DDP ANOVA Model

May 9, 2007

R topics documented:

- ddpanova-package
- ddpanova
- ddpanova
- ddpsurvival
- post.pred
- post.sim

ddpanova-package DDP ANOVA with univariate response

Description

The package implements posterior simulation and posterior predictive inference for the DDP ANOVA model, assuming a univariate response.

Details

Package: ddpanova
Type: Package
Version: 1.0
Date: 2007-04-23
License: GNU?

Use ddpanova to initialize and run the posterior MCMC simulation. Use post.pred to get posterior predictive densities for the observable outcomes under assumed design vectors for future patients. Use post.sim to get posterior simulations for the ANOVA parameters.

The model is as described in De Iorio et al. (2004). The same model is used in Mueller et al. (2005) as the random effects distribution in a repeated measurements model. Let \(y_i \) denote the i-th observed response for an individual (experimental unit) with design vector \(d_i \). For example, if the model is used to jointly analyze data from two related clinical trials, with 3 treatment levels in each trial, the design vector for a patient in study 2, at treatment level 3 might be \(d_i = (1, -1, 0, 1) \), including an intercept, an offset for the 2nd study, no offset for treatment level 2 and an offset for treatment level 3.

Let \(N(x; m, s) \), \(Ga(x; a, b) \) and \(Wish(f, A) \) denote a normal p.d.f. with moments \((m, s) \), a Gamma p.d.f. with shape \(a \) and expectation \(a/b \), and a Wishart distribution with degrees of freedom \(f \) and expectation \(fA \).
We assume a mixture of ANOVA sampling model

\[y_i \sim \int N(y_i; d'_i, \mu, V) dG(\mu, V) \]

with a Dirichlet process (DP) prior for the random mixing measure, \(G \sim DP(G_0, \alpha) \). Here, \(G_0(\mu, V) \) is the base measure and \(\alpha \) is the total mass parameter.

Let \(H_d(y) = \int N(y; d', \mu, V) dG(\mu, V) \) denote the sampling model for an observation with design vector \(d \). The ANOVA DDP defines a joint probability model on the set of random probability measures

\[\{H_d(\cdot), d \in D\} \]

for designs from a design space \(D \). The model is completed with conditionally conjugate hyperpriors.

We assume \(G_0(\mu, V) = Ga(1/V; s/2, sS/2)N(\mu; m, B) \) and hyperpriors \(S \sim Ga(0.5q, 0.5q/R), m \sim N(a, A) \)

Author(s)
Peter Mueller
Maintainer: Peter Mueller <pm@wotan.mdacc.tmc.edu>

References

Description
Initialize and run posterior MCMC for DDP ANOVA

Usage
```
ddpanova(Y = NULL, D = NULL,
          n.iter = 1000, n.discard = 100, n.reinit = NULL,
          n.batch = 50, n.predsamp = 100, n.printallpars = NULL,
          verbose = 3,
          m.prior = 1, B.prior = 1, S.prior=1, alpha.prior=2,
          s = NULL, S.init = NULL,
          q = NULL, R = NULL,
          m.init = NULL, B.init = NULL,
          cc = NULL, CC = NULL,
          a = NULL, A = NULL,
          alpha = 1, a0 = 1, b0 = 1,
          k0 = 1, member0 = 0,
          px = 1,
          d0 = NULL, resid = NULL,
          nx = 100, ygrid = NULL,
          xlist = 0, header = 0)
```
Arguments

- **Y**: (n by 1) data vector (or file name)
- **D**: (n by p) design matrix (or file name)
- **n.iter**: number MCMC iterations
- **n.discard**: initial burn-in
- **n.reinit**: reinitialize every so many iterations.
- **n.batch**: save posterior simulations every so many iterations
- **n.predupate**: update posterior predictive every so many iterations
- **n.printallpars**: print all parameters every so many iterations
- **verbose**: 0=silent
- **m.prior**: indicator for resampling (vs. fixing) m.
- **B.prior**: indicator for resampling (vs. fixing) B.
- **S.prior**: indicator for resampling (vs. fixing) S.
- **alpha.prior**: indicator for resampling (vs. fixing) α. Use alpha.prior=2 for fixing over the first n.discard/2 iterations, and imputing thereafter.
- **s**: d.f. and scale in Gamma(s/2, 1/2*s*S) base measure for precision (1/variance)
- **S.init**: initial value for S
- **q**: d.f. and scale in Gamma(q,q/R) prior for S
- **R**: mean and variance in N(m,B) base measure for location parameter
- **B.init**: mean and covariance matrix in N(a,A) prior for m
- **cc**: d.f. and matrix parameter in Wishart(cc,1/ccCC−1) prior for B−1
- **a**: shape and scale of Gamma prior for alpha
- **b0**: initial value for the total mass parameter
- **k0**: number of initial clusters
- **member0**: (n by 1) vector of cluster membership indicators (only necessary if k0 is not 1 or n)
- **px**: indicator for carrying out posterior predictive inference
- **d0**: (nd times p) design matrix for nd future observations.
- **resid**: binary vector of length nd, of indicators for including residual variance in the posterior predictive.
- **nx**: grid size for plotting posterior predictive
- **ygrid**: lower and upper bound of the grid for posterior predictive inference.
- **xlist**: indicator for evaluating posterior fitted values for the observed data points.
- **header**: indicator for the data files including a header line (only meaningful if Y and D are file names).

Details

See `ddpanova-package` for an explanation of all parameters. The function `ddpanova` initializes and carries out MCMC posterior simulation. Simulation output is written to auxiliary files (with .mdp extension) in the working directory. Use `post.pred` and `post.sim` to read in summaries.
Value

Posterior simulations are written into working files in the current working directory. Use `setwd` to change it if desired.

The function has no return values.

Author(s)

Peter Mueller

References

See `ddpanova-package`

Examples

```r
## Not run:
## simulate data from a mixture of two normal densities
nobs <- 500
y1 <- rnorm(nobs, 3, .8)
## y2 = 0.6
y21 <- rnorm(nobs, 2.0, 0.8)
y22 <- rnorm(nobs, 4.0, 1.0)
u <- runif(nobs)
y2 <- ifelse(u < 0.6, y21, y22)
y <- c(y1, y2)

## design matrix with main effect mu and +/-offset
d <- cbind(rep(1, 2 * nobs), c(rep(-1, nobs), rep(1, nobs)))
p <- ncol(d)
nobs <- 2 * nobs

## run MCMC
d0 <- rbind(c(1, -1), c(1, 1))  # design matrix for post predictive
ddpanova(y, d, n.iter=1000, d0 = d0, ygrid = c(0, 6))

## get posterior pred density for future observations
## with design matrix d=(1,-1)
## rows of d0.
pp <- post.pred()
plot(pp$ygrid[1,], pp$py[1,], type="l", xlab="Y", ylab="p", bty="l")
## overlay truth:
pl <- dnorm(pp$ygrid[1,], 3.0, 0.8)
lines(pp$ygrid[1,], pl, lty=2)
## ... and d=(1,1)
plot(pp$ygrid[2,], pp$py[2,], xlab="Y", ylab="p", bty="l", type="l")
p2 <- 0.6 * dnorm(pp$ygrid[2,], 2.0, 0.8) +
  0.4 * dnorm(pp$ygrid[2,], 4.0, 1.0)
lines(pp$ygrid[2,], p2, lty=2)

## End(Not run)
```
Description

Initialize and run posterior MCMC for DDP ANOVA with right censored survival data.

Usage

```
ddpsurvival(Y = NULL, D = NULL,
  n.iter = 1000, n.discard = 100, n.reinit = NULL,
  n.batch = 50, n.predupate = 100, n.printallpars = NULL,
  verbose = 3,
  m.prior = 1, B.prior = 1, S.prior=1, alpha.prior=2,
  s = NULL, S.init = NULL,
  q = NULL, R = NULL,
  m.init = NULL, B.init = NULL,
  cc = NULL, CC = NULL,
  a = NULL, A = NULL,
  alpha = 1, a0 = 1, b0 = 1,
  k0 = 1, member0 = 0,
  px = 1,
  d0 = NULL, resid = NULL,
  nx = 100, ygrid = NULL,
  xlist = 0, header = 0)
```

Arguments

All arguments are the same as in `ddpanova`, except the following:

- `Y` (n by 3) data matrix (or file name). The first column is the event time. For rows with censored observations (2nd column=0), the first column is an initial value for an imputed event time. The second column is an indicator for an event, i.e., 0 for censored observations and 1 for event times. The third column is the last follow-up time (equal the 1st column for events).

Details

See `ddpanova-package` for an explanation of all parameters. The function `ddpsurvival` initializes and carries out MCMC posterior simulation. Simulation output is written to auxiliary files (with .mdp extension) in the working directory. Use `post.pred` and `post.sim` to read in summaries.

Value

Posterior simulations are written into working files in the current working directory. Use `setwd` to change it if desired.

The function has no return values.

Author(s)

Peter Mueller
Examples

Not run:
simulate data from a mixture of two normal densities
ni <- 500
y1 <- rnorm(ni, 3, .8)
y2 = 0.6
y21 <- rnorm(ni, 2, 0.8)
y22 <- rnorm(ni, 4, 1.0)
u <- runif(ni)
y2 <- ifelse(u < 0.6, y21, y22)
y <- c(y1, y2)
nobs <- 2 * ni

now add censoring times
yc <- rnorm(nobs, 4, 1.2)
event <- ifelse(y < yc, 1, 0)
Y <- cbind(y, event, yc)

design matrix with main effect mu and +/- offset
d <- cbind(rep(1, nobs), c(rep(-1, ni), rep(1, ni)))
p <- ncol(d)

run MCMC
d0 <- rbind(c(1, -1), c(1, 1)) # design matrix for post predictive
cat("\nRunning 1000 iterations next -- be patient...\n")
ddpsurvival(Y, d, n.iter = 1000, d0 = d0, ygrid = c(0, 6))

get posterior pred density for future observations
with design matrix d=(1,-1)
rows of d0.
pp <- post.pred()
plot(pp$ygrid, pp$py[, 1], type = "l", xlab = "Y", ylab = "p", bty = "l")
overlay truth:
p1 <- dnorm(pp$ygrid, 3, 0.8)
lines(pp$ygrid, p1, lty = 2)

... and d=(1,1)
plot(pp$ygrid, pp$py[, 2], xlab = "Y", ylab = "p", bty = "l", type = "l")
p2 <- 0.6 * dnorm(pp$ygrid, 2, 0.8) +
0.4 * dnorm(pp$ygrid, 4, 1.0)
lines(pp$ygrid, p2, lty = 2)

and same as survival curves, assuming that the data were log(times)
Sy <- pp$Sy # survival curve
S1 <- 1 - pnorm(pp$ygrid, 3, 0.8) # truth 1
S2 <- 1 - (0.6 * pnorm(pp$ygrid, 2, 0.8) + # truth 2
0.4 * pnorm(pp$ygrid, 4, 0, 1.0))
lygrid <- exp(pp$ygrid) # grid on time scale
plot(lygrid, Sy[, 1], type = "l", bty = "l",
 xlab = "y", ylab = "px", ylim = c(0, 1), xlim = c(0, 150))
lines(lygrid, Sy[, 2], type = "l", col = 2)
Posterior predictive inference

Description

Return posterior predictive densities for future observations.

Usage

```r
post.pred()
```

Details

Must have called `ddpanova` or `ddpsurvival` first.

Returns the posterior predictive distribution \(p(y^* \mid d^*, data) \) for a future observation \(y^* = y_{n+1} \) with design vector \(d^* \). The argument \(d0 \) of `ddpanova` specifies the list of \(nd \) future designs that are considered.

Value

The function returns a list:

- `ygrid` [(nx x 1)] vector of grid values for the predictive for future units with design vectors given in `d0`
- `py` [(nd by nx)] matrix of posterior predictive probabilities \(p(y^* \mid d^*, data) \), evaluated on the grid given in `ygrid`.
- `Sy`
- `sSy`
- `hy`
- `shy`
- `censoring` indicator whether call was following `ddpsurvival` (censoring=1) or `ddpanova` (censoring=0).

Note

Use `post.sim` to obtain a Monte Carlo sample of parameter values. See `ddpanova` for an example.

Author(s)

Peter Mueller

References

see `ddpanova-package`
Posterior Monte Carlo sample

Description

Retrieves a simulated samples \(\mu \) from the posterior estimated mixing measure \(\hat{G} = E(G \mid data) \).

Usage

```r
post.sim()
```

Value

The function returns a matrix

\[
Z \quad (M \times p) \text{ matrix with one simulation in each line.}
\]

Note

see `ddpanova` for an example.

Author(s)

Peter Mueller

References

see `ddpanova-package`