qZ) the maximal size of a PSL2(Z/qZ)-orbit in

PSLd(Z/qZ)/K is at most 1
16 |PSLd(Z/qZ)/K|.
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Using Lemma 3.3 we see that there exists a prime factor p of q such that if we write π for the

projection of PSLd(Z/qZ) onto PSLd(Z/pZ) then π(K) is a proper subgroup of PSLd(Z/pZ). The

map π sends PSL2(Z)-orbits in PSLd(Z/qZ) to PSL2(Z)-orbits in PSLd(Z/pZ). Moreover is m-to-1

for some fixed m. Therefore it suffices to show that if L is a proper subgroup of PSLd(Z/pZ) for some

prime p then the maximal size of a PSL2(Z)-orbit in PSLd(Z/pZ)/L is at most 1
16 |PSLd(Z/pZ)|.

The PSL2(Z)-orbits in PSLd(Z/pZ)/L are the double cosets PSL2(Z/pZ)xL for x ∈ PSLd(Z/pZ). In [7]

it is shown that the maximal size of a proper subgroup of PSLd(Z/pZ) for a prime p is (pd−1)(p−1)−1.

For any d ∈ N we have

|PSLd(Z/pZ)| = 1

gcd(d, p− 1)(p− 1)

d−1∏
j=0

(pd − pj)

so that in particular

|PSL2(Z/pZ)| = (p2 − p)(p2 − 1)

gcd(d, p− 1)(p− 1)
.

Therefore if d ≥ 5 we have

|PSLd(Z/pZ)|
|PSL2(Z/pZ)| |L|

=
1

|L|
(pd − p)(pd − 1)

(p2 − p)(p2 − 1)

d−1∏
j=2

(pd − pj) (3.10)

≥ 1

|L|

d−1∏
j=2

(pd − pj) (3.11)

≥ p− 1

pd − 1

d−1∏
j=2

(pd − pj)

=
(pd − p2)(pd − p3)

pd − 1
(p− 1)

d−1∏
j=4

(pd − pj) (3.12)

≥ (p− 1)

d−1∏
j=4

(pd − pj) (3.13)

≥ 16

Here, (3.11) follows from (3.10) and (3.13) follows from (3.12) since in each case the factor dropped is
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at least one. It follows that any double coset PSL2(Z/pZ)xL has size at most 1
16 |PSLd(Z/pZ)| and so

the proof of Lemma 3.4 is complete.

Theorem 1.1 is obtained by applying Theorem 2.1 to the subgroups A and B constructed in Proposition

3.1. Because A is profinitely dense, it surjects onto every finite quotient. In particular, every B-orbit

in a finite quotient of PSLd(Z) is contained in an A-orbit. To define the automorphism ω : C → C,

let A be freely generated by {a1, a2, a3, a4} and B be freely generated by {b1, b2, b3, b4}. Then C is

freely generated by {aj , bj}4j=1. So there is a unique order 2 automorphism defined by ω(aj) = bj

and ω(bj) = aj for j ∈ {1, . . . , 4}. By Lemmas 3.2 and 3.4 the subgroups A and B satisfy the other

conditions of Theorem 2.1.
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