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Working with lattice-gas models, we give evidence that even at zero temperature matter does not
always tend to form crystals; unit cells may tend to go out of phase. In particular, our results imply
that noncrystalline equilibrium materials such as quasicrystals and incommensurate solids are not

aberrations, but rather should be expected.

The conventional intuitive understanding of the crys-
talline state of matter is based on perturbation about zero
temperature, namely, it is argued that at zero tempera-
ture minimization of the free energy can only be obtained
with a periodic arrangement of particles (a perfect crys-
tal) which at nonzero temperature is disrupted by defects
due to entropy. We will show below that this intuitive
picture is wrong for the following surprising reason: (at
least) among classical lattice-gas models, for most (i.e.,
generic) interactions even at zero temperature the
minimum free-energy arrangement cannot in fact be
periodic, i.e., is not crystalline. Since such models are
known to be physically reasonable for at least some ma-
terials, this shows that one should not view noncrystalline
equilibrium solids, such as quasicrystals and incommens-
urates, as in any sense unnatural, but should in fact ex-
pect to find such materials.

Before going any further, we must make some temper-
ing remarks about the notion of genericity. A subset of a
topological space X (which we will assume is a complete
metric space, or better yet a Banach space) is said to be
generic if it contains a countable intersection of dense
open subsets of X. Note that a countable intersection of
generic sets must again be generic. One of the key facts
about generic sets is that a generic set is automatically
dense; this is a fundamental result due to Baire. These
two facts together are the basis for using the property of
genericity to characterize those sets containing ‘“most” of
the points of X. Now there are several other mathemati-
cal notions available, besides genericity, to make precise
the intuitive notion that a set contains most points. In a
finite-dimensional Euclidean space one of the best known
is that the set has complement of (Lebesgue) measure
zero. However there are simple examples of sets that are
generic but of measure zero, so these two notions of
largeness (and other common ones such as dimension) are
by no means the same. If one is using such a notion to
gain information or intuition, such information follows
only to the extent that the notion is appropriate. In finite-
dimensional Euclidean space it is more common to use
the measure theoretical notion if there is a natural proba-
bility measure around, since this makes clear in what
sense the points in the complement of the ‘“large” set can
be neglected. However in infinite-dimensional spaces
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there is rarely a measure available which can play this
role. To be specific, for us the space X will be the space
of all allowed interactions for a lattice-gas model, and
there does not seem to be any natural measure on X
which can be used to define largeness. In such a situation
mathematicians have found that genericity is often the
best of bad alternatives and it is with this note of caution
that we use the idea of genericity. (See Ref. 1 for a good
mathematical introduction to genericity.) To summarize,
we assume that the behavior of generic interactions is evi-
dence of the behavior of typical interactions; by no means
is it convincing proof that typical physical interactions
behave in that manner.

The attempt to deduce, within statistical mechanics,
the basic mechanism which forces matter to be crystalline
at low temperature is of course an old and highly venerat-
ed problem.?”® There has been a concerted attack on the
problem in the last decade’ 3! (see Ref. 26 for a detailed
history), and the best result to date is a recent proof27
that for most (i.e., generic) interactions the ground state
at least exhibits long-range order (again, among classical
lattice-gas models). We will use similar techniques to
show that these ordered ground states are not perfectly
ordered, i.e., not strictly periodic. It remains unresolved
precisely what a typical ground state, which has long-
range order but is not fully ordered, in fact looks like;
needless to say, such states may be hard to distinguish
from perfectly periodic ones.

In classical lattice-gas models one considers a field, ¢,
on, say, the three-dimensional simple-cubic lattice, VAS
with finitely many possible values at each lattice site,
each value interpreted as the occupation status of the
site; one value, e, is reserved to mean “empty” and the
others represent different internal states of a single parti-
cle. We will refer to a set of field variables for all sites as
a ‘“‘configuration.” By a ‘“‘ground-state distribution” we
mean a limit, as temperature goes to zero, of the
translation-invariant grand canonical probability distri-
bution on the set of all configurations, and by a “‘ground-
state configuration” we mean any configuration in the
support of the ground-state distribution. The (two-body,
translation-invariant) interaction between state a at site x
and state b at site x+y will be denoted V' (a,b;y); if y=0,
this vanishes if either a£b or both a and b represent
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empty, and otherwise it represents the (negative of) the
chemical potential. We only allow those interactions V
for which

V= 3 3 IVabsyl<e
y623 a,b
thereby defining a norm on the space of interactions. (We
will have more to say about this norm near the end of this
paper.) To make the lattice approximation convincing
one should have many lattice spacings within a typical in-
terparticle separation, and to ensure this it is common to
add an “extended-hard-core” condition to the model,
namely, to require that in all (allowed) configurations no
two particles are allowed closer together than some fixed
multiple M > 1 of the lattice spacing; for simplicity we
will assume M =22, For any configuration ¢ and in-
teraction V let ey (@) be the energy per site in ¢ (assuming
it exists). Note that ey, y(d)=ey(d)+ey(d) and
ley(¢)| <||V||, for any V, U, and ¢. Let W be an interac-
tion of finite range r, i.e., W(a,b;x)=0 if |x| >r. (Note
that the set of all finite-range interactions is dense in the
space of all interactions.) Let x;, Xx,, and x; be the usual

basis in Z%, and for each positive integer n let ©°" be the
interaction:

_0;1/2,
0" (a,b;x)= if x=a,x; for some j, and a =b
0, otherwise
|
$)= o )+ « (P)=[e
ev(®) Cw e 9 v-w+e'" o=l w

where a, =[3n (W)]%(n +5)! and n (W) is the smallest in-
teger larger than (r +1)||W/||. So for fixed interaction W
of finite range r, and with this definition of a, (which
must be a multiple of n! in order to account for all possi-
ble periods less than n) we have the following.

Lemma. If |V—(W—6")|<(r+1)|W|/a, then
the only periodic ground-state configuration which ¥V can
have, of period less than n along all three axes, is the vac-
uum.

Proof. Assume otherwise, and call the periodic
ground-state configuration, of period m <n, ¢. Let ¢; be
the translate of ¢ by x;, and note that by assumption ¢
and ¢; must differ in every unit cell of ¢ for some j =1, 2,
or 3; without loss of generality assume this occurs for
j =1. Define the periodic configuration ¢ by

o(x)=¢(x) if 2ka, <x, <(2k +1)a,
=¢,(x) if (2k +1)a, <x; <(2k +2)a,
=e if x,=(2k +1)a, or (2k +2)a,
for all integers k. Basically, ¢ consists of alternating
strips of ¢ and the translate ¢, of ¢, with particles elim-

inated at the edges of the strips to satisfy the hard-core
exclusion. Then

)+ (r+D|W| /a,]—m a2+ (r D\ W)| /a,
79"

<e o (@) H2(r +D||W| /a, —n Pa; ?
w—-e"

Sey(¢)+ew‘eanvy(¢)+2(r +1)||W| /a,—n 3a,'"?

<ey () +3(r+1)||W|/a,—n 3a;*<ey(d),

where the term in brackets is an estimate of the energy
cost at the edges of the strips: r||W/|| counting all possi-
ble interactions through W across the edges of the strips,
the additional |W| due to eliminated particles at the
edges, and the m ~3 term due to ©"" since there is at least
one particle in each unit cell of ¢ which is no longer in-
teracting through ©" across the edges of the strips.
Since ¢ is a ground state ey, (¢) cannot be greater than
ey () for any ¥, and this proves the lemma.
Now define, for each positive integer k,
B,=U U M|V —(w—6")|<(r+1)|W|/a,}
W n2k

and B =N, ,B,. Note that each B, is open and dense
in the Banach space of interactions, and therefore B is
generic' —i.e., it contains most interactions. If ¥ belongs
to B there exists, for each k =1, W, of range r, and n = k
such that |V —(W,—6")|| <(r,+1)|W,]||/a,, so the
lemma is applicable. Since this is true for all kK we con-
clude that the only periodic ground-state configuration

that V can have is the vacuum. We summarize our re-
sults as follows.

Theorem. For most interactions with extended hard
core (i.e., generically), no ground-state configuration is
periodic unless it is the vacuum.

Remarks. (1) Since genericity implies denseness, we see
that for any interaction there is a perturbation of it, as
small as desired, for which the only periodic ground state
possible is the vacuum. (2) The theorem is only of in-
terest if the norm we are using is reasonable. We note the
following in this regard. First, it is the most commonly
used norm in mathematical proofs of the qualitative be-
havior of many-body systems (see, for example, Ref. 32)
because it corresponds to the restriction that the sum, of
the energies of interaction of any fixed particle with all
other particles, be finite. In particular, among spherically
symmetric interactions this requires that the interactions
fall off faster than 1/r3, so it is roughly a restriction to
short range. On the other hand, the interactions which
appear in the proof (which appear to have long range but
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of course do not—they are merely highly directional)
may not give the correct physical mechanism; one reason
to suspect this is that there are nearest-neighbor mod-
els!8720.22.23.25 which have noncrystalline ground states,
of special interest to the study of quasicrystals?® since
they are based on examples of nonperiodic tiling models,
and these models do not seem to be predicted by the
proof.

This result together with that of Ref. 27 gives a new
picture of what a ground state must look like—it has
long-range order from Ref. 27, but not the perfect order
of true periodicity. Unfortunately it is still not clear how
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to characterize, geometrically, how these nonperiodic
ground-state configurations should appear although from
the above argument it seems that large blocks of unit
cells tend to go out of phase with one another.

In conclusion we note that our basic result, that the
noncrystalline ground states of materials such as quasi-
crystals and incommensurate solids are not aberrations
but quite natural, should lead to a better understanding
of all solids.
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