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Abstract

Amos Nevo established the pointwise ergodic theorem in Lp for measure-preserving

actions of PSL2(R) on probability spaces with respect to ball averages and every p > 1.

This paper shows by explicit example that Nevo’s Theorem cannot be extended to

p = 1.

Keywords:pointwise ergodic theorem, maximal inequality

MSC:37A35

Contents

1 Introduction 1

1.1 The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A rough overview of the construction . . . . . . . . . . . . . . . . . . . . . . 3

2 Quantitative counterexample 4

3 Reduction to geometry 5

4 Geometric background 6

∗supported in part by NSF grant DMS-1500389

1



5 Deformations of surfaces 7

5.1 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Averaging around cusps 10

7 The inductive step 11

8 The end of the proof 15

9 Two open problems 16

1 Introduction

Birkhoff’s ergodic theorem is that if T : (X,µ)→ (X,µ) is a measure-preserving transforma-

tion of a standard probability space and f ∈ L1(X,µ) then for a.e. x ∈ X, the time-averages

(n + 1)−1
∑n

i=0 f(T ix) converge to the space average E[f |I(T )](x) (this is the conditional

expectation of f on the sigma-algebra of T -invariant measurable subsets). In particular, if

T is ergodic then (n+ 1)−1
∑n

i=0 f(T ix)→
∫
fdµ for a.e. x.

To generalize this result, one can replace the single transformation T with a group G

of transformations and the intervals {0, . . . , n} with a sequence of subsets of G or more

generally, with a sequence of probability measures on G. To be precise, a sequence {ηn}∞n=1

of probability measures on an abstract group G is pointwise ergodic in Lp if for every

measure-preserving action Gy(X,µ) on a standard probability space and for a.e. x ∈ X,

the time-averages ∫
f(gx) dηn(g)

converge to the space average E[f |I(G)](x) as n → ∞ where E[f |I(G)] is the conditional

expectation of f on the sigma-algebra of G-invariant measurable subsets. If the measure ηn

is uniformly distributed over a ball then the time-averages are called ball-averages.

Pointwise ergodic theorems for amenable groups with respect to averaging over Følner

sets were established in a variety of special cases culminating in Lindenstrauss’ general

theorem [?]. This theorem also holds for L1-functions. Nevo and co-authors established the

first pointwise ergodic theorems for free groups [?, ?] and simple Lie groups [?, ?, ?, ?] with
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respect to ball and sphere averages. See also [?, ?] for surveys. These results hold in Lp for

every p > 1. It was open problem whether ball-averages could be pointwise ergodic in L1 for

any non-amenable group.

Terrence Tao showed by explicit example that the pointwise ergodic theorem fails in L1 for

actions of free groups with respect to ball averages [?]. This note shows proves the analogous

theorem for PSL2(R) in place of free groups. Our approach is based on the geometry of

hyperbolic surfaces. In the abstract, there is a lot in common with Tao’s approach but the

details of the construction are significantly different. It seems likely that our methods will

generalize beyond PSL2(R).

1.1 The main theorem

To make the result precise, we need to introduce some notation. The hyperbolic plane H2

is a complete, simply-connected Riemannian surface with constant curvature −1. It is unique

up to isometry. Its orientation-preserving isometry group is isomorphic to G := PSL2(R).

Moreover, G acts on the unit-tangent bundle T 1(H2) simply transitively. Fix a base-point

p0 ∈ H2. Let Fr ⊂ G be the set of all g such that d(g, gp0) ≤ r.

Given a probability-measure-preserving (pmp) action G y (X,µ), r > 0, a function

f ∈ L1(X,µ) and x ∈ X the ergodic average is defined by

(Arf)(x) = λ(Fr)
−1
∫
Fr

f(g · x) dλ(g)

where λ is the Haar measure on G. The terminal maximal average is defined by

(Mf)(x) = supr≥1(Ar|f |)(x). Nevo proved [?]:

Theorem 1.1 (Nevo). Let G y (X,µ) be an ergodic pmp action, p > 1 and f ∈ Lp(X,µ).

Then

lim
r→∞

(Arf)(x) =

∫
X

f(x) dµ(x)

for µ-almost every x ∈ X.

The main theorem of this paper is that Nevo’s Theorem does not extend to p = 1:

Theorem 1.2. There exists an ergodic pmp action Gy (X,µ) and a nonnegative function

f ∈ L1(X,µ) such that (Mf)(x) is infinite for almost every x ∈ X. In particular, for almost

every x ∈ X the averages (Arf)(x) fail to converge as r →∞.
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1.2 A rough overview of the construction

The heart of the proof is geometric. For every ε > 0, a hyperbolic surface S = H2/Γ (for

some lattice Γ < G) and a non-negative f ∈ L∞(S) are constructed to satisfy: (1) the L1-

norm of f is bounded by ε and (2) there is a subset V ⊂ S with area(V )/area(S) bounded

from below such that for all x ∈ V , there is some radius r so that r-ball average of f centered

at x is ≥ 1. This latter property means: if x̃ ∈ H2 is a point in the inverse image of x under

the universal cover π : H2 → S and f̃ = f ◦ π is the lift of π then the average of f̃ over the

ball of radius r centered at x is at least 1. A small additional argument (which also appears

in Tao’s paper) finishes the proof.

These pairs (S, f) are constructed inductively. Given a pair (S, f) for some ε > 0 (with

some additional structure), a new pair (Ŝ, f̂) is constructed satisfying roughly the same

maximal function bounds as (S, f) so that ‖f̂‖1 ≤ ‖f‖1(1 − ‖f‖1/2). By iterating this

construction, the L1-norm of the function can be made arbitrarily close to zero.

The new pair (Ŝ, f̂) is constructed from (S, f) as follows. We take two isometric copies

of (S, f), deform them by stretching cusps into geodesics and then glue them to a pair of

pants with a cusp to obtain Ŝ. The new surface has two large subsurfaces S(1), S(2) (each of

which is isometric to a large subsurface of S) connected by a long narrow “neck” which is

actually a pair of pants with a cusp. There are also two copies of f , denoted f (1) and f (2)

supported on S(1), S(2) respectively. By choosing the neck to be very narrow, a continuity

argument shows that the ball averages of each f (i) in Ŝ are close to the ball averages of f

in S. Theorem 1.1 shows that if t > 0 is chosen sufficiently large then for most p in S(2),

the radius (r+ t)-ball averages of f (1) around p are close to its space average
∫
f (1) dνŜ (for

every r > 0).

Finally, we replace f (2) by “flowing” it for time t into the cusps of S(2) and scaling it by a

factor of et[1−
∫
f (1) dνŜ]. Let f ′ be the new function. The radius-(r+ t) ball averages of f ′

are, up to small errors, equal to the radius-r ball averages of f (2) multiplied by [1−
∫
f (1) dνŜ].

So let f̂ = f (1) + f ′. Then we have controlled the maximal ball averages of f̂ on both S(1)

and S(2) and the norm of f̂ is bounded by ‖f‖1(1− ‖f‖1/2), finishing the argument.
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2 Quantitative counterexample

This section reduces Theorem 1.1 to the next lemma (which is similar to [?, Theorem 2.1]).

Lemma 2.1. There exists a constant b > 0 with the following property. For every ε > 0

there exists a weakly mixing pmp action Gy (Y, η) and a nonnegative function f ∈ L∞(Y, η)

such that ‖f‖1 ≤ ε and η({y ∈ Y : (Mf)(y) ≥ 1}) ≥ b.

Proof of Theorem 1.2 from Lemma 2.1. By Lemma 2.1 for each k ∈ N there exist a weakly

mixing pmp action G y (Yk, ηk) and a nonnegative function fk ∈ L∞(Yk, ηk) such that

‖fk‖1 ≤ 1
2k

and if Ek = {y ∈ Yk : (Mfk)(y) ≥ 1} then ηk(Ek) ≥ b. Let (X,µ) be the product

measure space (X,µ) :=
∏∞

k=1(Yk, ηk). Because each action Gy(Yk, ηk) is weakly mixing,

the diagonal action Gy(X,µ) is ergodic. Let pk : X → Yk be the projection onto the kth

coordinate and define f̂k = fk ◦ pk ∈ L∞(X,µ). Let f̂ =
∑∞

k=1 f̂k. Then ‖f̂k‖1 = ‖fk‖1 ≤ 1
2k

so that ‖f̂‖1 ≤
∑∞

n=1
1
2k

= 1.

Let Êk = p−1k (Ek) ⊆ X and, for a point x ∈ X, let N(x) =
{
k ∈ N : x ∈ Êk

}
. Since

the events (Êk)
∞
k=1 are independent and

∑∞
k=1 µ(Êk) =

∑∞
k=1 ηk(Ek) = ∞, the converse

Borel-Cantelli Lemma implies that N(x) is infinite for almost every x ∈ X.

Since each f̂k is non-negative, sub-additivity of the maximal operator implies

(Mf̂)(x) ≥
∑
k≥1

(Mf̂k)(x).

Therefore (Mf̂)(x) ≥ N(x). By the previous paragraph, this means that (Mf̂)(x) = ∞ for

a.e. x.

3 Reduction to geometry

Throughout this paper, a hyperbolic surface is a complete Riemann surface (possibly

with non-empty boundary) with constant curvature −1. This section reduces the ergodic

theory problem of Lemma 2.1 to a geometric problem. Towards that goal, suppose that

S is a connected hyperbolic surface such that there exists a locally isometric covering map
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π : X → S where X ⊂ H2 is a simply-connected subspace. For f ∈ L∞(S) let f̃ be its lift

to H2 defined by

f̃(x) =

 f(π(x)) x ∈ X
0 otherwise

Define the geometric average βr(f) ∈ L∞(S) by

(βrf)(x) := area(Br(x̃))−1
∫
Br(x̃)

f̃(y) dy

where x̃ ∈ X is any lift of x (so π(x̃) = x). This does not depend on the choice of lift because

π is invariant under the deck-transformation group.

In the special case in which S has finite area, let νS denote the hyperbolic area form on

S normalized so that νS(S) = 1. Also let ‖f‖1 denote the L1(S, νS) norm.

Lemma 3.1. There exists a constant b > 0 such that for every ε > 0 there exists a complete

finite-area hyperbolic surface S with empty boundary and a function f ∈ L∞(S, νS) satisfying

1. f ≥ 0,

2. ‖f‖1 ≤ ε,

3. νS({x ∈ S : supr≥1(βrf)(x) ≥ 1}) ≥ b.

Proof of Lemma 2.1 from Lemma 3.1. The constant b is the same in both Lemmas 2.1 and

3.1. Let ε > 0 be given and let S and f be as in Lemma 3.1. Let T1S be the unit tangent

bundle of S and let ηS be the probability measure on T1S given by integrating normalized

Lebesgue measure on the unit circle over νS. The canonical action of PSL2(R) on T1H2

descends to an action onto T1S. This action preserves ηS. We take (Y, η) = (T1S, ηS).

If we write q : T1S → S for the natural projection then f ◦ q is an element of L∞(T1S, ηS)

and ‖f ◦ q‖1 = ‖f‖1. Let x ∈ S and let ξ ∈ q−1(x). Then

(Ar(f ◦ q))(ξ) = (βrf)(x).

So the action Gy(Y, η) and function f ◦ q satisfy the conclusions of Lemma 2.1.
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4 Geometric background

This section reviews some standard facts and introduces some not-so-standard notation

around the geometry of hyperbolic surfaces needed for the proof of Lemma 3.1. It will be

convenient to identify the hyperbolic plane with the upper-half plane

H2 := {x+ iy ∈ C : y > 0}

equipped with the Riemannian metric ds2 = dz2/y2. The canonical horoball is the subset

H0 := {x+ iy ∈ C : y ≥ 1} ⊂ H2.

A cusp is a surface isometric to a quotient of the form C := H0/{z 7→ z + x0} for some

x0 > 0.

A pair of pants with k ∈ {0, 1, 2, 3} cusps is an oriented complete hyperbolic surface P

satisfying:

1. P is homeomorphic to the 2-sphere minus k points and 3 − k pairwise disjoint open

disks,

2. the 3− k boundary components of P are geodesic curves.

The following facts are classical [?]:

1. area(P ) = 2π,

2. P is determined up to orientation-preserving isometry by the number of cusps k and

the lengths of its boundary components,

3. there exist k pairwise-disjoint cusps on P .

5 Deformations of surfaces

The proof of Lemma 3.1 constructs surfaces and L1-functions inductively by cutting, pasting

and deforming. This main result of this section is that the averages βrf vary continuously

under deforming the boundary of surfaces equipped with additional structure. To make this

precise, we need the following ad hoc definition.
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A panted surface is a pair (S, P ) such that S is a connected oriented hyperbolic surface

and P ⊂ S is a closed subsurface satisfying:

• P is a pair of pants with one cusp and two boundary components, denoted by ∂1P, ∂2P ,

• the complement S \ int(P ) is disconnected.

For α > 0, the α-deformation of (S, P ) is a panted surface (Sα, Pα) defined as follows.

Let Pα be the (compact) oriented hyperbolic pair of pants with geodesic boundary ∂Pα =

∪2i=0∂
iPα satisfying

length(∂0Pα) = α

length(∂1Pα) = length(∂1P )

length(∂2Pα) = length(∂2P ).

This uniquely determines Pα up to orientation-preserving isometry.

Define a local isometry ψ : ∂1Pα ∪ ∂2Pα → ∂1P ∪ ∂2P as follows. There exists a unique

shortest geodesic γ in P from ∂1P to ∂2P . Let pi be the point of intersection of γ with ∂iP .

Similarly, let γα be the unique shortest geodesic in Pα from ∂1Pα to ∂2Pα. Let piα be the

point of intersection of γα with ∂iPα. Finally, let ψ be the map defined by

• for i = 1, 2, the restriction of ψ to ∂iPα is an isometry onto ∂iP ,

• ψ(piα) = pi,

• ψ preserves orientation, where the orientation on ∂P is induced from the given ori-

entation on P and the orientation on ∂Pα is induced from the given orientation on

Pα.

This uniquely specifies ψ.

Finally, let Sα = (S \ int(P )) ∪ Pα/{x ∼ ψ(x)} be the surface obtained from (S minus

the interior of P ) and Pα by gluing together along ψ.
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5.1 Continuity

This subsection studies how the averages βrf vary with α when f is a function on Sα. To

make this precise, let iα : S \ int(P ) → Sα be the inclusion map. For x ∈ S \ int(P ), let

xα = iα(x) ∈ Sα and for f ∈ L1(S \ int(P )), define fα ∈ L1(Sα) by

fα(xα) =

 f(x) x ∈ S \ int(P )

0 otherwise

Proposition 5.1. Let (S, P ) be a panted surface and f ∈ L1(S \ int(P )). For any r > 0,

the map

(x, α) 7→ βrfα(xα)

is continuous as a map from (S \ int(P ))× [0,∞) to C.

Proof. For convenience, set S0 = S, P0 = P, pi0 = pi, etc.

For i = 1, 2, let viα be the unit tangent vector based at piα, tangent to γα and oriented

so that v1α and v2α point towards each other. Since γα is the shortest geodesic from ∂1Pα to

∂2Pα, viα meets ∂iPα at a right angle.

Fix a unit tangent vector w1 in the tangent bundle of H2. Because Sα is connected, there

exists a unique orientation-preserving universal covering map πα : Xα → Sα such that

• Xα ⊂ H2 is a closed simply-connected subset containing the base point of w1,

• the derivative of πα maps w1 to v1α.

Let g̃α be the component of π−1α (gα) that contains the basepoint of w1. Let w2
α be the

unit vector based at the other end point of g̃α so that w2
α and w1 point towards each other.

Then the derivative of πα maps w2
α to v2α.

Let S1
α, S

2
α be the two connected components of Sα \ int(Pα), indexed so that ∂iPα ⊂ Siα

for i = 1, 2. To make the notation uniform, set w1
α = w1. Then let X i

α ⊂ Xα be the connected

component of π−1α (Siα) that contains the base point of wiα. So the restriction of πα to X i
α is

the universal cover of Siα.

Define the deck-transformation groups

Λi
α = {g ∈ Isom+(H2) : πα ◦ g = πα and gX i

α = X i
α}

Λα = {g ∈ Isom+(H2) : πα ◦ g = πα}.
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Then Λα is generated by Λ1
α and Λ2

α (by Van Kampen’s Theorem).

We claim that for each i, Λi
α varies continuously with α. In fact, the choice of πα implies

that Λ1
α does not depend on α. Let gα be the unique orientation-preserving isometry of the

hyperbolic plane that maps w2
0 to w2

α. Then Λ2
α = gαΛ2

0g
−1
α . Because gα varies continuously

in α ∈ [0,∞), Λα varies continuously in α. It follows that if f̃α : H2 → C is defined by

f̃α(x) := fα(πα(x)) for x ∈ Xα and f̃α = 0 otherwise, then f̃α varies continuously in the

sense that for any r > 0 the map

(x, α) ∈ H2 × [0,∞) 7→ area(Br)
−1
∫
Br(x)

f̃α(y) dy

is continuous where the integral is with respect to the area measure on H2. However the

right-hand side equals βrfα(πα(x)) by definition. So this implies the proposition.

6 Averaging around cusps

The main result of this section is a comparison between the averages of the form βr(f)(p)

and βr(f1C) where C is a cusp of the surface. This is used in the proof of Lemma 3.1 to

control the maximal function under these kinds of deformations of functions. To be precise,

we need the following definitions.

Let C = H0/{z 7→ z + x0} be a cusp where H0 = {x + iy : y ≥ 1} is the canonical

horoball and x0 > 0 is the length of the boundary of C (which is a horocycle). For t > 0, let

C[t] = {x+ iy ∈ C : y ≥ et}/{z 7→ z + x0} ⊂ C.

This is the unique cusp contained in C such that the distance between the boundaries ∂C

and ∂C[t] is t.

Proposition 6.1. Let S be a hyperbolic surface with pairwise disjoint cusps C1, . . . , Ck ⊂ S.

Let U = ∪ki=1Ci be the union of the cusps and U [t] = ∪ki=1Ci[t] the union of the shortened

cusps for t ≥ 0. Let f ∈ L∞(S) be a non-negative function such that (1) f is constant on

Ci for all i and (2) f(p) = 0 for all p ∈ S \ U . Then for all p ∈ S \ U and t, r ≥ 0,

βr+t(f1U [t])(p) ≥ e−t(1− 2e−r)βr(f)(p).
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Proof. Because βr is linear, it suffices to consider the special case in which f(p) = 1 for all

p ∈ U . By passing to the universal cover, it suffices to prove: for any p ∈ H2 \H0,

area(B(r + t, p) ∩ {x+ iy : y ≥ et})
area(B(r + t, p))

≥ e−t
area(B(r, p) ∩H0)

area(B(r, p))
.

Before estimating the above, here are some general facts about area of intersections of

balls and horoballs. For R > T > 0, let g(R, T ) be the area of the intersection of a ball B

and a horoball H such that the radius of B is R and the distance between the center of B

and the boundary of H is T . Then g(R, T ) is well-defined (in that depends on the choice of

B and H only through R and T ) and for any fixed t0 > 0, g(T +t0, T ) is monotone increasing

in T . To see this, we may assume H = H0. Set BT equal to the ball of hyperbolic radius

T + t0 and hyperbolic center e−T i. Then g(T + t0, T ) = area(H0 ∩ BT ). Also BT coincides

with the Euclidean disk centered on the imaginary axis that contains et0i and e−2T−t0 in its

boundary. In particular, BT ⊂ BT ′ for any T ≤ T ′. So g(T + t0, T ) ≤ g(T ′ + t0, T
′).

It follows that

area(B(r+t, p)∩{x+iy : y ≥ et}) = g(r+t, d(p,H0)+t) ≥ g(r, d(p,H0)) = area(B(r, p)∩H0).

So it suffices to show
area(B(r, p))

area(B(r + t, p))
≥ e−t(1− 2e−r).

Since area(B(r, p)) = 2π(cosh(r)− 1),

area(B(r, p))

area(B(r + t, p))
=

cosh(r)− 1

cosh(r + t)− 1
=

er − 2 + e−r

et+r − 2 + e−t−r

≥ er − 2

et+r
= e−t(1− 2e−r).

7 The inductive step

To prove Lemma 3.1, we will construct surfaces S with functions f ∈ L1(S) by induction.

To be precise, we need the next two definitions.

Definition 1. A tuple (S, P, {Ci}ki=1, U, f) is good if
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1. (S, P ) is a panted surface,

2. S is a complete hyperbolic surface with finite area and no boundary,

3. C1, . . . , Ck ⊂ S are pairwise disjoint cusps,

4. P is disjoint from U = ∪iCi,

5. f ∈ L1(S) is non-negative,

6. f is constant on each cusp Ci,

7. f(p) = 0 for all p ∈ S \ U ,

8. ‖f‖1 ≤ 2.

Definition 2. For ρ ≥ 0 and f ∈ L1(S), let

Mρf(p) = sup
ρ≤r

βr(|f |)(p)

be the ρ-truncated maximal function of f .

The next result forms the inductive step in the proof of Lemma 3.1.

Proposition 7.1. Let (S, P, {Ci}ki=1, U, f) be a good tuple, ρ > 0 and ε > 0. Let

V = {p ∈ S \ (P ∪ U) : Mρf(p) ≥ 1}.

Then there exists a good tuple (Ŝ, P̂ , {Ĉj}2kj=1, Û , f̂) satisfying

1. area(Ŝ) = 2 area(S) + 2π,

2. if

V̂ = {p ∈ Ŝ \ (P̂ ∪ Û) : Mρf̂(p) ≥ 1}

then area(V̂ ) ≥ 2 area(V )− 3ε,

3. ‖f̂‖1 ≤
‖f‖1(1− ‖f‖1/2)

1− 4ε− 2e−ρ
.
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Proof. By definition of V , there exist R > 0 and a subset W ⊂ V such that area(W ) ≥
area(V )− ε and

sup
ρ≤r≤R

βr(f)(p) ≥ 1− ε

for all p ∈ G.

By Proposition 5.1, there exists α > 0 such that if Sα and fα are defined as in §5.1 then

sup
ρ≤r≤R

βr(fα)(p) ≥ 1− 2ε

for all p ∈ G. Here we are identifying G with a subset of Sα. This makes sense because S \P
is naturally isometric to Sα \ Pα and W ⊂ V ⊂ S \ P .

Let S(1), S(2) be two isometric copies of Sα. For i = 1, 2 and 1 ≤ j ≤ k, let C
(i)
j ⊂ S(i) be

the copy of the cusp Cj in S(i) and let f (i) ∈ L1(S(i)) be a copy of fα. Define V (i), U (i), G(i) ⊂
S(i) similarly.

The surface Sα has a single boundary component which is of length α. Let Yα be the

pair of pants with one cusp and two geodesic boundary components ∂1Yα and ∂2Yα, both of

length α. For i = 1, 2, let ψ(i) : ∂iYα → ∂S(1) be an isometry and let ψ : ∂Yα → ∂(S(1)tS(2))

be the union of these two maps. Finally, let

Ŝ = (S(1) t S(2) t Yα)/{x ∼ ψ(x)}

be the result of gluing Yα to S(1) t S(2) via ψ. Let P̂ be the copy of Yα in Ŝ. Conclusion (1)

is immediate.

Extend f (i) to all of Ŝ by setting f (i)(p) = 0 for all p ∈ Ŝ \ S(i). By the Theorem 1.1,

there exists t > 0 and W ′ ⊂ W (2) such that area(W ′) ≥ area(W (2)) − ε and for all p ∈ W ′

and r ≥ t,

βr
(
f (1)
)

(p) ≥ −ε+

∫
f (1) dνŜ.

Define cusps

Ĉj := C
(1)
j , Ĉk+j := C

(2)
j [t]

for 1 ≤ j ≤ k.

Define f̄ ∈ L1(Ŝ) by

f̄ = f (1) +

[
1−

∫
f (1) dνŜ

]
et1U(2)[t]f

(2).
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Because ‖f‖1 ≤ 2 (by definition of a good tuple), it follows that

1−
∫
f (1) dνŜ = 1− area(S)

area(Ŝ)

∫
f dνS > 0.

So both summands defining f̄ are non-negative. In particular, f̄ ≥ 0.

Set

f̂ :=
f̄

1− 4ε− 2e−ρ
.

It is immediate that (Ŝ, P̂ , {Ĉj}2kj=1, Û , f̂) is a good tuple.

The next step is to verify the maximal function estimates. If p ∈ W (1), then the definition

of W implies

Mρf̄(p) ≥ Mρf
(1)(p) ≥ 1− 2ε.

Therefore

Mρf̂(p) ≥ 1− 2ε

1− 4ε− 2e−ρ
≥ 1. (1)

If p ∈ W ′ ⊂ W (2), then there exists r ≥ ρ such that

βr
(
f (2)
)

(p) ≥ 1− ε.

By Proposition 6.1,

βr+t
(
1U(2)[t]f

(2)
)

(p) ≥ e−t(1− 2e−r)βr
(
f (2)
)

(p) ≥ e−t(1− 2e−r)(1− ε).

Therefore,

Mρf̄(p) ≥ βr+t(f̄)(p) ≥ βr+t
(
f (1)
)

(p) +

[
1−

∫
f (1) dνŜ

]
etβr+t

(
1U(2)[t]f

(2)
)

(p)

≥ −ε+

∫
f (1) dνŜ +

[
1−

∫
f (1) dνŜ

]
(1− 2e−r)(1− ε)

≥ 1− 4ε− 2e−r ≥ 1− 4ε− 2e−ρ.

Therefore, Mρf̂(p) ≥ 1. Together with inequality (1) this implies Mρf̂(p) ≥ 1 for all p ∈
W (1) ∪W ′. So V̂ ⊃ W (1) ∪W ′ which implies

area(V̂ ) ≥ 2 area(V )− 3ε.

This verifies conclusion (2).
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The equality
∥∥1U(2)[t]f

(2)
∥∥
1

= e−t‖f‖1 follows from linearity and the fact that area(C[t]) =

e−tarea(C) for any cusp C. So

area(Ŝ)

∫
f̄ dνŜ = area(S)

(∫
f dνS

)
(2− ‖f‖1).

Therefore,

‖f̄‖1 =
area(S)(2− ‖f‖1)

2 area(S) + 2π
‖f‖1 ≤ ‖f‖1(1− ‖f‖1/2)

which implies conclusion (3).

8 The end of the proof

The next lemma establishes the base case of the induction in the proof of Lemma 3.1.

Lemma 8.1. For every ρ ≥ 0, there exists a good tuple (S, P, {Ci}4i=1, U, f) such that

νS({p ∈ S \ (P ∪ U) : Mρf(p) ≥ 1}) ≥ 1/2.

Proof. Let α > 0 and let Y1 be a pair of pants with two cusps and one geodesic boundary

component of length α > 0. Let Y2 be an isometric copy of Y1. Let P be a pair of pants with

one cusp and two geodesic boundary components each of length α. Let ψ : ∂P → ∂Y1 t ∂Y2
be an isometry and let

S = [Y1 t Y2 t P ]/{x ∼ ψ(x)}

be the surface obtained by gluing Y1, Y2 and P together by way of ψ. Then (S, P ) is a panted

surface.

For i = 1, 2, let Vi ⊂ Yi be a compact subsurface with

area(Vi) ≥ 3 area(Yi)/4 = 3π/2.

Let C
(i)
1 , C

(i)
2 ⊂ Yi be disjoint cusps such that for any p ∈ Vi and q ∈ C(i)

1 ∪ C
(i)
2 , d(p, q) ≥ ρ.

Let f ∈ L1(S) be any non-negative function such that (S, P, {Ci}4i=1, U, f) is a good tuple

and ‖f‖1 = 1. For example, one could define f by

f(p) =


area(S)

4 area(C
(i)
j )

p ∈ C(i)
j

0 otherwise
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By the pointwise ergodic theorem 1.1, for a.e. p ∈ S, Mf(p) ≥ 2. Since βrf(p) = 0 for

all r < ρ and p ∈ V1 ∪ V2, it follows that Mρf(p) ≥ 1 for all V1 ∪ V2. Since

area(V1 ∪ V2) ≥ 3π = area(S)/2

this finishes the proof.

Lemma 8.2. Let t1, t2, . . . be a sequence of real numbers ti ∈ [0, 2) such that ti+1 ≤ ti(1−ti/2)

for all i. Then limi→∞ ti = 0.

Proof. Since 1 − ti/2 < 1, the sequence is monotone decreasing. So the limit exists L =

limi→∞ ti exists, L ∈ [0, 2) and L = L(1− L/2). This implies L = 0.

Proof of Lemma 3.1. For b, ρ > 0, let Σ(b, ρ) be the set of all numbers ε > 0 such that there

exists a good tuple (S, P, {Ci}ki=1, U, f) satisfying

1. f ≥ 0,

2. ‖f‖1 ≤ ε,

3. νS ({p ∈ S \ (P ∪ U) : Mρf(p) ≥ 1}) ≥ b.

Also let Σ(b, ρ) denote the closure of Σ(b, ρ) in [0,∞). It suffices to prove that 0 ∈ Σ(b, 1)

for some b > 0.

Lemma 8.1 proves that 1 ∈ Σ(1/2, ρ) for all ρ. Proposition 7.1 proves: if δ ∈ Σ(b, ρ)

for all ρ ≥ 1 then δ(1 − δ/2) ∈ Σ(b− ε, ρ) for all ε > 0 and ρ ≥ 1. By iterating and using

Lemma 8.2, this implies 0 ∈ Σ(1/2− ε, ρ) for all ε > 0 and ρ ≥ 1 which finishes the lemma.

9 Two open problems

The main counterexample does not have spectral gap. This is because we are forced to

make the “necks” in the construction of the surface arbitrarily narrow. Similarly, Tao’s

construction does not have spectral gap. This raises a question: does Nevo’s pointwise
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ergodic theorem 1.1 hold in L1 if Gy(X,µ) has spectral gap? It also raises the converse

question: if Gy(X,µ) is ergodic but does not have spectral gap then does the pointwise

ergodic theorem necessarily fail for this action?

17


