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The Ground State for Sticky Disks
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It is proven that the ground state of the two-dimensional sticky potential is
the triangular lattice,
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1. INTRODUCTION AND STATEMENT OF RESULTS

It is one of the classical unsolved problems in statistical and solid state
physics to show why real matter is in crystalline form at low temperature.*
The full quantum problem is well beyond known techniques, so, as in most
discussions of such matters, we consider the problem in the framework of
classical mechanics with phenomenological potentials of the Lennard-Jones
type. For such a potential ¥ we want to show that the configuration of particle
positions {r,} that minimizes the energy

E=1% Z V(jr, = 1))

L
(¥

(i.e., the “zero-temperature state”” or “ground state™) is roughly periodic,
and becomes a perfect lattice as the number of particles grows beyond bound.
We call this the “ ground state problem” (for the potential V'), and note that
in some sense it is the attempt to determine (one of) the origins of spatial
symmetry in matter.

In one space dimension the ground state problem is trivial for potentials
of sufficiently short range. To be specific: if, because of a hard core or a priori
estimates, one can show that in any ground state for a potential each particle
can only interact directly with its nearest neighbors, then, under very mild
further conditions on the potential, the ground state is unique (up to transla-
tion) and consists of evenly spaced particles. The ground state problem for
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such a potential is trivial (in one dimension) because one can minimize E
locally, 1.e., for each pair of particles separately, and join the results together.
The ground state problem is much harder for longer range potentials and/or
in higher dimensions.

For longer range potentials the ground state problem is clearly global
(or “many-body”) in an essential way. The known results in one dimension
are the following. For the Lennard-Jones potential ¥(r) = r~!2 — r~% it has
been shown® that each finite system of particles has a unique ground state
(up to translation) which becomes evenly spaced as the number of particles
grows beyond bound. It is further shown in Ref. 3, again in one dimension,
that the qualitative property of having periodic ground states can be destroyed
by arbitrarily small perturbations of a potential. There are also interesting
related results in Refs. 4 and 5 for one-dimensional systems of infinitely many
particles.

In two or three dimensions the ground state problem is essentially global
or many-body even for very short-range potentials. Consider, for example,
the “sticky potential™:

+ o0, O0sr<li
Vir) =< —1, r=] (1)
0, r>1

If we want to minimize E for this potential we can imagine an impenetrable
sphere centered at each particle, and the problem consists in showing that
those configurations of »n spheres in which the maximum possible number are
touching (n fixed) are periodic. _

In two dimensions each sphere (or, more properly, disk) can touch at
most six others, and in three dimensions at most twelve others.® It is easy
to construct periodic finite arrays where all “interior” spheres touch the
maximum possible number of others, but of course each boundary sphere
touches fewer than the maximum. It is not hard to check that if one starts by
constructing a minimum size boundary (by having the boundary spheres
approximate a spherical shell) and then works inward, the spheres will not
mesh correctly in the middle—but of course this could still conceivably give a
lower value of E than obtained by insisting that all the interior spheres touch
maximally many neighbors. (Note that in one dimension this conflict dis-
appears since one can easily arrange for a minimal size boundary, namely two,
without implication for the interior.)

It is thus by no means clear whether or not the ground states for the
sticky potential are periodic (i.e., “crystalline™) and the above considerations
illustrate the essentially global nature of the ground state problem in two and
three dimensions.
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In this paper we will give the first derivation of the existence of a crystal
in two dimensions—for the sticky potential defined in (1).

2. NOTATION

In accordance with the previous section, we are concerned with con-
figurations C of unit-diameter impenetrable disks in R2. Each pair of disks
that is touching determines a “bond,” which we represent by the closed,
unit-length line segment between the centers of the pair. By C, we denote the
set whose elements are the bonds of C, while C,, the “graph”™ of C, denotes
the set of all points contained in any of the bonds. The cardinality of C, is
denoted C,. The set of “vertices™ of C, i.e., the centers of the disks, is denoted
C

For each integer n = 1, B(n) denotes the supremum of C, over all C
containing n disks. It has been shown by Harborth™ that

B(n) = [3n — (12n — 3)%7]

where [x] denotes the greatest integer less than or equal to the real number x.
(Note: a variable represented by a lower case letter is assumed to vary
through Z unless otherwise indicated.) A configuration C of n disks will be
called **maximal™ if C, = B(n). We will reproduce Harborth's proof (which
yields the ground state energy) in order to extend it to obtain properties of the
maximal configurations (i.e., ground states). Specifically, we will show that
the particles in a ground state lie on the vertices of a ““triangular lattice,” i.e.,
the points in the complex plane of the form m + n exp(i=/3), m and n in Z.

3. ACONSTRUCTION

We begin with the computation of C, for a special class of configurations
which will prove to be maximal.

Assumes = 1,0 € k < 5,and 0 < j < sare fixed. Letn = 35 + 35 +
1 + (s + 1)k + Jj, so that n can be thought of as the number of disks in the
configuration C obtained by nestling more disks around the boundary of a
“close-packed hexagon of disks with s + 1 disks on each side” [i.e., the
hexagon has centers at the points

H, = {&"m + neé™)m 2 0,n20,m+n<50<p<5
in the complex plane]. Specifically,

C,= Hu{e™®m+ ne*)mz0nzlm+n=s5s+1,0<r<k—-1}
U {e*3(m + neé*¥)m 20,1 <n<jm+n=ys+ 1}
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It is easy to check that C, = H(n), where

H(ﬂ)_{gﬁus ifj=k=0
i MW+ +Cs+Dk— 143 ifj+hk£0
and that

H(n) = [3n — (12n — 3)12) )

4. PROPERTIES OF THE GROUND STATES OF THE
STICKY POTENTIAL

Theorem. (1) B(n) = H(n) = [3n — (12n - 3)'] (Harborth ™),

(2) For any maximal configuration C of n disks, n > 3: (a) C, has a
simple closed polygonal boundary with vertices on a triangular lattice and C,
consists of all the lattice points inside and on this polygon. (b) C, contains
exactly —[3 — (12n — 3)1/2) boundary vertices.

Proof. The cases n = 1 and 2 for part (1) are trivial so we assume n > 3.
Let C be a maximal configuration of disks. Clearly each disk in C touches
at least two others, so C, decomposes R? into elementary polygons with unir
sides, where “elementary” means that no element of C, is contained in the
Ppolygon’s interior. From the maximal property of C it follows that C, is a
connected set and furthermore that this property would persist in the con-
figuration obtained by removing any one disk from C. Therefore C, has a
simple closed polygonal boundary, éC, C,, and we denote by a the number
of boundary vertices, i.e., the cardinality of C, n 8C,,

If f; is the number of elementary j-gons in C; and f = 3,1, then by
Euler’s formula

If the number of all (unit-length) sides of all f elementary j-gons are added,
the boundary sides would be counted once and the interior sides twice, so

a+2C—-a)=3+4f, +-..-> 3f
Multiplying (3) by 3, this inequality yields
n—az0C +3-2 (4)
or equivalently
C,<3n—a-3 4

Note that (4) and (4) are equalities if.and only if there are only triangles in
.
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By a *“vertex of type /" we mean a point in C, contained in exactly j
bonds, and we let k; be the number of vertices of type j in éC,. Then

H“—_k2+k3+k4+k5 (5}

Since every angle between intersecting bonds is at least =/3, the interior angle
of @C, at a vertex of type j is at least (j — 1)=/3, so that (from a standard
formula) 3/= times the sum of all interior angles of dC, is

3ﬂ_63k5+2k3+3k1+4k5 {ﬁ'}

Note that (6) is an equality if and only if every interior angle of 2C, is
(j = D=/3.

If the boundary disks are removed from C, leaving C’' with C,’ = 0
bonds, we have

C' = C,—a— (kg + 2k, + 3k;)
and from (5) and (6) we get
Co = G + ko + 2k; + 3k, + 4k;
and
C, <G +3a-6 (7)

Assume for induction that B(t) < 3t — (12t — 3)"2for0 <t < n. If @ = n,
it follows from (4) that C, < 3n — (12n — 3)"2, so until we prove (9) we
will assume @ # n. Then since C, = B(n) by assumption, (7) gives

Bm)<C'+3a—-6<B(n—a)+3a—-6
From the induction, then,
B(n) < 3n — 6 — {12(n — a) — 3112

Note for future reference that we get a strict inequality here if C," < B(n — a)
or if some interior angle of &C, is >(j — 1)x/3. Now, using (4),

B(n) < 3n — 6 — (12{B(n) + 3 - 2n} — 3)2

or
B(n) < 3n — 6 — {12B(n) + 33 — 24n}12 (8)
Therefore
{B(n) — 3n + 6}* = 12B(n) + 33 — 24n
or

B(n) — 6nB(n) + 9% — 120 + 3 > 0

Let P(b) = b® — 6nb + 9n® — 12n + 3. Then P(b) has roots at b = 3n +
(12n — 3)"%, and is positive for b < 3n — (120 — 3)'2 and b > 3n +
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(12n — 3)"2, Since clearly B(n) < 3n, [B(n) = 3n would require all disks to
touch six others, including those on the boundary], we have

B(n) < 3n — (12n — 3)12
so with (2) we have

B(n) = H(n) = [3n — (12n — 3)¥2] (9)

which is part (1) of the Theorem.

The essence of our method for proving part (2) is that inequalities (4)
and (6) cannot both be strict; if they were, one could obtain (8), and then
(9), with B(n) replaced by {B(n) + 1}, which of course would be false.

Assume n is the smallest nonnegative integer for which there exists a
maximal configuration C such that f; ¢ 0 for some J = 4 (this will lead to a

contradiction). From the assumption that f; # 0 for some j > 4, we have, as
in the proof of (4),

(Cb+1)£3ﬂ-q-3 {Ei’]
or equivalently
n—az(Co+1)—2n+3 (4)

Since by assumption there is a nontriangle in C,, either it touches 8C, or it

lies in C,'. In the former case we get a strict inequality from (6), which leads
to

(Ch + l) = Cﬂ, + 3a -6 {T’}
and then, using C,” < B(n — a), to
(Co + 1) <3n— 6 — {12(C, + 1) + 33 — 24n)12 (89

If the latter were the case, then by the minimality of » we have
C,' < B(n — a) — 1, and again we have (8'). So in any case we have (8'). But
then just as (8) implies (9), so (8") implies

(Co+ 1) <3n-— (12n — 32

which is in contradiction with the maximality of C and which thus proves
part (2a) of the Theorem. And since now (4) is seen to be an equality, part
(2b) of the Theorem is also proven, and our proof is complete.

Remark. Part (2) of the Theorem implies that as n is made larger, the
ground state fills out all of the triangular lattice.
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