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Abstract We address the question of whether solids may be distinguished from fluids by
their response to shear stress.

Keywords Rigidity · Shear constant · Hard disks · Dilatancy

1 Introduction

Our focus is the theoretical modeling, within statistical mechanics, of the solid/fluid phase
transition of matter in thermal equilibrium, for instance the ice/water transition, at high
pressure and temperature, and in particular the use of rigidity to distinguish the phases.

There are no analytic proofs of a solid/fluid transition in any statistical mechanics model
which uses particles in space interacting through simple short range forces (see however [1]),
though there are many simulations showing the transition, both Monte Carlo and molecu-
lar dynamics. Since we concentrate on the transition at high pressure and temperature, at
which short range repulsion dominates the interparticle interaction, the classical hard sphere
model is appropriate [2, page 84]; again there are no proofs of a phase transition in this
model, but there are many simulations [2, 3]. Traditionally such a transition is “understood”
theoretically through an order parameter associated with some global (emergent) property
of the bulk material, in particular the molecular-level crystalline symmetry which can be
detected experimentally in X-ray scattering [4]. This paper follows an alternative proposal
of Anderson [5], namely the use of rigidity, the response to stress, to distinguish the phases,
for instance in a hard sphere model.

Stress, both pressure and shear, will be understood here as an external influence (force
per unit area) on the boundary of a finite sample of the material, with pressure acting on the
volume and shear on the shape; its extension to a uniform stress field inside the material is
an important issue to be addressed. Pressure is commonly modeled in statistical mechanics
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Fig. 1 The result of a macroscopic change of strain: the interiors of (a) and (b) are the same

as a parameter in a pressure ensemble which controls the deformations of volume. A similar
approach can be followed for shear stress, using a set of parameters controlling fluctuations
of the shape of the container, though this is much less common; see however [6, 7].

One might in principle be able to model the distinction between ice and water through
statistical mechanics estimates of compressibility (−[∂V/∂p]/V ), in which V is volume
and p is pressure. Unfortunately the compressibility of ice and water are both high and the
difference is relatively small, a common circumstance for a solid/fluid transition. However
the difference in the corresponding elastic shear constants is, experimentally, much greater,
since elastic shear constants are negligible for (isotropic) fluids. This suggests an advantage
in using shear instead of pressure to distinguish a solid from its melt.

But, as emphasized for instance in the recent paper of Sausset et al. [8], for a material in
equilibrium any linear response to macroscopic shear must be transient in time, making it
harder to model an elastic shear constant within equilibrium statistical mechanics. Indeed,
there are proofs that in equilibrium statistical mechanics the free energy is independent of
the shape of the material [9, 10], which suggests that shear stress be properly considered
as taking a material out of equilibrium. In [8] solids are treated as highly viscous fluids and
solids are distinguished from fluids by a dynamical feature, the divergence of the viscosity as
the shear stress rate vanishes. Since we are using an equilibrium model we focus instead on
a spatial issue, namely the question of whether the response to shear is localized at a small
part of the material or is (uniformly) distributed throughout the material. We concentrate on
the response to shear stress in the limit of zero shear, computed before any bulk limit. (At
zero shear stress the shape of the material is unconstrained; imagine a triaxial shear cell,
with negligible friction and in zero gravity.) Mathematically, we are taking advantage of the
fact that the limit of vanishing shear need not commute with the infinite volume limit.

Our approach is based on the following idea. A configuration of hard spheres at high
pressure must be approximately crystalline, with most particles trapped in a cage of neigh-
bors. A macroscopic change in container shape can be accommodated by adjustments only
near the boundary, without affecting the structure in the bulk interior; see Fig. 1. On the con-
trary a very small change of shape cannot be accommodated in this way and might result in
a small deformation of internal structure throughout the configuration rather than just near
the boundary; see Fig. 2.

In other words, there may be a regime in which the response to shear is linear and extends
throughout the material, but such a regime, measured by the angle of deformation, would
have to vanish with the size of the system, constituting an equilibrium alternative to the
dynamical effect discussed by Sausset et al. If indeed the response extends throughout the
material, which is by no means evident, it would be appropriate to measure it, in a finite
system at constant high pressure, by the rate of change in density φ with respect to shear
stress f , computed at f = 0. We expect this to be large in magnitude at high pressure, in
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Fig. 2 The result of a small change of strain: the interiors of (a) and (b) are different, the underlying lattice
becoming distorted

the solid phase. At low pressure the model should represent a fluid with negligible response,
and we propose this difference as a means of detecting the solid/fluid phase transition.

In the remainder of this paper we give indirect support to the proposition that for in-
finitesimal shear the material responds linearly throughout the finite sample. We do this
by simulation of the two dimensional hard disk model, in a stress (pressure and shear) en-
semble. Our measurements in this model show an emerging resistance to shear at volume
fraction about 0.7, very close to the known transition(s) for hard disks. Our simulation does
not show the details of the transition, which are well displayed in the recent tour-de-force by
Bernard and Krauth [11]. Instead, the point of this work is merely to illustrate the feasibility
of using density response to infinitesimal shear to probe a solid/fluid phase transition, in the
tradition of Anderson [5].

2 The Model and Simulations

We consider arrangements of a fixed number N of hard disks of fixed radius σ inside various
parallelograms, with the volume and shape of the parallelograms allowed to vary. More
precisely, we consider arrangements of such disks inside boundaries formed by placing disks
along the edges of parallelograms at regular intervals as in Fig. 3. These boundary disks lie
on a regular triangular lattice when the underlying parallelogram is rectangular, and all the
parallelograms are related to each other via maps (on the boundary disk centers) of the form
(x, y) → (λx + νλy,λy) for real λ, ν, with λ > 0.

We employ a “stress ensemble” which uses parameters p and f to control the volume V

and deformations of shape α, respectively, of the parallelograms. (We want to use the La-
grange multipliers p and f to model pressure and shear stress.) More precisely, we consider
probability measures (states) which minimize the free energy

F(p,f ) = S − βpV + βf αV. (1)

Here β is the inverse temperature and α is the angle of inclination of a parallelogram, with
α = 0 representing a rectangle (see Fig. 3). Such an ensemble has partition function

Zp,f =
∫ ∞

0

∫ ∞

0

(∫
V,α

dC

)
exp(−βpV + βf αV )dV dα, (2)

where
∫

V,α
dC represents integration over all arrangements of hard disks in a parallelogram

of volume V and shape α. (Temperature plays a simple role in hard core models such as
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Fig. 3 An arrangement of disks
in a parallelogram. Boundary
disks are in bold; α is the angle
formed between the boundary
disks and a vertical line

this, so we will assume that numerically β = 1 where convenient. Also we are using the
usual “reduced” ensemble in which the velocity variables have been integrated out.) By the
change of coordinates

ψV,α : (x, y) → (V −1/2(x − tan(α)y),V −1/2y), (3)

considered as a function on the disk centers, the partition function may be rewritten as

Zp,f =
∫ ∞

0

∫ ∞

0

∫



�(ψ−1
V,α(Q))V N exp(−βpV + βf αV )dQdV dα, (4)

where �(C) = 1 if no two disks of radius σ with centers from C overlap, �(C) = 0 oth-
erwise, and 
 ⊂ R

2 is a fixed rectangular area. The probability density of an arrangement
of (nonoverlapping) hard disks in a parallelogram of volume V and shape α is then propor-
tional to

V N exp(−βpV + βf αV ). (5)

Because we are interested only in infinitesimal shear, we impose the restriction 0 ≤ α ≤
0.01, with α measured in radians. (For the densities and α we consider, the boundary disks
do not come close to overlapping.)

Let φp,f be the average volume fraction of arrangements at fixed p and f . To measure the
volume response of arrangements of disks to an infinitesimal change in shape, we estimate
the derivative

�(p) := ∂φp,f

∂f

∣∣∣∣
f =0

. (6)

By definition the average volume fraction φp,f is given by

φp,f =
∫ ∞

0

∫ ∞

0

∫



�(ψ−1
V,α(Q))(Nπσ 2/V )V N exp(−βpV + βf αV )dQdV dα. (7)

Differentiating with respect to f , one obtains

�(p) = βNπσ 2

[
〈α〉p,0 −

〈 1

V

〉
p,0

〈V α〉p,0

]
(8)

with 〈·〉p,f representing an average value at fixed p and f . Applying equation (8), we obtain
�(p) from the average values of α, 1/V and V α, in our simulations at pressure p with
f = 0.
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The change from �(p) ≡ 0 to �(p) 	 0 represents the development of rigidity in the
system, in the sense that the system has to overcome pressure p to expand in response to
infinitesimal shear.

Our simulations use Monte Carlo steps consisting of moves which change the size and
shape of the arrangements of disks, as well as so-called “event-chain” movements of mul-
tiple disks [11]. In the former types of moves, the coordinates of disk centers (x, y) are
mapped to (λx,λy) or (x + ρy,y), respectively. Here λ = (V + ηε)1/2/V 1/2 and ρ = νδ,
where η, ν are (independent) random variables distributed uniformly in (−1,1), and ε and
δ are positive real parameters.

If such a move results in overlap of disks, it is rejected. These types of moves are (each)
attempted with frequency N−1/2/4. In the latter type of move, employed recently in [11],
a non-boundary disk and a random direction are selected, with the direction being up, down,
left or right (that is, parallel to one of the coordinate axes). Additionally a displacement
L is selected uniformly at random from the interval (0,

√
V − Nπσ 2/2). The particle is

then moved along the chosen direction until it strikes another particle, at which point that
particle moves in the same direction until it strikes another particle, and so on. The process
continues until a total displacement of L is obtained, the total displacement being the sum of
the displacements of all the particles. If the process results in the displacement of a boundary
particle, then the move is rejected. (It is in principle possible that such moves result in disks
moving outside the boundary, but this does not occur for the pressures we simulate.) Such
moves are attempted with frequency 1 − N−1/2/2.

We investigate systems with N = 3520, N = 5451, N = 7790, N = 10656, and N =
13970 disks, beginning with perfectly crystalline arrangements of the disks. At each pressure
p we run these systems to 2 × 1010, 2.5 × 1010, 3 × 1010, 3.5 × 1010, and 4 × 1010 Monte
Carlo steps, respectively. This results in about 2 × 107 displacements per particle, and about
107 fluctuations in volume and shape, for each p and system size N . We checked that our
runs were long enough for volume fraction φ and shape α to equilibrate, after a burn-in time
of at most about 10% of the run (with the exception of the shape α at large p, as discussed
below); see Fig. 4. Therefore in our main data, shown in Fig. 5 (with confidence intervals in
Fig. 6), we have thrown away the first 10% of each Monte Carlo run. Along with our main
data we also measured mixing times, defined as the number of Monte Carlo steps before the
standard (unbiased) autocorrelation of the time series for φp,0 first crosses zero; see Fig. 5.
Excluding the largest system (N = 13970), mixing times were no more than 15% of our
Monte Carlo runs. For 90% confidence intervals, we run 10 independent copies of every
simulation and use Student’s t -distribution with 9 degrees of freedom on the average values
obtained from each of the 10 copies; see Fig. 6. We do not compute confidence intervals for
the largest system, N = 13970.

We find the volume response parameter �(p) defined in (8) exhibits the following be-
havior (see Fig. 5). At low pressure p or volume fraction φ = φp,0, �(p) is approximately
zero, indicating there is no volume response to an infinitesimal shear. We interpret this as
meaning the hard disk fluid does not resist a small shear stress. As φ rises above 0.70, the
volume response � begins to deviate from zero. Our data is not fine enough to distinguish the
details of the transitions shown in [11], and in particular does not justify estimating specific
transition values for p.

We note that the volume response � measured in our simulations tapers off to zero at
large p (or high density). We do not expect this tapering to be accurate; instead we interpret
this as a sign that the simulations begin to get “stuck” as densities increase. This is confirmed
by checking that the simulations no longer explore the full range of shapes α; see Fig. 4(c)–
(d). We expect the true behavior of �, as a function of φ, to be non-increasing, indicating a
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Fig. 4 Time series for systems of N = 10656 disks, with t in units of 3.5 × 108 Monte Carlo steps, and at
f = 0, clockwise from top left: (a), (b) Volume fraction φ vs. t ; (c), (d) shape α vs. t

volume response into the nonfluid phases. We conclude, then, that the hard disk solid resists
a small positive shear stress, while the fluid does not.

3 Summary

The rigidity of solids can be modeled in various ways. We have chosen to use equilibrium
statistical mechanics, in large extent because it is the most convincing formalism in which
to distinguish solids from fluids, which is our motivation for studying rigidity, following
Anderson [5]. Even within equilibrium statistical mechanics one could model response to
shear more simply with a harmonic crystal model [12, Chap. 22], with long range quadratic
forces between particles assigned neighboring equilibrium sites. In fact this is commonly
used to model sound (pressure) propagation, but does not exhibit a fluid phase and therefore
does not allow comparison between solid and fluid phases, which is the purpose of our work.
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Fig. 5 Volume fraction data, clockwise from top left: (a) Average volume fraction φp,0 vs. pressure

βp(2σ)2, with confidence intervals smaller than the data markers; (b) Differential volume response � vs.
pressure βp(2σ)2; (c) Differential volume response � vs. average volume fraction φp,0; (d) Mixing time, as
a fraction of total number of Monte Carlo steps, vs. φp,0

The most awkward consequence of using equilibrium statistical mechanics is that to
obtain the sharp solid/fluid distinction one must take the infinite volume limit while for
infinite systems one cannot model shear stress, as noted in the introduction. Our solution to
this was to model the shear in finite volume—where there are no well defined solid or fluid
phases but the system can model shear stress—and measure the volume response in the limit
of vanishing shear, before taking the infinite volume limit.

The other weakness of our approach is technical: in order to measure the volume re-
sponse to stress we employed variation in both strain and volume, which is costly in sim-
ulation time compared to the usual Monte Carlo technique for the hard disk system, which
uses fixed volume, strain and particle number. We favor this ensemble for its theoretical ad-
vantages: calculating response to stress in our ensemble is far simpler than in an ensemble
which fixes, say, density and strain—in our ensemble we can calculate the density response
directly from fluctuations, whereas an equivalent analysis in the latter model would require
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Fig. 6 Confidence intervals for differential volume response � vs. pressure βp(2σ)2, for systems with
(clockwise from top left) N = 3520, N = 5451, N = 7790, and N = 10656

taking a numerical derivative of average pressure as shear strain vanishes, with pressure
computed approximately (perhaps from a virial expansion; see [11]). Our data, due to the
large computation time associated with fluctuations in volume and strain, is not sufficient
to demonstrate the details of the transitions, as is done in [11]. We feel this is acceptable in
exchange for demonstrating the feasibility of shear response as a theoretical tool to analyze
the solid/fluid transition.

In conclusion we note that our approach is similar to the analysis of the dilatancy tran-
sition recently found experimentally [13] in (nonequilibrium) static, granular matter, and its
modeling [14] with a stress ensemble. In effect we are proposing to model the solid/fluid
transition of equilibrium matter as a dilatancy transition, a sharp change between the solid
and fluid equilibrium phases in their volume response to (infinitesimal) shear, instead of by
a change in symmetry of the molecular pattern, as is the common practice.
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