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RESEARCH ARTICLE

CONVERGENCE RATES OF ERGODIC LIMITS FOR
SEMIGROUPS AND COSINE FUNCTIONS*

Jerome A. Goldstein, Charles Radin,
and R. E. Showalter

Communicated by Karl H. Hofmann

Suppose {Etl t > 0} is a uniformly bounded strongly continuous
semigroup of operators on the Banach space X and denote its genera-
tor by L. We show the averages (1/T) f(;r Et dt converge in the
strong operator topology as T + « at the rate 0(1/T) on the direct
sum R(L) @ K(L) , that they converge on the closed subspace
R(—L-)- ® K(L) to a bounded projection, and this subspace is all of X
when X is reflexive. For cosine functions we also show the first

two results in general, and the third for X reflexive.

1. INTRODUCTION

Let L be the generator of a uniformly bounded strongly continu-
ous semigroup of linear operators {Etl t 2 0} on the real or complex
Banach space X. We denote by R(B) and K(B) the range and kernel,
respectively, of the operator B. Our first interest is the
(ergodic) limit as T + = of the averagé given by the strong integral
Ay = (/M) ) E,

the direct sum R(L) @ K(L) , that it converges on the closed subspace

dt. We show AT converges at the rate ((1/T) on

Xo = R(L) @ K(L) to a bounded projection, and that Xo = X when X

is reflexive.
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The semigroup {Etl t 2 0} is the exponential function by which
the solution of the Cauchy problem

u'(t) = Lu(t), t > 0, u(0) = x

is represented in the form u(t) = Etx (see [3,5]). 1In a similar

manner, the solution of the second order Cauchy problem
v"(t) = Av(t), t e R, v(0) =x, v'(0) = y

is represented in the form v(t) = Ctx + Sty , where we assume that A
is the generator of a uniformly bounded strongly continuous cosine
function {Ctl t € R}' on X. The corresponding sine function is
given by the strong integral St = 4: Cs ds ; see e.g. [1] or [7] for
details. We show that the strong integral average (1/T) 4? Ct dt
converges at the rate ((1/T) on R(A) @ K(A) , that it converges on
the closed subspace X1 = ETXT ® K(A) to a bounded projection, and

that X1 = X when X is reflexive.

2. SEMIGROUPS
Our key result is
THEOREM 1. For x =y + z 1in the direct sum R(L) & K(L) ¢ X ,

“ATx -z||=0/T) as T > .

PROOF. Let y = Lw. Then

AX -z =2y = (1/T) T 4

- 0 at (Etw) dt = (ETw - w)/T.

And since ATy —> 0 for y in R(L) while ATz =2z for z in

K(L) , the direct sum is well defined. []

COROLLARY 1. X R(L) ® K(L) <8 closed in X , and for each

0
X=y +z¢ X0 ’

”ATx -z||+0 as T > .
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PROOF. First we note the simple fact that the set of x in X , for
which ATx is strongly convergent, is closed. Next we define the

projection P by

(X. c) R(L) ® K(L) > x N strong lim A_x € K(L)
0 Tosco T

and note that ”P]IS sup “Etll< @, Therefore
t20
P(R(L)) = {0}

(so R(L) n K(L) = {0} and the direct sum is well defined), and if
R(L) + — + =
yn e R(L) , z e K(L) and Y, z, > v € X then P(yn zn)

z, —> Pv , so {zn} , and therefore {yn} , is Cauchy which proves

that R(L) ® K(L) is closed. [
With a further assumption we obtain

COROLLARY 2. (THE MEAN ERGODIC THEOREM FOR REFLEXIVE BANACH
SPACES) If X <s reflexive then R(L) ® K(L) = X , so that for each

x in X, A X comverges strongly as T -+ =.

PROOF. Using the canonical identification of X with its double dual

X**  ywe have for L = L** [2],

K(L* = R(LY, RDT = K(@L*) ,

k@mt = R@, R@CHT = X@) ,

L
where Y denotes the annihilator of Y ¢ X in X*. We also need
the standard facts [4] that, since X is reflexive, {E;[ t > 0}
constitutes a uniformly bounded, strongly continuous semigroup on X* ,

with generator L*. Now assuming that R(L) & K(L) # X , we have
L =1 =
K(L)" n R@T 2 [R@D) e x(@)1* # {0}.
But then E}L*) n K(L*) # {0} which contradicts (1) applied to {E;}.U

REMARKS AND EXAMPLES. (a) The convergence rate ()(1/T) can be lost

in taking the closure of R(L) & K(L). For example, let X = Coll,m) ’
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the bounded continuous functions on [1,®), vanishing at <« , with the
supremum norm, and take (Etx) (s) = x(t + s). Then L = d/ds and

xo(s) = 1/s satisfies x_ € R(L) = X but ”ATXOH = (1/T)log(l + T),.

o]

(b) It is well known (and easily verified) that ATx converges
at the rate ((1/T) for those x in U{R(I - Et)l t 2 0}. However

the identity L f: E, X dt = E;x - x shows U{R(I - Et)l t20} c R(L).

This containment can be proper. For example, consider (Etx) (s) =

exp(ist) * x(s) on L2(R,ds) and xo(s) =g °exp(-sz).

3. COSINE FUNCTIONS

Our corresponding results for cosine and sine functions are given

in the following theorem.

THEOREM 2. For x =y + z 1in the direct sun R(A) @ K(A) < X ,
I /% ¢ x at - z|| = 0(1=p
TO "t T
1.7 -G = oL ®
”T J'0 Stxdt (z)z” O(W) as |1| + .

PROOF. Since Ct is even and St is odd, it suffices to verify the

above for T + «». Setting y = Aw , we integrate the identity

d
—C w=AS w = Sty to obtain

dt 't t
1.7 1 1
T fo S,y dt = T(CTW w) O(T).
a 2
Since -3 th = Ct Aw is bounded on t 2 0 we obtain from [4] the
dat

estimate

sup "st(Aw)” < 4 sup ”Ct aw|| « sup ||th”.
t=0 t20

This shows sty is bounded on t 2 0 and the definition of St then

gives
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1 =1 = o(&
T C, ¥at =TSy =0(D.

. e
Since 2z € K(Aa) ,azctz=l\stz=0,so Ctz=z and Stz=tz

for t € R. Thus we obtain
T

1 T
foctzdt z,TISzdt—(z)z.

L

Since {St} is uniformly bounded on each point in R(A) , the preceding
computation shows that R(A) n K(a) = {0}. [

By replacing the semigroup in the proof of Corollary 1 by the
cosine function we obtain a proof of

COROLLARY 3. Xl = R(A) ® K(A) 18 closed in X and for each

x=y+zeX1
1 .T
T/ € xdt-zl[+0 as [T+ =.

By restricting ourselves to reflexive spaces we obtain a mean

ergodic theorem for cosine functions.

COROLLARY 4. If X <8 reflexive then R(A) ® XK(A) = X , so for

each xeX,—l-fT

T o Cp X dt comverges strongly as T + .

PROOF. A generates a uniformly bounded strongly continuous semigroup
given by

—52/4t

l/zfme C x ds
0 s

Ex = (mt)

(cf. [1]). The result now follows from the proof of Corollary 2. [J
REMARKS AND EXAMPLES. (c) Theorem 2 shows that {St} is point-
wise bounded on R(A) and unbounded on non-zero points in K(A). The

example of A 2 0 on X =R shows we may have Stx bounded if and

only if x € R(A). Moreover, even when K(A) = {0} , we do not
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necessarily have {St} pointwise bounded on EIXY: For example, on the
Hilbert space X = LZ(IU the cosine function of contractions

Ctx(s) = (1/2) (x(s+t) + x(s-t)) has generator A = é%z‘ with R(a) = X
and K(A) = {0}. The functions x € X defined as 1/v/2n on [-n,n]

and zero elsewhere on R satisfy “xn||= 1 and “St xJI 2 n for

t 2 2n. If {St x} were bounded for each x € R(A) = X , then by the
uniform boundedness principle we would have a contradiction.

(d) Frequently one can show A generates a cosine function on
X by verifying that L = (2 g

product space; cf. [7, Proposition 2.6]. However, an example in [6]

) generates a semigroup on a suitable
shows this reduction to the semigroup case is not always possible, so

the results of Section 3 cannot be obtained in general from their

counterparts in Section 2.
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