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Z" versus Z Actions for Systems of Finite Type

CHARLES RADIN

ABSTRACT. We consider dynamical systems of finite type with Z™ actions,
and discuss the differences between the cases n = 1 and n 2 2. For the
latter we examine the degree of “order” which is possible when the system
1s uniquely ergodic.

Systems of finite type

We begin with some notation. Let A be a finite alphabet, and consider the
“infinite arrays” A%" as functions on Z". We say that the dynamical system
which consists of the natural action of Z” on the compact X C AZ" is “of finite
type” if there is some finite C C Z™ and finite set F of finite arrays from A
(thought of as restrictions z|c to C of functions z in A%") such that

(1) X:XFE{.:UGAZ":fora,lltEZ",:z:tlcéF}

where z4(j) = z(j - t) for t,j € Z".

It is easy to see that certain choices of F will lead to an empty Xp. For this
and other reasons it is useful to “redefine” X F, Whereby instead of forbidding
restrictions in F' from appearing in the arrays we Just minimize their appear-
ance. We do this using the “energy function” E : A€ — R defined to be the

characteristic function of F. (That is, E(f) = 1 for f € F, E(f)=0for f ¢ F.)
We then define:

(2) Xp= {:c € AZ" : for every finite B C Z",
E®(z) = inf{EB(y) : y = r outside B}}

where
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X is the set of arrays in AZ" in which no translate of an array in F' appears,
while Xz just minimizes the appearance of such arrays. Clearly Xp C XE.
Furthermore it is easy to prove using the compactness of AZ" that X is always
nonempty, in fact for an arbitrary function E : A€ — R, not just characteristic
functions. We therefore define a “zero temperature” dynamical system as one
defined by 2) for any fixed function E. (See [8] for other motivation, from
physics.)

Unique ergodicity

We say the compact X C AZ" is “uniquely ergodic” if there is one and only
one Borel probability measure on X invariant under the natural action of Z".
Consider the following three classes of uniquely ergodic systems.

i) All uniquely ergodic X C A%’
ii) All uniquely ergodic zero temperature X C AZ"
iii) All uniquely ergodic X C AZ" of finite type

It is clear by construction that there is containment as one descends the list,
but proper containment is not obvious. Our first result along this line is the
following (known as the Third Law of Thermodynamics).

THEOREM. (J. Migkisz and C. R. [7]). All uniquely ergodic zero temperature
X C AZ" have zero topological entropy.

(It can be shown that if n = 1 then the unique invariant measure is supported by
a finite set, so the result is obvious in that case. For a discussion of the general
case see [8].) This together with the theorem of J ewett-Kreiger-Weiss [12] shows
that the first containment is proper. We do not know a proof that the second
containment is proper, but there is a preprint by Migkisz [3] going part way.

7" Versus Z Actions

To say that a symbolic system X C AZ" is of finite type implies that each
variable, with values in A, corresponding to a point of Z" can only directly
affect nearby variables. (A convenient generalization of systems of finite type to
actions of R" is discussed in [9].) This is reminiscent of the differential equations
of the natural sciences. One of the main points we wish to make follows by
analyzing such nonmathematical applications of Z" and Z actions. We envision
7 actions as typically modeling evolution problems; that is, Z represents time.
We reformulated the condition of finite type above as an optimization condition,
for reasons we will soon discuss. With this in mind, we note that evolution
problems can also sometimes be reformulated as optimization problems — think
of the least action principle for Hamiltonian systems for example. However in
such a reformulation it is typical that one seeks as solutions critical points, not
global optima, and that such critical points can represent a wide variety of curves.
On the other hand, the n translation variables of Z" actions often represent
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spatial translations, and, as in the crystal problem of condensed matter physics,
or the sphere packing problem, or the problems of space tiling, what one seeks
1s typically (generically [5,6,7]) a unique solution (a well defined “structure”,
so to speak) to a global optimization problem of the general form of our zero
temperature condition (8]. When properly formulated, the solution is sought
In a space of invariant probability measures, and the uniqueness of the solution
translates into the property of unique ergodicity.

Thus Z actions and Z" actions naturally represent very different situations,
the former accomomodating a very flexible class of arrays (in particular they are
highly nonunique), and the latter representing some unique structure such as a
crystal or quasicrystal. This is “why” unique ergodicity is not as natural for Z
actions as it is for Z" actions.

Our interest is primarily with Z" actions, and more specifically in the degree
to which uniquely ergodic zero temperature systems (or systems of finite type)
tend to be “ordered”. (Why does low temperature matter tend to be crystalline,
why do there always seem to be periodic examples among the densest sphere
packings in any dimension, why is it hard to find tiles which can only tile space
nonperiodically? See [8].) Consider the following extreme cases of “order” for a
zero temperature system X with unique invariant measure p.

a) Periodic; (corresponding to a finite set X, the orbit of a periodic array)
b) Quasiperiodic; (corresponding to X with purely discrete dense spectrum)
c) Weakly mixing p; (corresponding to purely singular continuous spectrum)

d) Strongly mixing p; (roughly corresponding to purely absolutely continu-
ous spectrum)

(Note that as in probability theory we are using measure theoretic — chiefly
spectral — properties to analyze the order of the dynamical system.)

Examples of a) are easy to obtain. Examples of b) were first obtained by
R. Berger in 1966 [1], with nicer examples by R. Robinson [10] and others.
Examples of c) are due to S. Mozes in 1989 [4,7]. It is unknown if there are
examples of d), and this is an important open problem.

There are several reasons for our introduction of the class of zero temperature
systems. They constitute a natural generalization of systems of finite type with
the conditions defining the system still strictly local, and there are real param-
eters for the class so that one can address questions of genericity. Furthermore,
ever since the work of G. Toulouse [11,2] it has been commonly felt by condensed
matter theorists that energy functions E as above which are “frustrated” (that
s, cannot be reformulated as a characteristic function as is the case for systems
of finite type), are more likely to lead to “disorder” - or smooth spectrum, as in
models of spin glasses. In other words, physical intuition suggests that the class
of zero temperature systems is broader than, and should contain more disordered
examples than (perhaps of type d) above), the class of systems of finite type.
Needless to say, it would be most interesting if this could be proved true.
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