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The pinwheel tilings of
the plane

By CHARLES RADIN*

Introduction

The subject of forced tilings {also called aperiodic tilings) was created by
the philosopher Hao Wang in 1961 [9]-[12] as a tool in the study of certain
decidability problems in the propositional calculus. It is concerned with the
patterns generated by “tiles” as they are used to tile space; the formalism is
the following. One defines a fixed, finite number of shapes (henceforth called
“prototiles”) in Euclidean n-space, £, for n > 2. The prototiles are usually
required to be rather nice topologically, at least homeomorphs of the closed
unit ball. One then makes arbitrarily many congruent copies, called “tiles,”
of these prototiles, and considers all ways (called “tilings”) that such tiles
may provide a simultaneous covering and packing of £7; a tiling is thus an
unordered collection of tiles for which the union is all of £7, but such that the
interiors of each pair of tiles do not intersect.

Wang’s original problem was to determine if it was possible to have a
finite set of prototiles, with associated tilings of space, for which all the tilings
were nonperiodic. (A tiling is “nonperiodic” if it is not invariant under any
single simultaneous translation of its tiles.) This was settled in the affirmative
in the thesis of Wang's student Robert Berger [1].

Slowly over the years, due to the efforts of Raphael Robinson (8], Roger
Penrose [2], Shahar Mozes [4] and many others (see (3], [6], [7] for other ref-
erences), Wang's problem has been generalized to ask whether it is possi-
ble for a fixed, finite set of prototiles to generate tilings of space but only
very complicated tilings, where “very complicated” is interpreted as appropri-
ate, but always implying nonperiodicity. In some interpretations, particularly
the first ones associated with physical models of quasicrystals, “very com-
plicated” means “without crystallographic symmetry.” In later work, “very
complicated” often means “disordered” in the probabilistic sense used to study
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patterns in nonlinear dynamics. Within the field of logic, there was a brief
line of development in which “very complicated” meant “nonrecursive.”

All published examples, of finite sets of prototiles which can only tile the
plane nonperiodically, have the feature that in every tiling each prototile only
appears in finitely many orientations. Therefore, for these examples one could
add the requirement that copies of a prototile be not just congruent to the
prototile, but congruent by a translation; to recover the tilings of these previ-
ous examples one might then need to increase the sets of prototiles to larger
but still finite sets, effectively declaring certain rotated or reflected prototiles
as new, distinet prototiles. In other words, the use of congruence in the pro-
duction of copies of the prototiles was effectively replaceable by translation in
all of these examples, at the expense of increasing the number of prototiles to
a larger finite number. This is not true of the example of this paper. In this
example there is a finite set of prototiles, and in every associated tiling of the
plane, tiles appear in infinitely many orientations; all the connected parts of
the Euclidean group are needed to analyze the tilings by this set of prototiles,
not just the translation subgroup of the Euclidean group. This constitutes a
major advance in the field, which began with models only requiring discrete
translations {using “Wang dominoes”), and expanded to continuous transla-
tions with models such as those of Penrose; this introduction of rotations adds
a distinctly new element to the subject, of particular interest to certain appli-
cations such as the physics of quasicrystals. There are other features of this
example which are novel, but we postpone discussion of them to the end of
the paper.

1. The substitution tesselation of the plane;
the tesselation and its Levels

We begin with a certain hierarchical structure, a tesselation of the plane
which motivated our tiling example; the tesselation is due to John H. Conway
(unpublished).

We define the “unmarked prototile” as the right triangle with the follow-
ing vertices in the Cartesian plane: (0,0), (2,0), (2,1). (To be precise, it is the
closed convex hull of these points.) The interior angles at the vertices of this
triangle (and any similar triangle) are of three sizes, small, medium and large,
s0 the vertices are denoted S, M and L. Similarly the edges of this triangle (and
any similar triangle) are of three sizes and are denoted S, M and L. See Fig-
ure 1 below. We now define the (substitution) tesselation © based on this un-
marked prototile. It consists of isometric copies of the unmarked prototile,
obtained by the following iterative procedure. Define “the first type C Triangle
of Level 0" to be the unmarked prototile. Consider the map which takes
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FiGure 1

this Triangle into a similar Triangle (which we call “the first type C Triangle
of Level 17), with vertices (—2,1), (2,—1) and (3,1), and composed of five
isometric copies of the first type C Triangle of Level 0, with each of the five
labeled with a “type” A, B, C, D, or E, as follows: a Triangle of type A with
vertices (—2,1), (0,1) and (0,0); a Triangle of type B with vertices (0,1),
(0,0) and (2,1); a Triangle of type C with vertices (0,0), (2,0) and (2,1)
(coinciding with the first type C Triangle of Level 0); a Triangle of type D
with vertices (0,0), (2,0) and (2,1); and a Triangle of type E with vertices
(2,1}, (3,1) and (2, —1). In summary, the first type C Triangle of Level 1 is
a certain collection of five “component” Triangles. See Figure 2.

FIcUrE 2

Next we repeat this process, mapping the first type C Triangle of Level 1
into the first type C Triangle of Level 2, with vertices (—5,5), (1,—3) and
(5,0); it is similar to the former and composed of five Triangles (each com-
posed of five subtriangles) isometric to the former, which are in the same
geometric relation to the former as are the five created at the first step,
with the first type C Triangle of Level 1 as the C in this Level 2 Trian-
gle. See Figure 3. Continuing this process leads to the desired tesselation
O of the plane. See Figure 4. We define Triangles of Level n as those Triangles,
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created above, which are isometric to the first type C Triangle of Level n;
each has a “type” (A .-+ E) defined by its relative position in the unique
Level n+1 Triangle containing it. We also define a “class” (A1, Bl1,---, E1, A2,
B2,---, E2) for each Triangle; the first component in the symbol represents the
type, and the second component, either 1 or 2, distinguishes between Triangles
which are reflections of one another. See Figure 5. {This pattern of Triangles
of all Levels is the key feature of the tesselation © on which we will focus
our attention. Also, we emphasize that by definition the above Triangles
are each fixed sets in the plane, and not movable in any sense.} It is of
prime importance to this paper that the Triangles of each Level appear at
infinitely many orientations in &, as results from the following simple lemma
(Theorem 6.15 in [5]} applied to the small angle S = tan=1(1/2).

LEMMA. For any rational number r other than 0 and +1, tan™>(r) is
irrational with respect to 7.

2. Marks in the tesselation ©

Qur main objective is to define a finite set of prototiles which can tile the
plane but only with tilings that have some of the geometric relationships of
Conway’s tesselation 9: in particular, the hierarchical relationships between
consecutive Levels of Triangles. This will be done in Section 3. As preparation,
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FIoUuRE 4

we begin by adding “marks” to the (smallest) Triangles in ©. Each Triangle
of Level 0 in the tesselation © will be called a Tile, and will have a mark
associated with (but not necessarily located at) each of its vertices, pig, pn, (L,
where the subscript refers to the angle of the vertex. {(We will do what we can
to explain the significance of the various marks, though this may only be fully
clarified by our proofs below, and the remarks afterward. The basic idea will
be to record enough information in the marks of the Tiles so that similarly
defined but movable “tiles” will only have tilings with a hierarchical structure
analogous to that of the Triangles. There will be a brief summary of the marks
at the end of this section.)

Fach of the three vertex marks of a Tile will contain a variety of informa-
tion about the edges of those Triangles in the tesselation © which are related
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in some sense to the vertex. In particular, with each vertex V of each Tile
T there will be recorded information concerning each edge of each Tile which
either has a coinciding vertex, or which has an edge with V at its center.
Since (by definition) abutting Tiles have edges which coincide in an interval,
the lines representing Tile edges will be separated into double lines, as follows:
At vertex V of Tile T, the information at V is given in linear order. There
are two edges of T meeting at V. Measuring angles as positive when referring
to clockwise rotation, we call that edge of T at V the “first” one which is a
positive angle from the other, the other being called the “last” edge of T at
V. We will record the angle between edges at V. The first angle will be that
of Tile T at V, and we use the abbreviations S, M and L noted above. There
must be some Tile T abutting T at the first edge of T at V. Since this edge of
T’ at V and the first edge of T at V coincide in an interval, the angle between
them is zero, and does not need to be recorded. Therefore, we include in the
information at V: the angle of T (called Ay}, then some information about
the first edge of T (called E}), then information about the abutting edge of
T’ (called E?), then the angle of T (called As), information about the other
edge of T' (called E}), ..., and finally, information about the last edge of T
(called E?; e is used to denote the last two edges). So the information at V
is a sequence of triples, each beginning with an angle, and then information
about two edges which coincide in an interval; the k™ such triple is referred
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to as Ay, E; and E?; Edge-marks Ei will be said to “refer to” or “lie on"” the
appropriate edges of a Tile or Triangle (and are denoted by thick intervals in
some figures). Now we need to specify what the information is in each El,
where  =1,2 and 1 <k <e.

We are concerned with the edges not just of Tiles, but of Triangles of
all Levels. We call a “complete” edge only the following: the small edges of
Triangles of type A, B, C, and D; the medium edges of Triangles of type C, D
and E; and the large edges of Triangles of type B and C. Note that an edge
of a Triangle is complete if and only if it is not part or all of an edge of a
higher Level Triangle. For each of the three edges of each Tile, we will record
information about the complete edge of highest level of which it is a part;
we record the “size” of that edge (S, M or L), what type Triangle (A-.-E)
it is an edge of, and with what type Triangle (A---E) this last Triangle is
“associated”; within each Ef: we use variable names J, N and P for the three
pieces of information just described—.J € {S, M, L} for the size of the complete
edge; N € {A,... E} for the type of Triangle of which the complete edge is
a part; and P € {A,...,E} for the type of Triangle of which that of N is one
of the five components. '

ir of B

FIGuRE 6

As an example, the vertex mark up of the Tile of type B in Figure 6
has the following structure: pr, = {A, El, E}, Ay, E}, E2, A, E}, E?}, where
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Ei =(J,N,P,--} and so:
KL = {L1 (S1 B,C, s ‘),(S,A,C, o ')1L1 (L1C: ot ')1 (L:Ba . ')1
™, (L:B1 o ')= (L,C, o )}

There are three other pieces of information recorded in each Eﬁ, described
by variables F', G and H. Using the notation Ei [a] for the edge-mark EZ,
at angle o beyond that of Efc', we assign F € {3,M,L,Z, R} the value Z in
E (resp. E}) if there is an edge EZ[+] (resp. E}[+n]) at V, referring to a
different Tile than does E} (resp. E?), which is part of the same complete
edge as that of E] (resp. EZ). We let F =S (resp. M, resp. L} if the complete
edge of Ei ends at V at an angle of S (resp. M, resp. L) with the rest of its
Triangle. Now FF =R in Eﬁ if a different value has not been specified above.
(As one sees in the above example, it sometimes happens that in a vertex of a
Tile T, information must be given about an abutting Tile T* which does not
share this vertex, as illustrated in Figure 6; in such a case we use the value R
for F'.) To expand on the above example then, we have: E] = (J,N, P, F,---)
and

HL = {L1 (SaB‘JCJL‘J v '))(S'}A'} 01 L} te ')1L1 (Lica '1Z1' ' ')7
(L1B1 '1R1' : '):Wa (L:Ba 'y R1 s ')1 (L, 01 -,Z, o )}

In order to discuss variables G and H we need the following convention.
For each Triangle T of Level n > 1 we define three Tiles in the Triangle,
Ts, Tm and Ty, by: Tg shares its small vertex Vgg = Vg with that of the
Triangle, another vertex Vgum of Tg lies on the large edge of the Triangle, and
the third vertex Vgr of Tg lies on the medium edge of the Triangle; Ty shares
its medium vertex Vyy = Vi with that of the Triangle, another vertex Vg
of Ty lies on the large edge of the Triangle, and the third vertex Vg of Ty
lies on the small edge of the Triangle; Ty, shares its small vertex Vi, = Vg
with the large vertex of the Triangle, and another vertex Viy of Ty, lies on the
small edge of the Triangle. For Level 0 Triangles, which are Tiles, we define
Ts, Tm and Ty, as the Tile itself, with Vgg as Vg, Vmm as Vi, and Vi as
VL. Note that this generalizes the concept of Vg, Vi and Vi, of Tiles to Vgg,
Vi and Vi of Triangles.

The variable G has the following structure:

G = (GilM, Ggls} G%ls, 0%181 G%IM, Gﬁ%{, G'g?S1 GgQS) G%‘ES, G%2M, GEAIM,
GEIS, GEBIS, G]E:)IS, G%lM, G32M1 GE‘?S, 0%281 G'iDQS, GIE)2M):

where each G4 takes values in {+1, —1}. We will now define these variables
on each caomplete edge, assigning a value at the edge-marks at each end of the
edge and prescribing an algorithm for assigning values at the other edge-marks
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on the edge. (The geometric significance of variables G and H is less simple
than that of the previous marks. This will be discussed at the end of this
section.)

(M1) [G5M]. Let X = A or D. Consider any Tile which is part of a
Triangle T, with vertices Vi and V3 of the Tile lying on an edge of T, and E}
(resp. E2) of V3 and E? (resp. IEl) of V| referring to that edge of T. If ¥ =7
in E! (resp. E2) of Vy, then G#™ has the same value in E? (resp. E}) of V; as
it has in E?[—7] (resp. El[+7]) of V3, unless V; has an edge-mark E%—=/2]
(resp. EL[+7/2]) which contains the values (J,N,F,P) = (5,A,L,A) or
(S, A,L,D), in which case the two G values have opposite sign. (In Figure 7,

Vi
2
Va
3
B \
/T
1 \ D
B
V2 Vl ,...-—-""‘.r?
FIGURE 7

numbers 1 and 2 each label a pair of edge-marks; for each pair there is the
E?[—n] of V, and the E? of Vg of a Tile of type B. For pair 1, Ggm has
different values in the two edge-marks, and for pair 2, Ggm has the same
values in the two edge-marks.) If F # Z in E} (resp. E?) of V3, and we do not
have k = 2 (resp. k = 1) and (J, N, F) = {S,X,L) in E} (resp. E?) of V3, then
GY¥M = 11 in that edge-mark; k = 1 (resp. £ = 2) and (J,N, F) = (S8,4,L)
or (58,D,L) in E} (resp. E2) of Vo, then G‘;}‘M = +1 in that edge-mark. (In
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Figure 7, label 3 indjcates an edge-mark E! of vertex Vy of a Tile of type D
in which G$M = GEM = 11 from above.)

(M2) [G$M in X]. Let T be a Triangle of class X1 = Al or D1 (resp.
X2 = A2 or D2). In edge-mark E? (resp. E}) of vertex Vi, G§™ (resp.
G5M) has the same value as that of G""2M (resp. GFM) in the edge~mark F}
(resp. E2) of vertex Vyg. See Figure SA.

1

2
GX

G
X1

FIGURE 84

(M3) {G¥™M in Y]. Let T be a Triangle of class Y1 = Al or D1 (resp.
Y2 = A2 or D2), and let X = A or D. In edge-mark E? (resp. E}) of vertex
VML, G‘“M (resp. G“2M) has the negative of the value of GEIM (resp. GEQM)
in the edge-mark El (resp. E2) of vertex Vys. See Figure 8A.

(M4} [Gf,é‘s]. Let X = D or E. Consider any Tile which is part of a
Triangle T, with vertices Vi and V; of the Tile lying on an edge of T, and
El (resp. EQ) of V, and E2 (resp. E}) of V; referring to the edge of T. If
F =7 in E! (resp. E2) of Vs, then GJ ¥ has the same value in E2 (resp. EN
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of Vi as it has in E}{—n| (resp. El[+n]) of Va, unless (i) V, has an edge-
mark E?[—n/2] (resp. El{+=/2]) which contains the values (J,N,F,P) =
(S,A,L,E) or (S,A,L,D); or (ii) V4 has an edge-mark E? (resp. E}) which
contains the values (J, N, F, P) = (8, A, M, B), in which case the two G values
have opposite sign. If F # Z in E] (resp. E?) of V3, and we do not have
(i) k = 2 (resp. k = 1) and (J,N,F) = (M,X,L) in E} (resp. E2) of Vs,
then G = +1 in that edge-mark; (ii) k =1 (resp. k =2) and (J,N,F) =
(M,E,L) or (M,D,L) or (L,B,M) in E! (resp. E?) of Vg, then G¥° = +1
in that edge-mark.

(M5) (655 in X]. Let T be a Triangle of class X1 = E1 or D1 (resp.
X2 =E2 or D2). In edge-mark E} (resp. E2) of vertex Vgr, G5¥ (resp. G¢5)
has the same value as that of G (resp. G¥%) in the edge-mark E? (resp.
El) of vertex Vgy. See Figure 8A.

(M6) [G¥S in Y]. Let T be a Triangle of class Y1 = E1 or D1 (resp.
Y2 =F2 or D2), and let X = E or D. In edge-mark E} (resp. E2) of vertex
Vs, G¥® (resp. G$°) has the negative of the value of G55 (resp. G£%) in
the edge-mark F? (resp. E1) of vertex Vgu. See Figure 8B.

(M7) [G%° in B|. Let T be a Triangle of class Bl (resp. B2) and let
X = F or D. In edge-mark E} (resp. E2) of vertex Vam, G¥° (resp. G¢5)
has the negative of the value of G° (resp. G§°) in edge-mark E2 (resp. E1)
of vertex Vg.. See Figure 8B.

(M3) [Gjéks}. Consider any Tile which is part of a Triangle T, with vertices
V1 and V3 of the Tile lying on an edge of T, and E} (resp. E?%) of V5 and E?
(resp. E}) of V| referring to the edge of T. If F = Z in E} (resp. E2) of V3,
then G‘"B"c has the same value in E? (resp. E}) of V; as it has in Ef[—n] (resp.
El[+7]) of Vy, unless (i) Vq has an edge-mark E?[+n/2] (resp. EX[—n/2|}
which contains the values (J,N,F,P) = (§,A,L,E} or (S,A,L,D); or (ii)
V, has an edge-mark E? (resp. FE}) which contains the values (J, N, F, P) =
(S, A, M, B), in which case the two G values have opposite sign. If F # Z in E]
(resp. E2) of V3, and we do not have (i) k = 2 (resp. k= 1) and (J,N, F) =
(M,E,L) or (M,D,L) or (L,B,M) in E} (resp. EZ) of Vs, then G§% = +1 in
E! (resp. E?) of Vq; or (ii) k=1 (resp. k =2) and (J,N,F) = (L,B,M) in
E! (resp. E2) of Vo, then G¥S = +1 in E} (resp. E2) of V,.

{M9} [G‘EB"‘S in Y]. Let T be a Triangle of class Y1 = E1 or D1 (resp.
Y2 = E2 or D2). In edge-mark E! (resp. E2) of vertex Vgr, G&5 (resp. G&5)
has the negative of the value of ngs (resp. Ggls) in the edge-mark E? (resp.
E1) of vertex Vgu. See Figure 8B.

(M10) [GES in B]. Let T be a Triangle of class B1 (resp. B2). In edge-
mark E! (resp. E2) of vertex Vam, G§> (resp. G§5) has the negative of the
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value of G225 (resp. G&'%) in the edge-mark E? (resp. E}) of vertex Vgp. See
Figure 8C.

(M11) [GES in B]. Let T be a Triangle of class Bl (resp. B2). In edge-
mark E! (resp. E2) of vertex Vs, G&'8 (resp. G3%) has the same value as
that of G§S (resp. G52%) in the edge-mark E? (resp. El) of vertex Vgr. See
Figure 8C.

(Note: The above values of G are complicated but well-defined. To see
that they are well defined just note that even though one value is sometimes
defined in terms of another, this process always ends since it always refers to a
variable on a higher Level edge; in the tesselation 6 every Triangle is contained
in infinitely many Triangles of type C, on the edges of which all G variables
are explicitly defined, and the process cannot take us outside any Triangle of
type C.)

H € {+1, -1} basically maintains a “parity” between two specific points
in each Triangle of Level n > 1 , marked V1 and V5 in Figure 12A, and V6
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and V10 in Figure 12B. (See below.) The usefulness of this parity must remain
obscure until the proof of Theorem 5.4.
The variable H has the following structure:

H=(HM H B, 5, B, M, B, HE, HE, HEY),
where each HX" takes values in {+1, —1}, as follows.

(M12) Consider any Tile with E} (resp. E2) of vertex V3 and EZ (resp.
ED) of vertex Vi referring to the same edge of the Tile, and assume F' = Z in
El (resp. E2) of V,. Then the ratio of HE? and GE" has the same value in
E?[+n] (resp. EM+x]) of V3 as in E? (resp. El) of V,. Also, Hf* = G#¥* in
all edge-marks except as prescribed below, in M13, M14 or M15, for certain
edge-marks in small edges of Triangles of type A and D, and medium edges of
type D.

(M13) Consider any vertex V of a prototile with edge-mark E} (resp.
E?) in which (J,N,F) = (8,D,M); in particular, the edge-mark is lying in
the small edge of a Triangle of class D1 {resp. D2). See Figure 9. Then the
ratio of H2M and GEM (resp. HM and GE2M) in E} (resp. E2) equals the
value of GEM (resp. GE2M) in E} (resp. E2 |). Also, the ratio of HL and
=18 (resp. HS and GZ38) in E! (resp. E2) equals the value of GEIS (resp.
Gi) in E7 (resp. EY). |

(M14) Consider any Tile with E! (resp. E2) of vertex Vy and E? (resp.
E}) of vertex V referring to the same edge of the Tile, and assume (J, N, F) =
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(M,D, L) in E} (resp. E?) of V2. See Figure 9. Then the ratio of H2" and G&2*
(resp. HI* and G&I*) is equal in E? (resp. E}) of V; to its value in EZ[—n/2]
(resp. El+7/2}) of V.

(M15) Consider any Tile with E} (resp. E2) of vertex V5 and E? (resp.
El) of vertex Vi referring to the same edge of the Tile, and assume (J, N, F) =
(M,D,8) in E} (resp. E2) of Vy. See Figure 9. Then the ratio of H2* and G22"
(resp. HI" and GZ") is equal in E? (resp. F}) of V) to its value in E?[+n/2]
(resp. E:[—m/2]) of Va.

We now summarize the abave addition of marks to the Tiles in the tesse-
lation ©. The marks all concern the hierarchical structure of the Triangles in
8, and more specifically they record certain facts about their complete edges.
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At each vertex in © it is recorded, on all the Tiles sharing that vertex, which
types of complete edges are associated with that vertex, what type Triangle
each such edge belongs to, and what type Triangle is the parent of the latter
Triangle. We also record at what angles these edges meet, and whether or not
the edge ends at that vertex. This is all implicit in the variables A, J,N, P
and F', and is rather easy to understand visually. The variables G and H refer
to less obvious features of the tesselation €. Both these (families of) variables
take values +1, and do not have a natural absolute meaning; they should be
thought of as phases, and convey information through the agreement or dis-
agreement of the values of variables on pairs of edges meeting at a vertex. In ©
the relative values of these variables are fixed at certain such intersections, as
illustrated in Figures 8A,B,C and 9, and the values then oscillate as one moves
past vertices on a given complete edge, with certain specified exceptions, as
illustrated in Figure 7; these exceptions each have simple geometric meaning
in terms of edges of certain Triangles of lower Level appearing at the vertex.
The reason for the definitions is that certain pairs of variables meet in phase at
a vertex in © only under a unique circumstance; for example variables GTM
and Gj}M meet in phase in the geometric relation shown in Figure 8A if and
only if they meet at the medium vertex of a Triangle of class Al. This is shown
in the proof of Theorem 5.1 below. To repeat then, the actual value of any
of the variables in the G or H families has no geometric meaning, it is only
the relative values of pairs of variables meeting at a vertex which may have a
(simple geometric) meaning in terms of the hierarchy of Triangles.

3. Tiling the plane; the prototiles and their matching rules

"We now consider the problem of trying to reproduce the structure of the
substitution tesselation © by the tilings of a finite set of prototiles. Before
we begin, we need to introduce a simple technique used almost universally in
forced tiling.

As stated above, tiling consists of simultaneous covering and packing; the
packing condition intuitively requires (given the covering condition) that the
tiles must fit together like a jig-saw puzzle, the boundary of one tile nestled
into the boundaries of its neighbors. Consider for example the system in the
left half of Figure 10 of two prototiles in the plane which are both roughly
square with edges aligned (but with jagged edges). (They can only tile the
plane in ¢heckerboard fashion.)

Now consider in the right half of Figure 10 the set of two perfect squares,
with edges aligned, which have “colors” (1,2,3,4,1',2',3',4') assigned to their
edges; the colors come in “complementary” pairs: j and j' are complements.
If we consider this a pair of prototiles, and allow translated copies {called
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FiGure 10

tiles) to be made, preserving the assignment of colors to edges, and add the
“matching rule” that in a tiling tiles must abut full edge to full edge and with
complementary colors meeting, then it is clear that we will reproduce, in any
reasonable sense, the previous example. In other words, one can often simplify
an example of prototiles by using simpler shapes, but with added “colors”
and “matching rules” to make up for the simplified boundary. Reversing this
process, if one is given a set of prototiles with colors and matching rules, it
is straightforward to replace it by a set of prototiles with more complicated
boundaries and no colors or matching rules, and this is what we will do.

We sketch here a justification for this claim. Assume there is a finite set of
polygonal prototiles, the set of all edges of which is called Q, and assume rules
governing, for each edge, which edges it may abut in a tiling, this information
being summarized in the symmetric set K C QxQ. We assume that edges may
only abut along their full length in a tiling. In some examples not satisfying
this condition, noted below, one can add “vertices” on the original edges to
produce smaller edges which then satisfy the condition. We now show that
the effect of such rules is that K can be reproduced by suitably modifying the
edges of the polygons, and requiring that the new tiles tile the plane in the
usual geometric sense, if and only if a certain mild condition C is satisfied
by K, namely that if (a,b), (a,¢) and (d,b) are in K then so is (d,¢). The
necessity of this condition for the desired conclusion is obvious. We sketch the
sufficiency, using [4]. Define two edges a and b to be equivalent if there exists
an edge ¢ such that (a,¢) and (b,¢) are both in K. It follows from condition
C that this is an equivalence relation. Next we define for each equivalence
class a unique complementary class as follows. For class E the complement is
that class E’ such that (a,b) is in K for some a in E and b in E'. Tt follows
from condition C that this defines a unique class E' independent of choice of
representatives. This is sufficient to define a unique family of zig-zag curves
to modify the edges, one for each pair of complementary classes, so that only
edges from complementary classes will fit together; one could take the same
number of bumps for all edges—all congruent for a given curve—and vary the-
height ‘of the bumps from class to class to guarantee the uniqueness.
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We will have in fact only one basic shape (and its reflection), the unmarked
prototile of the tesselation 8, but we will define a set of colors, which we will
call “marks,” with a notion of complementary pairs, and a set of “matching
rules,” and we will analyze those tilings of the plane by tiles which satisfy the
matching rules, the object being to show that these tilings all exhibit the basic
structure of Triangles of all Levels which we see in 8. We begin by introducing
the marks.

The marks were already introduced for the Tiles of 8. Intuitively, we
would like to define our prototile set as all the distinet versions of the unmarked
prototile and its reflection (reflecting about its small edge, say) obtained by
adding to them those marks which appear on the Tiles which are obtained from
these two unmarked prototiles by orientation-preserving isometries. This could
be done, but it is somewhat unsatisfying in that it would then be difficult to
determine precisely which of the conceivable mark combinations are used. So
we instead define our prototiles as those obtained by using all possible marks,
but satisfying an explicit list of “restrictions.”

A “(marked) prototile” consists of the unmarked prototile, or its reflec-
tion about its small edge (which we will now call another unmarked pro-
totile), together with three (vertex) marks ug, pim, pir, each of the three of the
form (Ay, B}, E2, Ay, E}, E2, ..., A, EL, E?), where e varies between 3 and 8
{e stands for “end”) and where:

(a) Aje {S,M,L,x},
b) each E¥ is of the form (J, N, P, F,G, H), where:
2

(c) J€{S5M,L},

(d) NE {A)B!C‘JDJE}J

{¢) Pe{ABCDE}

(fy Fe{S,ML,R,Z},

(g) G = (GilMﬂ (;%181 G%IS’ G%IS1 G%IM, (;KQM1 GI%QS1 GEQS, G%2S,
G%QM, GEAIM, G‘Els, (:'1.;,3181 GiﬂlS1 Gr.lel\{1 Gim’ GEEQS‘ G%QS, G.EDQS1 GBQML where
each GIF™ takes values in {+1,~1}.

(hy H=(HM, 78, 75 HS, AM HM g8 1S HE, HM), where
each HE takes values in {+1,—1}.

(We note that although these are called “vertex marks.,” they could easily
be implemented by encoding their information in bumps and dents in the edges
of the tiles, away from the vertices.) As mentioned above, we do not allow our
prototiles to have ali possible values of the above marks; we allow precisely
those combinations satisfying the following set of restrictions.
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Every prototile must contain marks of one of the following ten “classes,”
Al --- E2 (and thus five “types,” A ---E, where the type of class Xj is denoted
X), the “original 7 ones, with vertices at (0,0}, (2,0), and (2,1), satisfying one
of A2, B1, C1, D2, E2, and the “reflected” ones, with vertices at (2,0), (4,0)
and (2,1), satisfying one of Al, B2, C2, D1, El, as shown in Figures 11A,B.

N

(8.A M)

p (S,A,L)\

(L.C,S)

FiGure 11A

(It will follow from further restrictions, namely V5 and V10, that these ten
classes are mutually exclusive.)

(A1) In Vi, E? contains (J,N,F) = (S,A,L), and in Vy, E! contains
(J,N,F) = (8,A,M).

(B1) In Vi, E} contains (J,N,F) = (S,B,L); in Vy, E! contains
(J,N,F) = (L,B,M); and in Vg, E? contains (J, N, F) = (L, B, 8).
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(S.D,L)
/ T
D1
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(C1) In Vs, E? contains (J,N,F) = (M,C,8); in Vy, E!
(J,N,F) = (L,C,M); and in V1, E} contains (J, N, F) = (S,C,L).
1
(D1) In Vs, E? contains (J,N,F) = (M,D,S); in Vy, E?
(J,N,F) = (M,D,L); and in Vi, E} contains {J, N, F) = (8, D, M).
1
(E1l) In Vs, E? contains (J,N,F) = (M,E,S), and in Vy, E}
(J,N,F)= (M,E,L).
(A2) In Vi, E] contains (J,N,F) = (8,A,L), and in Vy, E?
(LN, F)= (8 A M).
(B2) In Vi, E? contains (J,N,F) = (S,B,L); in Vu, E?
J,N,F) = (8,B,M); and in Vg, E} contains (J, N, F) = (L, B, S).
1
(C2) In Vg, E{ contains (J,N,F) = (L,C,S); in Vy, E?
(J, N, F) = (8,C,M); and in Vi, E? contains (J, N, F) = (M, C,L).
~ (D2) In Vg, E} contains (J,N,F)} = (M,D,8); in Vi, E!
(J,N,F) =(8,D,L); and in Vi, E? contains (J, N, F) = (S,D,M).
(E2) In Vi, E} contains (J,N,F) = (M,E,L), and in Vg, E!
(J,N,F) =(M,E,S).

(M,ES) (M,E,S)
(MEL)
©
El

contains

contains

contains

contains

containg

contains

contains

contains

The following restrictions can be understood from Figures 12A-12F; we
record in the restrictions V1 --- V10 almost everything that can be easily
deduced as occurring in the tesselation © at such vertices. The references to

variables H and G will need special analysis.
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[
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o

FIGurE 12A

(V1) Consider a prototile T, with vertices Vi, V3 and V3, such that E]
of Vy and E? of V| refer to the same edge of T. (For vertices V1, Vg and V3,
of a tile—as opposed to a Tile—the phrase “El of V4 and E2 of V| refer to the
same edge” means by definition that V|, V4 and V3 are in clockwise order in
the plane.) If in V either of the following conditions is satisfied: EZ? contains
(J,N,F) = (8,A,L), or E} contains (J, N, F) = (8,B,L), then so is the other,
and also: F =7 in El[+x/2] and EX[-x /2], P has the same value in E! and
E?; the quatient of HIM by GEM in El of Vj equals G2M in EX[—n/2] of V)
if P =m in EZ of Vy; and the quotient of HS by G218 in B} of V, equals G218
in E}[+7/2) of V1 if P=m in E2. Also if in V; we have, in E2, that P has
value B, then (J,N) = (L,B) in E}[+r/2], and (J,N) = (L,B) in E}[-n/2];
if P has value C, then (J,N) = (L,C) in E}+=/2] and in E2[-7/2].

(V2) If a vertex of a prototile satisfies any of the following conditions:
Ey contains (J,N,F) = ($,A,M); E} contains (J,N,F) = ($,B,M); EL,
contains (J,N,F) = (L,B,M); E}, | contains (J,N,F) = (L,C,8); E},
contains (J, N,F) = (M,C,8); E2 , contains (J,N,F) = (M,D,9), then it
satisfies the others, and also: F =Z in E%_l and in E,i +3; P has the same
value in E}, E;‘:, Eé_f_l, E?c+1’ Eé” and EI}:+2-
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(V3) If a vertex of a prototile satisfies any of the following conditions:
E? contains (J,N,F) = (L,B,S); El contains (J,N,F} = (L,C,M); Ei ,
contains (J,N,F} = (S,C,M); E;_, contains (J,N,F) = (M,E,L), then it
satisfies the others, and also: = Z in E}_|[-x/2] and in E}_, ; P has the
same value in EZ, El, E? | and E} .

(V4) If a vertex of a prototile satisfies any of the following conditions:
B} contains (J,N,F) = (8,C,L); E}[-n/2] contains (J,N,F) = (M,C,L);
Ei[-7/2] contains (J,N,F) = (M,D,L); E2[-#] contains (J,N,F) =
(8,D,L), then it satisfies the others, and also: E; contains (J,N,F) =
(M,E,R); El[-7] contains (J,N,F) = (M,E,R); P has the same value in
E}, E}, Ej[-n/2], By[-/2], E{[-7] and E{[-].

{V5) If a vertex of a prototile satisfies either of the following conditions:
El contains (J, N, F} = (8,D,M), or E? contains (J, N, F) = (M, E,S), then
it satisfies the other and: P has the same value in E} and E?; the quotient
of HM by GZM in E} equals GiIM in E} if P = m in E}; the quotient of
H)3 by G218 in E} equals G&18 in E2 if P =m in E}. Also, if, in E}, P has
value B, then F = Z in E2, and (J,N,F) = (S,B,L) in E}: and if P has
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value C, then (J,N,F) = (M,C,L) in E? and (J,N,F) = (§,C,L) in E}; if
P has value A, then (J,N,F) = (S,A,L) in E}, and F = Z in E%; D, then
(J,N,F)=(M,D,L) in E?, and (J,N, F}) =(S,D,L) in El; if P has value E,
then (J,N,F) = (M,E,L) in E2, and F =7 in E} and in E2[+a].

(V6) Consider a prototile T, with vertices Vi, V4 and V3, such that E}
of V; and Eg of V3 refer to the same edge of T, If in V, either of the follow-
ing conditions is satisfied: E] contains (J,N,F) = (8,A,L}, or E? contains
(J, N, F) = (8,B,L)}, then so is the other, and also: F =7Z in E}[+x/2] and
E2[—n/2]; P has the same value in E} and E}; the quotient of H2M by Ga*M
in E2 of V4 equals GoM in El[+7/2] of Vi if P =m in E] of Vy; and the
quotient of H2? by G2 in E? of V, equals G2® in E}[—n/2] of V1 if P=m
in E!. And if in V; we have, in E], that P has value B, then (J, N) = (L, B) in
E}[-n/2] and E}{+n/2]; if P has value C, then (J,N) = (L,C) in E}[—x/2]
and Ej[+n/2].
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(V7} K a vertex of a prototile satisfies any of the following conditions:
E? contains (J,N,F) = (8, A,M); E} contains (J,N,F) = (8,B,M); E? |
contains (J,N,F) = (L,B,M); E; , contains (J,N,F) = (L,C,S); E}_,
contains (J, N, F) = (M,C,8); E}_, contains (J,N,F) = (M, D, S), then it
satisfies the others, and also: F =2 in E.,, and E}_,; P has the same value
in K}, E}, Eiv1 Bl Eg,p and Elso.

(V8) If a vertex of a prototile satisfies any of the following conditions:
Ej contains (J,N,F) = (L,B,S); E} contains (J,N,F) = (L,C,M); B
contains (J, N, F} = (8,C,M); E% , contains (J,N,F) = (M,E, L), then it
satisfies the others, and also: F = Z in E} | [+n/2] and E}_; P has the same
value in By, E}, E},; and EI . '

(V9) If 2 vertex of a prototile satisfies any of the following conditions:
E? contains (J,N,F) = (S,C,L); Ei[+n/2] contains (J,N,F) = (M,C,L);
Ef[+n/2] contains (J,N,F} = (M,D,L); Eif+n] contains (J,N,F) =
(S,D,L}, then it satisfies the others, and also: E] contains (J,N, F) =
(M,E,R); Ef+n] contains (J,N,F) = (M,E, R}; P has the same value in
E}, E}, Ell+n/9l, Ell+n/2], EX[+x] and El[+=].

(V10) I a vertex of a prototile satisfies either of the following conditions:
E? contains (J,N,F) = (S,D,M), or E] contains (J, N, F) = (M, E, §); then
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it satisfies the other, and: P has the same value in E? and E!; the quotient of
H2M by G:M in E? equals G5 in E? | if P =m in E2; and the quotient
of HX by G55 in E? equals G2 in B} if P = m in E2. Also if, in E2,
P has value: A, then (J,N,F) = (S,A,L) in E? |, and F = Z in E!; D,
then (J,N,F) = (M,D,L) in E! and (J,N,F) = (S$,D,L) in E? |; B, then
(;, N,F)=(§8,B,L) in E2 |,and F =Z in E}; C, then (J,N,F) = (M, C,L)
in E} and (J,N,F) = (5,C,L) in E? |; E, then (J,N, F) = (M,E,L) in E},
and F =7 in E?_| and in E} |[+x].

Finally we make some restrictions which follow easily from examining
Figures 3, 13, 14 and 15; R9 and R10 are less obvious, and we will analyze
them carefully.

(R1) Inany EJ, (J,N) # (M, A), (L, A), (M, B), (L, D), (S,E), (L, E), and
F
(R2) In any Vi, 337, Size(A;) = 2x.

(R3) A; must have the value of the vertex of the p component to which
it, belongs.
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(R4) If ET* and Ef belong to two different vertices and refer to the same
edge of a prototile, then J (resp. N, resp. P) must have the same value in E
as in Ef.

(R5) In any vertex of a prototile, if one of a pair E%, Eg of edge-marks
has (J, N} values: (i) (8,A), then for the other (J,N} = (8,B), and then
one has F' = L (resp. F' = Z or R, resp. F = M) if and only if the other
has F' =L (resp. F = Z or R, resp. F' = M); (ii) (S,B), then for the other
(J,N) = (8,A); (iii) (L,B), then for the other (J,N) = (L,C), and then one
has F' = 8 (resp. F = Z or R) if and only if the other has F = M (resp.
F =17 or R); (iv) (L,C), then for the other (J, N) = (L,B); (v) (M, C), then
for the other (J, N} = (M, D), and then one has F = L (resp. F = 8, resp.
F =7 or R) if and only if the other has F = L (resp. F = S, resp. F = Z
or R}; (vi) (M,D), then for the other (J,N) = (M,C); (vii) (S,C), then for
the other (J, N} = (M, E), and then the former has F = M if and only if the
other has F' = I, and if the former has F = L (resp. F = Z or R) then the
other has F = Z or R {resp. F = Z or R); (viii) (S,D), then for the other



686 CHARLES RADIN

{J,N} = (M,E), and then the former has F = M if and only if the other has
F =8, and if the former has F =L (resp. F = Z or R) then the other has
F =17 or R (resp. F = Z or R); (ix) (M, E), then for the other (J,N) = (8, C)
or (S, D}, and if the former has F = Z or R then the other has F = Z or R
or L.

(R6) If F =S (resp. M} in E] then Ay = S (resp. M). If F = S (resp.
M) in E? then Aps1 =S (resp. M).

(R7) Assume for an edge-mark Ej (resp. Ep) of any V, that F = R.
Then there is an edge-mark E:[+n} (resp. Ei[+n])} of Vm, and F = R in
that edge too. The value F = R may not appear in any edge-mark numbered
E} or E2. Also, the values of J are the same in E} and E}[+x] (resp. E}
and Ejf+x]), the values of N are the same in E} and E}[+7] (resp. E? and
Ef+n]), and the values of P are the same in E} and E}[+n} (resp. E? and
E;[+n]). Finally, it cannot happen that F = R for another edge-mark Ef of
\'a

(R8) Assume for an edge-mark E} (resp. E?) of any V,, that F = Z.
Then there is an edge-mark EZ[+n] (resp. EL[+n]] of Vs, and F = Z in that
edge too. Also, the values of J are the same in E; and EZ[+r] (resp. E?
and Ej[+n]}, the values of N are the same in E} and E}[+n] (resp. E? and
Ef|+n]), and the values of P are the same in E} and Ei[+n| (resp. E? and
E,t {+n]). Finally, it can only happen that ¥ = Z for another edge-mark E}
of V,, if E} has angle zero with one of the above pair.

(R9) Let V1, Va and V3 be the three vertices of a prototile, with E? (resp.
E}l) of Vy and E} (resp. E2?) of Vy both referring to the same tile edge, and
A1 = S in gy, See Figure 13. If GEI5 in E? (resp. G223 in E}) of V) equals
G218 in E} (resp. G in E2) of V3, then in Vy: (i) if m = D, and (J,N) =
(M,D) in E] (resp. E?), then F = § in E} (resp. E2); (ii) if m = E, and
(J,N) = (M,E} in E} (resp. E?}, then F =8 in E} (resp. E2); (iii) if m = B,
and (J,N) = (L,B) in E? (resp. E}), then F =8 in E? (resp. E}).

(R10) Let Vi, V3 and V3 be the three vertices of a prototile, with B2
{resp. E}) of V1 and E} (resp. E2) of V; both referring to the same physical
edge, and A} = M in uy. See Figure 13. H G2 in E? (resp. GZ™ in E)
of Vi, equals GEM in E} (resp. G52 in E?) of V3, then in Vy: (i) if m = D,
and (J,N) = (S,D} in E? (resp. E2), then F = M in E? (resp. E2); (i) if
m = A, and (J,N) = (S,A) in E? (resp. E?), then F =M in E? (resp. E2).

(R11) Let Vi, Vy and V; be the three vertices of a protetile, with E?
(resp. E}) of V1 and E} (resp. E?) of V3 both referring to the same physical
edge, and A = M in py. See Figure 4. If (J,N) = (L,B) in E? (resp. E})



PINWHEEL TILINGS 687

V2 / Vi Vi ? Va

Gus ez
Gom 0" G Q"
N — )
R10
i N
<4 ) C
V2 / vl Vl f V‘J
Gg‘ 1M G:E’M
Fioure 13

of Vy, and (J,N) = (S,B) in E} (resp. E?) of V3, then in V;, we have F =M
in both E} and E2.

(R12) Let Vy, V3 and V3 be the three vertices of a prototile, with E2
(resp. E}) of V1 and E} (resp. E2?) of V3 both referring to the same physical
edge, and A; = M in py. See Figure 14. ¥ (J,N)} = (L,C) in E? (resp. E})
of V1, and (J, N) = (8,C) in E] (resp. E?} of V3, then in V3 we have F = M
in both B} and EZ.

(R13} Let Vi, V3 and V3 be the three vertices of a prototile, with E?
(resp. E}) of Vi and E} (resp. E2) of V; both referring to the same physical
edge, and A; = M in pg. See Figure 14. If (S, N) = (L,C) in E? (resp. E})
of Vy, and (J, N) = (M, C) in E} (resp. E?) of V3, then in V3 we have F = §
in both E] and E2.

(R14) If in two of the vertices of a prototile there are F' values indicating
that the edge between the vertices ends at the vertices, then the corresponding
N value must agree with the class of prototile that it is.

(R15) Let X = A or D. Assume we have a prototile T, with vertices
Vi, V, and V3, and that E} (resp. E?} of V4 and E? (resp. E}) of V refer
to the same edge of T. Then if F = Z in E! (resp. E2) of V3, G4 has
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the same value in E? (resp. E}) of V; as it has in E}[—a] (resp. El[+n]) of
Vs, unless Vy has an edge-mark E?[—7/2] (resp. El[+w/2]) which contains
the values (J,N,F,P) = (§,A,L,A) or (§,A,L,D), in which case the two
G values have opposite sign. If F # Z in E} (resp. E%) of V3, and we do
not have: (i) k = 2 (resp. k = 1) and (J,N,F) = (§,X,L) in E} (resp. E2)
of V3, then G¥M = +1 in that edge-mark; (ii) k = 1 (resp. k¥ = 2) and
(J,N,F)=(S,A,L) or (§,D,L) in E} (resp. E?) of V3, then G¥M =+11n
that edge-mark. See M1. : .

(R16) Let X = D or E. Assume we have a prototile T, with vertices
Vi, Vy and V3, and that E} (resp. E2) of V3 and E? (resp. E}) of V| refer
to the same edge of T. If F = Z in E} (resp. E?) of V3, then Gﬂifs has the
same value in E? (resp. E!) of Vi as it has in E}[—n] (resp. El{+n]) of Vy,
unless: (i) Vi has an edge-mark E2[+n/2] (resp. El|—=/2]) which contains



PINWHEEL TILINGS 689

. the values (J,N,F, P) = (§,A,L,E) or (S,A,L,D); or (ii) Vy has an edge-
mark F2 (resp. Ell) which contains the values {J, N, F,P) = (S,A,M,B), in
which case the two G values have opposite sign. If F # Z in E! (resp. E?) of
V3, and we do not have: (i) k = 2 (resp. k = 1) and (J,N,F) = (M,X,L)
in E} (resp. EZ) of V, then G§° = +1 in that edge-mark; (ii) k = 1 (resp.
k=2) and (J,N,F) = (M,E,L) or (M,D,L) in E} (resp. E?) of V3, then
G%¥S = +1 in that edge-mark. If F = 2 in E} (resp. E2) of V3 and we do
not have k = 1 (resp. k = 2) and (J,N, F) = (L, B,S) in E? (resp. E}) of V),
then G¢ = +1 in E! (resp. E2} of V. See M4.

(R17) Assume we have a prototile T, with vertices Vi, V2 and V3, and
that E} (resp. E?) of Vy and E? (resp. E}} of Vi refer to the same edge
of T. If F = Z in E} (resp. E?) of V3, then G‘gcs has the same value in
E? (resp. El) of V| as it has in E?[—x] (resp. El[+x]) of Vs, unless: (i)
V, has an edge-mark E?{—n/2] (resp. E}[+7/2]) which contains the values
(JJN,F.P) = (5A,1L,E) or (§A,L,D); or (ii) V5 has an edge-mark E?2
(resp. E]) which contains the values (J, N, F, P) = (S, A, M, B), in which case
the two G values have opposite sign. H k& = 2 (resp. &k = 1) and we do
not have (J,N,F) = (M,E,L) or (M,D,L) in E} (resp. E?) of V3, then
G4 = +1 in that edge-mark. If k = 1 (resp. k¥ = 2) and we do not have
(J,N,F) = (I,B,8) in E? (resp. E}) of V1, then G¥¥ = G¥° = +1 in E}
(resp. E2) of V,. See M8.

(R18) Hf* = G&" in an edge-mark if in that edge-mark (J,N) #
(8,A),{(8,D), M,D), orif (J,N,F)=(5,A,L),(5,D,L) or M,D,8).

{R19} Assume we have a prototile T, with vertices Vi, Vo and V3, and
that E! {resp. E2) of Vy and E? (resp. El) of V; refer to the same edge of T.

If F =7 in E} (resp. E?) of Vs, then the ratio of H® and G%" is the same
in B2[+x} (resp. El[+n]) of V3 as it is E2 (resp. E}) of V1. See Figure 15.

Va

O OV

R19

= _ © Cy >
2 Vi Vi / Vi
) F=2

Ficure 15

(R20) Consider any prototile with El (resp. E2) of V3 and E? (resp. E})
of V referring to the same edge. If F # Z in E} (vesp. E?} of V4, and it is not
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the case that: (i) k = 2 (resp. k = 1) and (J,N,F) = (§,X,L) in E] (resp.
EZ?} of V,, then G = +1 in that edge-mark; (ii) &k = 1 (resp. k = 2) and
(J,N,F)=(S,A,L} or ($,D,L) in E} (resp. E2) of Vy, then G¥™ = +1 in
that edge-mark (see M1); (iii) &k = 2 (resp. k = 1) and (J, N, F) = (M, X,L)
in El (resp. E?)} of V3, then G§° = +1 in that edge-mark; (iv) k = 1
{resp. k = 2) and (J, N, F) = (M,E,L) or (M,D,L) or (L,B,M) in E} (resp.
E2) of Vy, then G = +1 in that edge-mark (see M4); (v} k = 2 (resp.
k=1) and (J,N,F) = (M,E,L) or (M,D,L} or (L,B,M)} in E} (resp. E2)
of Vg, then G‘}"S = +1 in E} (resp. E2} of Vy; (vi) k=1 (resp. k = 2) and
(J,N,F) = (L,B,M) in E{ (resp. E2) of V3, then G¥* = +1 in E} (resp. E2)
of V; (see M8).

(R21) Assume we have a prototile T, with vertices V;, V3 and V3, and
that E; (resp. E2) of Vs and E? (resp. E}} of V; refer to the same edge of
T. If (J,N,F) = (M,D,L) in E? (resp. E}) of V1, then the ratio of H1? and
GE™ in E} (resp. the ratio of H2" and GS2* in E2) of Vy equals the ratio of
HI" and GEI in EX{+% /2] (resp. the ratio of H2" and Ge2* in E}|—n/2}) of
V.

(R22) Assume we have a prototile T, with vertices Vi, Vo and V3, and
that E] (resp. E?) of V; and E? (resp. E}) of V; refer to the same edge of
T. If (J,N,F) = (M,D,S) in E? (resp. E}) of Vi, then the ratio of H}* and
GE™ in E} (resp. the ratio of H2* and G2* in E2) of V; equals the ratio of
HI? and GEI" in El[—x /2] (resp. the ratio of H2* and G in El[+=/2}) of
Vi. We must now define the tiles of our system and their “matching rules.”

We define a “tile” as an (orientation-preserving) isometric image of one
of the two unmarked prototiles, together with its marks. (We could define
the tiles of class X2 to be reflections—with appropriate changes of marks—of
those of class X1 if it was desired to minimize the number of prototiles.) In
order to define “matching rules” for these tiles, we first define what it means
for two tiles to be “neighbors.” Two tiles are neighbors if their intersection
consists of an edge of each. Also, a tile of type E will be called the neighbor
of a tile of type C if they intersect precisely in the small edge of the C and
half the medium edge of the E, with the medium vertex of the C and the large
vertex of the E ceinciding. A tile of type E is a neighbor of a tile of type D
if they intersect precisely in the small edge of the D and half the medium
edge of the E, with the medium vertex of the D and the small vertex of the E
eoineiding. A tile of type E is a neighbor of a tile of type A if they intersect
precisely in the small edge of the E and half the medium edge of the A, with
the small vertex of the A and the medium vertex of the E coinciding. A tile
of type A is a neighbor of a tile of type B if they intersect precisely in half
the medium edges of each, with the small vertex of the B in the middle of the
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edge of the A, and the large vertex of the A in the middle of the edge of the B.
And finally, a tile of type B is a neighbor of a tile of type B if they intersect
precisely in half the medium edges of each, with the large vertex of each B
in the middle of the edge of the other B. See Figure 16. By the data above,

FIGURE 16

the matching rules for tiles are: In a tiling, two tiles T, and T, may abut if
they are neighbors, and whenever a vertex Vo, of Tp, coincides with a vertex
Vn of Ty, and T, is in the positive direction from T,, about the common
vertex, then E! of V,, equals Eﬁ +1 Of Vi, and Ay of V,, equals Apyy of Vi,
where e + 1 = 1.

4. Hierarchical structure in the tilings

We define a triangle of level 0 (note the distinction from “Triangle” and
“Level”) as a tile; its class and type are those of the tile. We inductively define
a triangle of level n > 1 as an “appropriate collection” (defined below) of five
triangles of level n — 1 together with certain conditions on values of F', N and
J as noted below.

An appropriate collection of five triangles of level n is the image, by a sin-
gle isometry of the plane, of: (i} a triangle of type A with vertices 5% (—2,1),
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5/2(0,1) and (0,0); (ii) a triangle of type B with vertices 5%/2(0,1), (0,0) and
57/2(2,1); (iii) a triangle of type C with vertices (0,0), 5%/%(2,0) and 5%2(2, 1);
(iv) a triangle of type D with vertices (0,0), 5™2(2,0) and 5%/2(2,1); and (v)
a triangle of type B with vertices 5%/2(2,1), 57%(3,1) and 5%2(2,—1). For
any such collection we carry over the definition we used for Triangles of tiles
Tg, Ty and Ty, and vertices Vgg, Vg ete.

To be a triangle of level n > 1 we require, moreover, ' = Z in all edge-
marks referring to tile edges which coincide in an interval with one of the
three edges of the collection, except possibly for edge-marks in those vertices
coinciding with the three vertices of the collection, which however must satisfy
the following. The large triangle must belong to one of these “classes” (see
Figures 17A,B), which from R8 are mutually exclusive:

A2 Al

FIGuReE 174
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FIGURE 178

(A1) (resp. A2) In Vym, E! (resp. E?) contains (J,N,F) = (S,A,M),
and E? (resp. E}) contains F = Z, and in Vgg, E? (resp. E]) contains
(J,N,F) =(5,A,L), and E} (resp. E}_,) contains F = Z.

(B1) (resp. B2) In Vmy, B2 (resp. E}) contains (J,N,F) = (5,B,M),
and E! (resp. E2) contains (J, N, F) = (L,B,M), and in Vgs, E} (resp. E2)
contains (J, N, F) = (§,B,L}, and Eg_l (resp. E}) contains F' = Z, and in
Vg, E2 (resp. E!) contains (J, N, F) = (L,B,8), and E} (resp. E2) contains
F=7.

(C1) (resp. C2) In Vimm, E? (resp. El) contains (J,N,F) = (8,C,M),
and E! (resp. E2) contains (J,N,F) = (L,C,M), and in Vgg, B} (resp. )
contains (J,N,F) = (8,C,L), and E? | (resp. Ej) contains (J,N,F) =
(M,C,L), and in Vgs, E? (resp. E}) contains (J,N,F) = (L,C,8), and F{
(resp. E2) contains (J, N, F) = (M, C,8).

(D1) (resp. D2) In Vi, E} (resp. E2) contains (J,N,F) = (8,D,M),
and in Vg, E2 (resp. E}) contains (J, N, F) = (8,D,L), and E} (resp. EZ ;)
contains (J, N, F} = (M,D,L), and in Vgg, E} (resp. E?) contains F = Z, and
E? (resp. E}) contains (J, N, F) = (M,D,8).

(E1) (resp. E2) In Vsg, EZ (resp. E}) contains F' = Z, and EJ (resp. EZ )
contains (J, N, F) = (M,E,L), and in Vgg, E? (resp. E}) contains (J, N, F} =



694 CHARLES RADIN

(M, E,S). A triangle of class Xj and level n > 1, defined above, is said to be
of type X.

In summary, a triangle of level n > 1 is defined inductively as a collec-
tion of five triangles of level n — 1 in one of two possible specified geometric
relationships, satisfying one of ten (mutually exclusive) sets of conditions on
values of ', N and J in those edge-marks referring to the edges of the collec-
tion; F' = Z at all interior vertices, and (F, N, J) exhibit one of ten specified,
mutually exclusive, patterns at the three vertices of the collection. Note (using
V1 --- V10) that triangles of level 0 (namely tiles) satisfy all the properties of
triangles of level n, for n = 0.

5. Results

THEOREM 5.1. If in the substitution tesselation © of the plane the Tiles
are considered as tiles, there is a tiling of the plane with all matching rules

satisfied.

Proof. We need to prove that the marks on the Tiles satisfy the restric-
tions for marks of tiles, A1 --- E2, V1 --- V10, and R1 --- R22, and that the
neighbor rules are satisfied.

For the most part, the restrictions on tiles and the definitions of “neigh-
bor” are constructed so as to conform obviously with the tesselation 6. We
first show that abutting Tiles occur in © only in ways allowed by the neighbor
rules.

Qur claim is obviously true for Level 1 Triangles. New types of neighbor
combinations may appear as a result of some Triangle of a certain Level n
being divided in five parts according to our procedure; two abutting Tiles in
a Level n Triangle, when subdivided, may create along their common edge
something new at Level n + 1. Consequently, we just have to verify that any
two Tiles, neighbors according to the rules, give rise only to such neighboring
Tiles after being divided. We now examine four cases.

If the Tiles match (full) edge-to-edge, with equal angles at coinciding
vertices, then they produce only edge-to-edge matchings after the subdivision.

If the Tiles match edge-to-edge, with unequal angles at coinciding vertices
(this happens in the tesselation @ only for L. edges, but this is irrelevant to
our argument), then they produce edge-to-edge matchings unless they border
along L edges. In this case they produce the A-to-A and A-to-B matchings
on half the medium edge and the A-to-E small edge to half medium edge
matching (see Figure 3).

All matchings of an S edge to half an M edge give rise to edge-to-edge
matchings after a subdivision {see Figure 3).
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All half medium edge to half medium edge matchings give rise to edge-
to-edge matchings after a subdivision (see Figure 3). This completes our ar-
gument concerning the neighbor rules.

The only restrictions we consider are R9, R10, and those parts of V1 and
V6 which refer to the H variables.

Consider a typical case of R9: Assume (J, N) = (M, D) in E] of V3, and
G5 in E2? of V; equals Ggls in El of V3. We will show that this only occurs
if the Tile is as shown in Figure 18, namely the Tile Tg of a Triangle of class

13
GD

\,
D2

Froure 18

D2 (which is, of course, consistent with the conclusion of R9). We know from
the hypothesis that there is a Triangle T of type D, with the medium edge of T
containing vertices V| and V3 of the Tile. Our proof will be by contradiction.

Now assume that F' # S in E} of V,. It follows that Vy and V3 lie on
a complete edge which ends at V3, and from the geometry this edge must be
either: the medium edge of a type D or E Triangle, or the large edge of a
type B Triangle. The three cases are similar, and we illustrate the argument
with the case of the medium edge of a type E Triangle, T'. The geometry must
then be as in Figure 19. But this cannot be our situation because of M6, with
Y1 =El and X = D, which completes our analysis of R9.

‘We now consider R10. Mare specifically assume GﬁlM in Eg of V| equals
G5M in E] of V3, and that (J,N) = (§,A) in E? of Vy; we must show that
F =M in E2 of V; as in Figure 20. We know from the hypothesis there is a
Triangle T of type A, with the short edge of T containing vertices V3 and V,
of the Tile. Our proof will be by contradiction. So assume F' # M in E? of
Vs. It follows that Vo and V, lie on a complete edge which ends at Vy, and
from the geometry this edge must be the short edge of a type D or A Triangle.
The two cases are similar, and we illustrate the argument with the case of a
type D Triangle, T°. The geometry must then be as in Figure 21. But this
cannot be our situation because of M3 with ¥1 = DI and X = A; this
completes our discussion of R10.
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.For V1 and V6 we will need two lemmas.

LEMMA 5.2. a) Let V, and Vi be vertices of a Tile, both lying on the
medium edge (not necessarily a complete edge) of a Triangle of Level n > 1,
with V1 at one end of the edge and E} (resp. EZ) of V, and E? (resp. E}) of
V1 referring to the edge. Assume V4 is a vertex of a Tile lying at the other
end of this medium edge, with E} (resp. EZ) of V4 referring to the edge. Then

Vs GilM

/

V3

alM
GA

\

Vi

Ficure 21
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t

FIoURE 22A

GI*M s the same value in EL (resp. E2) of Va as it has in E! (resp. E2) of
V4. See Figure 22A.

b) Let Vi and Vi be a vertices of a Tile, both lying on the medium edge
(not necessarily a complete edge) of a Triangle of Level n 2> 1, with V, at
the end of the edge meeting the small angle, and E} (resp. E?) of V3 and E?
(resp. E}) of Vi referring to the edge. Assume V4 is o vertex of a Tile lying
at the other end of this medium edge, with E} (resp. E?) of V4 referring to
the edge. Then GUS has the same value in E} (resp. E2) of Vi as it has in
E} (resp. E?) of V. See Figure 22B.

F1GURE 228

Proof of Lemma 5.2. a) The case of Level n = 1 follows from M1. The
_higher Level cases then follow from the A-D symmetry of M1, since the medium
edge is composed of the large edges of an A and a D Triangle, and any changes
GﬁkM undergoes in the A is reproduced in the D.
b) The case of Levels n = 1,2 follows from M4 and M8. And now the
same argument used in part a) can be applied, which completes our proof of
the lemma. O
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LEMMA 5.3. Consider a Triangle of type E and Level n > 0, with E}
(resp. EQ] of Vum and E2 (resp. E}) of Vwus referring to the large edge.
Then GJ has the same value in E2 (resp. El) of Vsm as in E2 (resp. E})
of Vs if and only if it has the same value in E} (resp. E2) of V1L as in E|
(resp. E2) of VL. See Figure 22C.

T~
e

FIGURE 22C

Proof of Lemma 5.3. First note from M1 that cases n = 0,1 hold. The
cases n > 2 then follow by induction, where Lemma 5.2 is used to reduce
to the component E Triangle of one lower Level. This ends our proof of the
lemma. O

The nonobvious portions of V1 and V6 concern the values of the Hkr,
However the case for variables HXS follows immediately from R10 and
Lemma 5.2b, and for variables HXM from R9, Lemma 5.2a and Lemma 5.3.
This completes our proof of Theorem 5.1. : a

THEOREM 5.4. In any tiling of the plane satisfying the matching rules,
there is o unique decomposition into triangles of level n 2 0.

Proof. We begin with an outline of the proof. To prove by induction the
existence of unique triangles of all levels one needs to show that each triangle
of level N is contained in a unique “sppropriate collection” at level N + 1,
which furthermore has all the distinguishing characteristics of some class, so
that one can unambiguously form the level N + 2 “appropriate collection.”
Some of this is easy to arrange using the “accessible” parts of the components
of the collection, in particular the F' values at the large vertex of the collection,
which is accessible from the E component. (Accessible means known directly
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from the definition of the class of the component.) The harder step is to
arrange for the needed characteristics of the collection at inaccessible parts
of the components, in particular the F' values at small and medium vertices
of the collection. This is accomplished by encoding the information in the G
variables, which can then carry it from accessible to inaccessible parts along
pathways defined by the F and H variables, where R9 or R10 is applied.

To begin the proof we first note that for n = 0 the conclusion is satisfied
by the assumption of a tiling. So to continue the induction, assume we have a
tiling of the plane {with all matching rules for tiles satisfied of course), and that
the tiling is uniquely decomposable into triangles of level n for 0 <n < N. We
must show that the tiling is uniguely decomposable into triangles of level N+1.

It is routine to check by R5 and V1 -.- V10 that given any triangle of
level N in the tiling there is a unique way to extend it to an “appropriate
collection” of five such triangles, and that there is 2 unique value of P in the
nine complete edges of the five level N triangles, in particular the small edge
of the A and the small and medium edges of the D. It then follows from R4,
RS, V1, V5, V6 and V10 that this P value is converted into the N values
in all those edges of the collection appropriate for the value of P, where the
N values are meant to help define a type, and thus class, for the collection,
making it an N +1 triangle. It remains to show that the needed F' values are
antomatically correct, thereby justifying these N values.

The needed F values (namely all Z) in edge-marks interior to the edges
of the collection are automatically correct by properties of the five component
triangles. The only possible difficulty is therefore at the three vertices of the
collection. There are ten cases, depending on the ten possible classes, Al ---
E2, of the collection. The proof is similar for all cases. Using the P value
used to determine the class of the triangle of level N + 1, we get the needed
information as follows, the general method being illustrated in the interests of
clarity for the cases of class Bl and A2.

We consider first the case where P = B in the edge-marks in, say, the
small edge of the component triangle of type D of the collection. The needed
information in Vi, of the collection follows from V5 when we use this value of
P in the small edge of the triangle of type D, which shares its medium vertex
with the small vertex of Tr. The needed information in Ve of the collection
follows from R11, applied to tile Ty, again using the above P value, but now
using it with R4 and RS.

The needed information in Vgg of the eollection follows from R9 applied
to tile Tg as follows. We know from V5 together with R19, R21 and R22 that
Ggls in E![+7/2] of vertex Try of the component A triangle equals GgS in
E} -7 /2] of vertex Ty, of the collection. To carry this information to vertex
Vags of the collection, in order to use R9 and V3, we use Lemma 5.2, which, like
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Lemma 5.3, holds for “appropriate collections” of triangles as well as Triangles
since it depends only on the variation of the G and H variables, which are the
same for Tiles and tiles.

We now consider another case of the theorem, class A2, and only the
needed information at the medium vertex of the collection {the information at
the large vertex following as above).

The needed information in Vyny of the collection follows from R10 applied
to tile Ty, as follows. We know from V5 together with R19, R21 and R22 that
G3™ in El[—n/2] of vertex Ty, of the component A triangle equals GeM in
E} of vertex Ty, of the collection. To carry this information to vertex Vyu
of the collection, in order to use R10, we use V2, Lemmas 5.2 and 5.3.

This completes our proof of Theorem 5.4. O

6. Concluding remarks

In the above we have constructed the first example of a finite set of shapes
{prototiles) which can tile the Euclidean plane, but only using tiles in infinitely
many orientations (and thus of course only nonperiodically.) This requires,
essentially for the first time, the use of rotations in the study of forced tilings.
We make the following supplementary remarks.

* If our restrictions for tile marks are replaced by the stronger restrictions
that the only marks allowed are those which appear on Tiles in the tesselation
0, then of course Theorems 5.1 and 5.4 still hold. (The reason we did not
do this is that it would then be more difficult to determine if a given marked
prototile satisfied the restrictions.)

** It is common in the tiling literature to restrict attention to tilings of
polygonal tiles which are “edge-to-edge,” that is, in which the vertex of a tile
can only intersect another tile at a vertex, as distinct from the way our tiles
of type E meet tiles of type C, for example. To accommodate this (mistaken)
prejudice, we note that our results can be recaptured with this additional
property by the doubling of the number of prototiles; each of our prototiles
listed above could be decomposed into two by cutting on a straight line from
the center of the medium edge to the medium vertex, each half retaining of
course the information on the two vertices it inherits; see Figure 23. One would
then add matching rules along these fresh edges, forcing only the original pairs’
ability to meet along such an edge.

*x + It is convenient to insert a distinguished point within each triangle of
type C, where the bisector of the large angle meets a straight line perpendicular
to the center of the small edge, as in Figure 24. It is easy to check that for
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Filcure 23

7

FIGURE 24

a triangle of type C of level n > 1 this point coincides with that associated
with the triangle of type C of one lower level (and of course continuing down
to level 0). These points are of interest because the triangles appear rotated
ahout these points, in opposite directions for triangles of the same type but
different class. This is the origin of the name we have given to this tiling
system, with reference to the pinwheel toy which has blades, attached to a
stick, which rotate in the wind.

UNIVERSITY OF TExAS, AusTIN, TX
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