Dirichlet process mixture (MDP) of normal model.

Description

The package implements posterior inference for MDP models with multivariate normal kernel and conjugate DP base measure. The mixture is with respect to both, mean and covariance matrix of the kernel. The package includes posterior predictive inference for one- and two-dimensional subvectors, and posterior predictive mean functions and surfaces for two and three-dimensional subvectors.

Details

Package: mdp
Type: Package
Version: 1.0
Date: 2007-04-01
License: GNU public domain software.

The function mdp implements posterior MCMC simulation. The function assumes a conditionally conjugate MDP model, with conjugate kernel and Dirichlet process base measure. The functions plt.pxy, plt.exy and plt.ex plot posterior predictive inference.

The package uses the model described in MacEachern and Mueller (1998). Let $y_i \sim H(y)$ denote an i.i.d. sample from an unknown distribution $H(y)$. We model the random probability measure H as a location and scale mixture of multivariate normal kernels,

$$H(y) = \int N(\mu, V)dG(\mu, V)$$
with a Dirichlet process (DP) prior for the mixing measure, \(G \sim DP(G_0, \alpha) \) and a conditionally conjugate base measure \(G_0(\mu, V^{-1}) = G_{\mu 0}(\mu) G_{V 0}(V^{-1}) \) where

\[
G_{\mu 0}(\mu) = N(m, B) \quad \text{and} \quad G_{V 0}(V^{-1}) = Wishart(s, (sS)^{-1}).
\]

The Wishart distribution is parametrized such that \(E(V^{-1}) = S^{-1} \). We assume conjugate hyperpriors

\[
m \sim N(a, A), B^{-1} \sim \text{Wishart}(c, (cC)^{-1}), S \sim \text{Wishart}(q, R/q).
\]

The model is completed with a Gamma prior for the total mass parameter \(\alpha \sim Ga(a_0, b_0) \).

Author(s)

Peter Mueller
Maintainer: Peter Mueller <pm@wotan.mdacc.tmc.edu>

References

The package uses the parametrization defined in:

See Also

See also the package DPpackage, at

mdp

MDP – Dirichlet process mixture of normals

Description

Fits a semiparametric Dirichlet process mixture of normals.

Usage

\[
\text{mdp}(n = \text{NULL}, p = \text{NULL}, \\
n.\text{iter} = 10000, n.\text{discard} = 1000, n.\text{reinit} = 10000, \\
n.\text{batch} = 100, n.\text{predupdate} = 100, n.\text{printallpars} = 1000, \\
m.\text{prior} = \text{F}, B.\text{prior} = \text{F}, \text{verbose} = 3, \\
p.\text{xy} = \text{F}, e.\text{xy} = \text{F}, e.\text{x} = \text{F}, \\
S = 15, S.\text{init} = \text{NULL}, q = 5, R = \text{NULL}, B.\text{init} = \text{NULL}, \\
c.\text{c} = 5, C = \text{NULL}, m.\text{init} = \text{NULL}, a = \text{NULL}, A = \text{NULL}, \\
alpha = 1, a_0 = 1, b_0 = 1, \\
k_0 = \text{NULL}, Y = \text{NULL})
\]
**_args*

- `n` number of data records
- `p` dimension of each data record
- `n.iter` number MCMC iterations
- `n.discard` initial transient
- `n.reinit` reinitialize every `n.reinit` iterations (not normally used)
- `n.batch` save imputed parameters every `n.batch` iterations
- `n.predupdate` save posterior predictive summaries every `n.predupdate` iterations
- `n.printallpars` print all parameters every `n.printallpars` iterations
- `m.prior` indicator for resampling (1) versus fixing (0) the mean of the base measure, `m`
- `B.prior` indicator for resampling (1) versus fixing (0) the variance-covariance matrix of the base measure, `B`
- `verbose` level of comments
- `pxy` indicator for evaluating posterior predictive `p(x, y | data)` for a future observation. Indices of `x, y` are given in `ix` and `iy`
- `exy` indicator for evaluating posterior predictive expectation `E(z | x, y, data)` for a future observation. Indices of `x, y, z` are given in `ix`, `iy` and `iz`
- `ex` indicator for evaluating posterior predictive `p(x, y | data)` for a future observation. Indices of `x, y` are given in `ix` and `iy`
- `S.init` initial value for the kernel covariance matrix `S`
- `s` degrees of freedom for the inverse Wishart prior on `S`
- `q` degrees of freedom for the inverse Wishart base measure for `G_0(V_i)`
- `R` expectation of the inverse Wishart base measure `G_0(V_i)`
- `B.init` initial value for the covariance matrix `B` of the base measure `G_0(\mu) = N(m, B)`
- `cc` degrees of freedom of the inverse Wishart hyperprior for `B`
- `C` mean of the inverse Wishart hyperprior for `B`
- `m.init` initial value for the mean `m` of the base measure `G_0(\mu) = N(m, B)`
- `a` hyperprior mean for `m`
- `A` hyperprior covariance matrix for `m`
- `alpha` initial value for the total mass parameter `alpha`
- `a0` hyperprior parameters for prior on total mass parameter `alpha`
- `b0` hyperprior parameters for prior on total mass parameter `alpha`
- `k0` initial number of distinct clusters
- `Y` `n` by `p` data matrix

Details

See *mdp-package* for a statement of the probability model. The function `mdp` initializes and carries out MCMC posterior simulation. Simulation output is saved in the working directory. Change it by using `setwd` if desired.
Value

The function returns no value. Simulation output is written to files.

Note

Careful, mdp writes temporary files into the current working directory. The same files are used by plt.pxy, plt.ex and plt.exy to plot posterior predictive distributions and expectations.

References

the package uses the parametrization defined in:

See Also

See also the DPpackage, at

Examples

```r
## Not run:
## Data from Lubischew, A. (1962), "On the use of discriminant functions
## in taxonomy," Biometrics, 18, 455-477.
data.dir <- system.file("demo",package="mdp")
beetles <- file.path(data.dir,"beetle.data")
Y <- read.table(beetles)  # beetle data. The last column reports species
p <- ncol(Y)
Y <- as.matrix(Y[,1:p])  # don't use the species indicator

## run MCMC
##
## mdp(Y=Y,
##     pxy=1,exy=1,ex=1,ix=1,iy=2,iz=3,
##     q=10,cc=10)

## plot results
##
## plt.pxy(img=T,lg=T)  ## biv density estimate p(x,y),
##     points(Y[,1],Y[,2],pch=19)  # add data points
## plt.pxy(img=F,lg=F)  # same as a contour plot
##     points(Y[,1],Y[,2],pch=19)
## plt.ex(sd=T,zlab="f(x)=E(z | x)")  ## E(z | x, data), for z=3rd col (iz)
## plt.ex(sim=T,zlab="f~p(f | data)")  ## show random draws from p(f | data)
## plt.exy()  ## E(z | x,y, data)

## note: for marginals on different coordinates need to
## re-run mdp with new values for ix,iy,iz
## End(Not run)
```
Description

Plots the estimated conditional mean curve $E[f_H(x) | \text{data}]$, for the $f_H(x) = E_H(z | x)$. The first expectation is under the posterior distribution on H given the data. The second expectation is with respect to H. Here $H(.)$ is the random probability distribution modeled by the DP mixture of normals. See mdp-package for a statement.

Usage

```r
plt.ex <- function(xlab="X",zlab="Z",
xlim=NULL,ylim=NULL,
bty="l",
sim=FALSE,

Arguments

xlab label on the x-axis

ylab label on the vertical axis (plotting z).

xlim domain of the x-axis

ylim domain of the vertical axis

sd

sim indicator for adding 10 random draws for $f_H$.

Details

Need to call mdp first to carry out the posterior Markov chain Monte Carlo simulation. The function plt.ex uses the simulation output to produce the desired posterior estimated conditional mean function. The function assumes the simulation output is saved in the current working directory. Change it by using setwd if necessary.

The random draws (under sim=TRUE) are generated from $p(f_H | \text{data})$. See mdp-package for a statement of the probability model for the random probability measure $H$.

Value

The function returns no value.

Note

Careful, mdp writes temporary files into the current working directory.

References

the package uses the parametrization defined in:

Conditional mean surface $f(x, y)$.

Description

Plots the estimated conditional mean curve $E[f(x, y) \mid \text{data}]$, for the $f_H(x, y) = E_H(z \mid x, y)$. The first expectation is under the posterior distribution on $H$ given the data. The second expectation is with respect to $H$. Here $H(.)$ is the random probability distribution modeled by the DP mixture of normals. See mdp-package for a statement.

Usage

```r
plt.exy <- function(xlab="X", ylab="Y", zlab="Z",
plt.contour=TRUE)
```
Arguments

xlab  label on the x-axis
ylab  label on the y-axis
zlab  label on the z-axis

plt.contour
indicator for using a contour plot vs. an image plot

Details

Need to call mdp first to carry out the posterior Markov chain Monte Carlo simulation. The function plt.exy uses the simulation output to produce the desired posterior estimated conditional mean function. The function assumes the simulation output is saved in the current working directory. Change it by using setwd if necessary.

See mdp-package for a statement of the probability model for the random probability measure $H$.

Value

The function returns no value.

Note

Careful, mdp writes temporary files into the current working directory.

References

the package uses the parametrization defined in:


See Also

See also the R library DPpackage, at


Examples

```r
Not run:
Data from Lubischew, A. (1962), "On the use of discriminant functions
in taxonomy," Biometrics, 18, 455-477.
data.dir <- system.file("demo",package="mdp")
beetles <- file.path(data.dir,"beetle.data")
Y <- read.table(beetles) # beetle data. The last column reports species
p <- ncol(Y)
Y <- as.matrix(Y[,-p]) # don't use the species indicator

run MCMC
##
mdp(Y=Y,
 pxy=1,exy=1,ex=1,ix=1,iy=2,iz=3,
 q=10,cc=10)
```
## plot results

```r
plt.pxy(img=T,lg=T) ## biv density estimate p(x,y),
x=1st col (ix), y=2nd column (iy)
points(Y[,1],Y[,2],pch=19) # add data points
plt.pxy(img=F,lg=F) # same as a contour plot
points(Y[,1],Y[,2],pch=19)
plt.ex(sd=T) ## E(z | x, data), for z=3rd col (iz)
plt.ex(sim=T) ## show random draws from p(f | data)
plt.exy() ## E(z | x,y, data)
```

## note: for marginals on different coordinates need to
## re-run mdp with new values for ix,iy,iz
## End(Not run)

---

**plt.pxy**

**Bivariate posterior predictive**

### Description

Plots the bivariate density estimate $p(x,y) = E[H(x,y) | data]$.

### Usage

```r
plt.pxy <- function(xlab="X",ylab="Y",
xlim=NULL,ylim=NULL,
lg=F,
img=T)
```

### Arguments

- `xlab` label on the x-axis
- `ylab` label on the y-axis
- `xlim` domain of the x-axis
- `ylim` domain of the y-axis
- `lg` indicator for image plot vs. contours
- `img` indicator for image plot vs. contours

### Details

Need to call `mdp` first to carry out the posterior Markov chain Monte Carlo simulation. The function `plt.pxy` uses the simulation output to produce the desired posterior predictive distribution. The function assumes the simulation output is saved in the current working directory. Change it by using `setwd` if necessary.

See `mdp-package` for a statement of the probability model for the random probability measure $H$. Here $H(.)$ is the random probability distribution modeled by the DP mixture of normals. See `mdp-package` for a statement.
Value

The function returns no value.

Note

Careful, `mdp` writes temporary files into the current working directory. The same files are used by `plt.pxy`, `plt.ex` and `plt.exy` to plot posterior predictive distributions and expectations.

References

The package uses the parametrization defined in:


See Also

See also the R library `DPpackage`, at http://student.kuleuven.be/~s0166452/software.html.

Examples

```r
Not run:
Data from Lubischew, A. (1962), "On the use of discriminant functions
in taxonomy," Biometrics, 18, 455-477.
data.dir <- system.file("demo",package="mdp")
beetles <- file.path(data.dir,"beetle.data")
Y <- read.table(beetles) # beetle data. The last column reports species
p <- ncol(Y)
Y <- as.matrix(Y[,-p]) # don't use the species indicator

run MCMC
##
mdp(Y=Y,
pxy=1,exy=1,ex=1,ix=1,iy=2,iz=3,
q=10,cc=10)

plot results
##
plt.pxy(img=T,lg=T) # biv density estimate p(x,y),
points(Y[1],Y[2],pch=19) # add data points

same as a contour plot
##
plt.pxy(img=F,lg=F)
points(Y[1],Y[2],pch=19)

E(z | x, data)
##
plt.ex(sd=T)
plt.ex(sim=T)

E(z | x,y, data)
##
plt.exy()

note: for marginals on different coordinates need to
re-run mdp with new values for ix,iy,iz
End(Not run)
```
Index

*Topic package
  mdp-package, 1

DPpackage, 2, 4, 5, 7, 9

mdp, 2, 5, 7, 8
mdp-package, 3–8
mdp-package, 1

plt.ex, 4
plt.exy, 6
plt.pxy, 8