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Comparing the different solutions of Case and Nelson for the evolution operators of a Schrodinger
particle in the potential ¥(r) = —1/r? we show that Nelson's nonunitary solution is a simple
average, over a physical parameter related to a boundary condition at the singularity, of Case’s

family of solutions.

1. INTRODUCTION

In two well-known papers, Case' and Nelson® have
used different approaches, and arrived at different con-
clusions, in calculating the evolution operators for a
Schrodinger particle in the presence of the singular, at-
tractive potential V(#)= - 1/v2. The most striking dif-
ference is that Case finds the operators to be unitary
but not unique, whereas Nelson finds them to be unique
but not unitary.

As the potential is not physical (see, however, Ref.
3, esp. Secs. V, VI), we do not try to justify one solu-
tion or the other on physical grounds. All we attempt to
do is clarify the relationship between the two; we show
that Nelson’'s nonunitary solution is a simple (time in-
dependent) average over Case’s family of unitary
solutions.

We choose units so that Planck’s constant, 7%, has
magnitude 1, and for complex numbers z and w we
define

z¥=explw(ln|z| +i argz)],

where — 7 sargz<m.

2. THE TWO SOLUTIONS

We consider the Schrodinger equation in three space
dimensions:
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In spherical coordinates the Laplace operator is
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where J%, the square of the angular momentum operator,
is
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The natural identification of R® with SXR*, where S is
the unit sphere in R?, induces a Hilbert space isomor-
phism L,(R*)= L,(S)® L,(0,©). We associate with the
formal differential operator J%, in the standard way, a
self-adjoint operator (also denoted J?) on L,(S) whose
spectrum is purely discrete, with eigenspaces / ; and
eigenvalues j(j + 1), where j=0,1,2,---. Finally we
decompose in the natural manner

©

oy

= ito

H=LyRYZ 6 [/ @ L,(0,=)]

544 Journal of Mathematical Physics, Vol. 16, No. 3, March 1975

As the potential V=-1/7? is spherically symmetric,

we will only consider solutions U? for (1) which commute
with J°® I, [where I, is the identity operator on

L,(0,%)], so that U? can be decomposed as Ut =g U*(j),
where U'()) is of the form I, ® X¥(j) with {, the identity
operator on / , and X%j) an operator on L,(0, ). (By an
abuse of notation we will no longer distinguish U%(j) and
X'(j}]. We will usually be considering evolution operators
U' be means of their “restrictions” U'(j) to an arbitrary
but fixed // ;.

Assume that  is a separable solution of (1) in //,,
with radial part ¢,, and let u(v)=7y,(#»). Then (1) be-
comes

du 1 ( 02 (-3 >_ 1
= - —ayzuﬂh ST U =5 Hu, (2)

where P =4+ [j(j+1)=2m]and u( -, () is in L,(0, =) for
each fixed time /. Our problem now is to determine
evolution operators U*(j) on L,(0, ) for (2) whose gen-
erator is appropriately related to the formal differential
operator (2mi)'H, which we will consider to be an
operator on L,(0,«) with domain C;, the (equivalence
classes of) infinitely differentiable functions with com-
pact support in the open interval (0, «). We seek a gen-
erator which is an extension of (2mi)'H, which is not.
itself, a generator.

Nelson in Ref. 2 defines such evolution operators
U,'(j). (=0, of (2) with Laplace transform

@y u= .{:c exp(— AU, ()udt, Rex>0,
and shows that

QM u(x) = ,/Om G plx, v yul(y) dy
with
APHY(2min) 2x ) f (),
N2 [(2mi)t 2x)g(v).

: x>,
Gﬁnyﬂkz{

x <y,

where J, and H are the usual Bessel functions as de-
fined in Ref. 4, f and g are unknown, and v=(v!/2 he
also shows that U ,!(j) is not unitary for »*<0 but is
unitary for v# = 0. Thus his solutions U,/ for (1) are non-
unitary if and only if m > 1/8, the only range of mass we
will consider henceforth. From his definition of U, ‘(j)

it follows easily that @ ,(\) =K|[Q ,(\)]*K [where K is the
complex conjugation operator on L,(0, ©) and * denotes
operator adjoint] and then that G %, ¥;X) =G (v, %)) so
that
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G (%, y;0)=n(x)

AH(2min) P ()R [(2min) 2y, x>y,

XMAL[(2min) 2| () PHL(2min) 2y ], x <y,

(3)

where n(\) is independent of ¥ and y but as yet undeter-
mined.

An alternative approach to the problem was put forth
by Case in Ref. 1, and consists of determining all pos-
sible unitary evolution operators Ut(j) for (2) whose gen-
erators extend (2mi)tH. Rather than use Case’s method
of carrying out this approach, we will use the method of
von Neumann as described in Ref. 5, which has the ad-
vantages of being of very general character, widely
known, and most importantly, of leading directly to
quantities that we need to calculate. We will discuss
separately the cases 1220 and 12 <0,

For * >0, Nelson's solution is, as he indicates, the
commonly accepted one corresponding to a Friedrichs
extension of H. The case v=0 is slightly more compli-
cated, but as we show in Sec. 4 it turns out that for
# = 0 Nelson's solution can be “justified” by a regulari-
zation procedure if necessary (except possibly for the
Jj=0 restriction). Therefore, the only part of Nelson’s
solution that can be regarded as unusual is that for
1< 0, the nonunitary restrictions.

A straightforward application of Theorem 10. 20 of
Ref. 5, most of which is explicitly exhibited in Ref. 6,
shows that for 1# <0 there is a one-parameter family of
unitary solutions U, %j), —=<{<w=, 0<0<27, whose
Laplace transforms @) have kernels

Gylx, vi)) =mm/[1 = n*2min)’L(6)]

AEHL(2ma) 2] () 2T [(2mix)!/2y)

= (2mi)YL(OY _ [(2min) /2y ]}, x>,
X

X I [(2min)t 2x] - (2min)*L(6)

xd_J2mix 2 V() 2HY (2mi) 2], x <,

(4)

for Rexr > 0. where 1 =exp(- ivn/4) and

_ , exp(i6) +n®
L(Q) = exp(— le) <W>
We emphasize that this is a complete list of the unitary
solutions for v* <0 and that the parameter 6 is directly
related to a boundary condition at the singular point
v=0; for the relation see Refs. 5 and 7. The parameter
s for the corresponding evolution operators UtonH
= //, is a variable in [0, 27)¥; we emphasize that jcN
and 6¢ [0, 27) are independent parameters, and
Uglt()= U y4) if v= 0.

3. COMPARISON OF SOLUTIONS FOR 12 <0

Since L(6), defined above, is of absolute value 1, we
can simplify the form of G,(x, v;x) by defining
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x(0)=arg L(8)+7. From

ax 1-n*

A > 0

a6~ lexp(if) +n?|?
we see that x(6) increases monotonically from 0 to 27
with 6, and has an inverse function 6(y). Defining the
average

2r
: 1 )
<(rg(x, y;)\»: —2-— f Ge(x)(x,y;)\) dx
T Jo
i

_ 1
T2

-v0

a
Gylx, v0) 55 o

and replacing exp(iy) by the complex variable z and using
Cauchy’s integral formula, we find for Rex >0

KPHY(2min ) 2 (v) 120, [(2min ) 2y ],
x>y,
YR [(2min) 2y ],
x<y.

(Golx, ¥;2)) =m7

2] [(2min) 2x] (y

(5)

From (3) and (4) we see that for Rex > 0 the bounded
operator ¢,(1) is the sum of two bounded operators

Qs(N) =1(6)Q'(\) + K(6)Q*(N)

with the numerical coefficients % and k carrying all the
6 dependence. Clearly @,(), as a function of 6, is con-
tinuous in the operator norm topology, and the average
operator

Qe g [ Quuofn

is an integral operator with kernel (G, (x, y;1)).
From Theorem 11.5.2 of Ref. 8.

QM) =2mi(2mix =H ), Q,(\) =2mi(2mix ~ H,)?,

where (2mi)"H, [resp. (2mi)'H,] is the generator of
Uy'(j) [resp. U,'(j)]. Let u be a nonzero function in C7,
and therefore in the domain of H, H, and H,. Then H
=Hgu, and v=(2mix — H Ju=(2mix — H))u is nonzero
since H, is self-adjoint. Therefore, 2miu=@q  ,(\)v
=@, v =(Q,A)v, which implies that n(A\) =m in (3),
and @ ,(A) =(Q,(\).

From Theorem 11. 6. 2 of Ref. 8, if Reg> 0 we have

1 s o ip Ut(i) t>0,
S lim dap [ exp(At)Q,(\ ) A\ =
ML 5+ )
(] T ib u/2, =0,
(6)

with a similar equation for U ().

. 1 2r )
U (Yu = E-n—/ Uiy dy,
0

we note that the limit in (6) is uniform in 6 so that for
Reg >0,

qrip
- llmf dap [ exp(MN@ (A ) u dr

2m s—e0

Defining
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Ugiyu, >0,

u/2, t=0,

which proves that U ;) =(U,*(j)) for ¢>0.

4. REGULARIZING THE POTENTIAL

In this section we consider the possibility of regu-
larizing the potential V=-1/72, that is, altering it in
a region of the origin so as to be nonsingular, calcu-
lating the associated evolution operators as a function
of the region of regularization, and then looking for
limits as we allow the region of regularization to become
arbitrarily small while keeping all other parameters,
in particular ¢, fixed. (A similar program is carried out
in Sec. 5 of Ref. 6, but there even the centrifugal po-
tential term is regularized, which we prefer not to do.)

Thus we consider the differential operator

P ar  wi-g

where
_ -2m/7r% ¥>R
VR(T) =
-2m/R?*, ¥ <R

where R>0, and u=[}+j(j+ 1)]V/2 If j2 1, H,, with
domain C7, is essentially self-adjoint as we see by ap-
plying Theorem 10. 21 of Ref. 5. We will postpone dis-
cussion of the case j=0 to the end of the section.

Assuming j= 1 and denoting by H, the closure of INiR,
we wish to study its behavior as R approaches 0. We I

will discuss separately the cases where v is, or is not,
an integer.

A straightforward calculation using Theorem 10, 21
of Ref. 5 shows that if Rex >0 and v is not an integer,
@r(1) defined as 2mi(2mix - H )" is a bounded integral
operator will kernel

Swl(x)wz(y)/W,

X>y7
Gplx, y;0)=

zwz(X)wl(y)/W, x<wy,

where
ag(x) 2H(2min)t 2x ],

wy(x) = YL 1(2min + 2m /R 2]
+bJ_ [(2mix +2m /R*)} %]},  x <R
(2L [(2min) 2]+ d T [(2min ) 2]}, x>R.

wy(x) =

cp(X) 27, [(2mix + 2m /R?)/2x], x <R,

0 ds [(2mix +2m /R 2R] + b J_, [(2mix + 2m /R?)'/2R]
R™ HY(2mix )R]

_J,1(2mi\) 2R ] + ded_[(2miN! ?R]
Cr= T, [(2mix + 2m /R®2R]

5 _Tl-p) <2mim2+2m)“
ET 1+ ) 4

x((- u= o) [(2man) 2 /2] T (1 + v) + R¥(u — v) [(2min) /2 /2] exp(— vri) (1 = v) )
(— 0+ ) (2mi2/2]"T(1 + v) + R¥(u + v) [(2mir)1 72 /2] exp(— vmi) T(1 ~ v)

. T{1=1)

dp=-& T+

2mix \? (g—v)
4 w+v/’

sin(um) .

a
_ 2 — i -
W= — (d pexp(— vmi) + 1) baCr oy

(R® as R—0,
(R?)

as R—0.

fl

by I;R +0
dg (NiR +0
It is easy to see that if ¥*< 0 and we let R approach

zero along the sequence {R°; n=1,2,'--}, chosen so
that dge = — (2mir)’L(8), then for each x,y in (0, )

Gro (x,¥;0) = Gylx, wid)

and, also, for each 6 there exists such a sequence.
From simple estimates of [GR(:(x, YA = Golx, ;1)) in
each of the regions of integration corresponding to the
possible linear orderings of x,y and Rﬁ, it follows that
Qrt () converges strongly to @,(x) and therefore from
Theorem IX. 2. 16 of Ref. 9, Ute(j) converges, in the
strong operator topology, to Ug(}) for each ¢ in (=~ =, =),
In particular, for <0 and fixed { #0, U%(j) does not
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l;)nverge as R approaches zero, except along special se-
quences, in contrast with the imaginary mass case in
Sec. 2 of Ref. 2. This makes explicit the connection be-
tween the radius of regularization in the cutoff model

and the associated U,’, as discussed in Sec. IV of Ref. 1;
the fact that RZ is a function of j could be interpreted as
a means by which to select some of the evolution
operators U! on // = @}/, over others. For v>0 but not
integral, the above analysis shows that UL(j) does con-
verge as R approaches zero, and converges to Ui{j). A
similar analysis confirms that this latter behavior holds
for all v=0.

There remains the case j=0. When the above program
is begun for j=0, one finds that H, is not essentially
self-adjoint for any v. That this problem is basically
unrelated to the potential is evident from the fact that
the same result would emerge for a free particle, The
point is that when we have a singular potential, it is
reasonable to first restrict the formal Hamiltonian H to
a domain of functions with support isolated from the
singularity, and then look for extensions. If the potential
is not singular, this procedure can lead to unwanted
solutions as it does in our problem for j=0. [It is im-
portant to keep in mind that »=0 is only a boundary
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point for the radial equation (2), not the full Schrédinger
equation (1); there is no reason to distinguish »=0 from
neighboring points for the nonsingular V.] Thus the
regularization method does not select out particular
solutions for j=0 as it does for j = 1. Fortunately v and
j cannot vanish simultanecusly for > 1/8, so we can
“justify” all the unitary restrictions of Nelson’s, either
by the Friedrichs extension or regularization.

We summarize our results in the following

Pyoposition: The nonunitary evolution operators U* on
L,(R®) for

0 (1,1
57—1( A+ 2)1])

2m ¥

defined by Nelson in Ref. 2, i.e., those for m>1/8, are
(time independent) averages of unitary evolution
operators U_! obtained by the traditional approach dis-
cussed by Case in Ref. 1; in other terms,
Uty= [ U 'y du(s) forall in L,(R®), (20,

for some (time independent) probability measure p on
[0, 2m)¥.
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