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Abstract. We generalize the study of symbolic dynamical systems of finite type and Z* action, and
the associated use of symbolic substitution dynamical systems, to dynamical systems with [R? action.
The new systems are associated with tilings of the plane. We generalize the classical technique of the
matrix of a substitution to include the geometrical information needed to study tilings, and we utilize
rotation invariance to eliminate discrete spectrum. As an example we prove that the pinwheel tilings
have no discrete spectrum.

Mathematics Subject Classifications (1991): 52C20, 58F11, 47A35.

1. Introduction

Our main objective is to determine the limit of disorder which is possible in a certain
class of dynamical systems with R? action, a class, which we call ‘tiling dynamical
systems’, analogous to the symbolic systems of finite type. A subsidiary goal is
to extend the classical tools of symbolic substitution dynamics to the geometrical
needs of tilings of space.

We begin with a definition of tiling dynamical systems [11], [1]. By a ‘prototile’
p we mean a homeomorphic image of the closed unit disk in R?, with center of
mass at the origin, which has small surface to volume ratio in the sense that:

area{z € ip: ||z — y|| < 1, for some y € d(ip)} %

0 1
area{tp} *

as the expansion factor ¢ — co. Assume given a finite set S of prototiles, and a
subgroup G (called the ‘allowed isometries’) of the connected subgroup £2 of the
topological group of isometries of R2. G is assumed to be either Z2, R? or £2, and
the image of a prototile by an allowed isometry will be called a ‘tile’; two tiles have
the same ‘tile-type’ if they are images of the same prototile. By a ‘swatch’ we will
mean a finite collection of tiles with pairwise disjoint interiors. A final requirement:
we assume that the boundary of a tile can be covered by tiles, all with pairwise
disjoint interiors, in only finitely many ways up to isometry. We associate with
given S and G the set X(.5) of all infinite collections of tiles, called ‘tilings’, that
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have union 2, and are such that each pair of tiles in a tiling has disjoint interiors.
We assume X(5') is nonempty.

We next define a topology on X(5). There is an obvious action of G on the
space X(.5). Then a typical element of a base for the topology on X(5) is C( P, €),
where P is a swatch {7;[p;(p;)]: 1 < j < n}, (p; being a prototile, p; an allowed
rotation about the origin, and 7; an allowed translation), consisting of all tilings
which contain aswatch P’ = {r][p%(p;)]: 1 < j < n} where ||r; —7;|| < ¢/2and
lp; — %Il < €/2. 1t is not hard to check that with this topology X(.5) is metrizable
and compact, and that G acts continuously on it [11].

Let Gt be the subgroup of translations in G. The ‘tiling dynamical system’
associated with given S and G is (X(S5), Gr). With this notation, our main
objective is to determine the limits of disorder possible for uniquely ergodic tiling
dynamical systems; in particular we wish to determine if such a system can have
pure absolutely continuous spectrum. We do not solve this problem, but we do make
a significant generalization of classical substitution dynamics and give evidence of
its usefulness in our problem. Our basic problem has origins in several directions.
For a review see [7], and for more recent developments see [8]-[11], [1].

One historical root of our problem was the search for tiling dynamical systems
which have no closed orbits. The original examples were obtained by use of some
form of hierarchical structure; we will follow this path. So given a tiling dynamical
system, we assume further that we are given a ‘substitution function’ F' on the
set of prototiles, which applied to prototile p produces a finite collection F'(p) of
tiles, with pairwise disjoint interiors, such that the set theoretic union (also denoted
F(p)) is geometrically similar to p. We call the collection, or any allowed isometry
of it, an ‘LS—tile’. LS—tiles F'(p) must have the same expansion factor E > 1 for
all tiles p. One can iterate the substitution, producing larger and larger collections
of tiles, each collection remaining geometrically similar to its predecessor. We will
call any such collection, or an allowed isometry of such a collection, a “VLS-tile’,
and define its ‘order’ as the number of substitutions used to produce it from a tile.
(So an LS—tile is a VLS—tile of order 1.)

Given the substitution F' we define the closed, G-invariant subset X(.5)F of
X(§) to consist of all tilings in which each swatch is a subset of a VLS-tile. (We
call (X(5)r, Gr)a ‘substitution-tilingdynamical system’.) It can easily be proven
that every tiling in X(5)r decomposes (not necessarily uniquely) into VLS-tiles
of any fixed order with disjoint interiors. (Consider an expanding sequence of finite
subcollections of a tiling, namely all the tiles inside an expanding disk. Using the
definition we see then that every tiling is the union of an expanding sequence of
VLS-tiles, and by diagonalization we can assume that in this expanding sequence
the grouping of tiles into VLS—tiles of any one fixed order does not change.) We
also note [11] that for all small enough ¢, swatches P’ associated with open sets
C( P, €) must be of the form P’ = g(P) for some g € G.

Previous examples, of tiling dynamical systems without closed orbits, were
obtained by use of a substitution function F' (or something similar) such that
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X(S)\X(S5)F is either empty or at least has measure zero with respect to any
invariant measure. In order that (X(5), G7) be uniquely ergodic clearly it cannot
be the case that two tilings have disjoint orbit closures. This is the reason why G
is taken to be R? rather than £2 for Penrose tilings [4], [7].

Let us consider further the special case of Wang dominoes [13], where the
prototiles are small deformations of unit squares in the plane, all with edges parallel
to Cartesian axes and with G = Z?. Such tilings were considered by Mozes in [5],
where extensive use was made of the obvious alternative description of such
systems as symbolic dynamical systems with Z* action. One of the main results
in that work was the construction of examples not just without closed orbits, but
without discrete spectrum. This was generalized to examples with G = R? in
[1]. In the present work we will generalize the approach further by allowing tiles
with rather arbitrary shapes, and making use of a new and powerful mechanism to
eliminate the discrete spectrum, namely rotational symmetry.

2. Results

Our first result gives simple hypotheses which force unique (uniform) orientational
distribution.

THEOREM. Assume given a set S of prototiles, a substitution function F', and the
substitution dynamical system (X(S)r, Gr) with G = £, Assume there is some
r > 1 such that:

(a) for each prototile p, F”(p) contains tiles of every tile-type;
(b) for some prototile p, F"(p) contains two tiles p’', p" of the same tile-type,
whose relative rotation is irrational with respect to .

Then (X(S)r, GT) is uniquely ergodic.

Proof. For each open set C'( P, €) (defined by swatches P and P’ as above), and
with y denoting the characteristic function for C'( P, €) and By denoting the disk
in R? of area N centered at the origin, we will prove that

& [ e | @

has a limit as N — oo independent of the tiling T, which, by Birkhoff’s ergodic
theorem, will prove our claim.
It is easy to show for all small enough e that in the limit where N — oo, 2) can

be replaced by

IEE

?n(T, Nillpw) (3)

where n(T', N, P, €) is the number of times a translate of the swatch P appears
in the portion of T' within By, rotated by at most €/2.
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We will analyze the limit of (3) by keeping track of swatches strictly within VLS-
tiles. For this we need the following generalization (to m # 0) of the matrix usually
used in symbolic substitution dynamics. Labeling the tile-typesby j € {1,..., ¢},
we define, for each integer m, the ¢ X ¢ matrix A[m] for which the matrix element
A[m] ;i is the sum

A[m]jk i Z giman(s,k) (4)

over all tiles of type j contained in the LS—tile F(k), where a,(j, k) is the angle
of rotation of the tile compared to the corresponding prototile. Let a be the spectral
radius of A[0]. Using (a) and a well-known result of Perron—Frobenius [12], there
are column vectors £ and n, with strictly positive components, such that for all
J, k

(A[0)5)

al

— k€ (5)

as L — oo. We interpret (A[0]*~M),; as the number of VLS-tiles of order M
and type 7 inside any VLS—tile of order L and type k. If we denote the area of the
prototile of type 7 by vol;, it follows that

LEMMA. For fixed M, the relative area occupied by VLS-tiles of order M and
tile-type j inside a VLS—tile of order L and tile-type k approaches vol;£; [ X ;vol;€;
as L. — oo, independently of k and M.

Next we will choose M so as to approximate n(T', N, P, €)/N in the form

n[TNPE} EXYZ ©)

1=1

where (roughly): X is the number of (isometric) copies of the swatch P in an order
M VLS-tile of type j, divided by EM vol,; Y; is the relative area of the portion of
T, inside By, taken up by order M VLS-tiles of type j; and Z; is the fraction of the
order M VLS-tiles of type j, in T inside B, which have orientation, compared
to the prototile of type j, in the interval (p — €/2, p + €/2). None of the terms
X;, Y;, Z; are precisely defined yet, so that is our next goal.

We note from (1) that for any given swatch P the ratio, of the number of copies
of the swatch which are partly inside and partly outside an order M VLS-tile to
the number of copies which are completely inside the VLStile, goes to 0 as M
goes to infinity, uniformly in the VLS—tile and the tiling containing it. So we fix M
such that this ratio is as small as desired. Then we define X ; in (6) as the number of
copies of the swatch P completely inside an order M VLS-tile of type j, divided
by EMvol;.
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Fig. 1. Two iterations of the substitution rule,

Using the Lemma we define Y; as vol;£; /X ;vol;£;. To define Z; we first prove
that each tile-type of the order M VLS-tiles is uniformly distributed in orientation
in any tiling. Now if one considers the set of VLS-tiles of order M and tile-type
J. contained in a VLS-tile of order L of tile-type k, Weyl’s criterion [2, p. 157]
shows that their angles of orientation become uniformly distributed as L increases
if and only if, for all m # 0

. |(Alm]E—M) ]
1 : 1
Lo [(AfO)EM

(7

From (5) we know that the denominator in (7) behaves as a” as I, — oo, where
o is the spectral radius of A[0]. The numerator is bounded above by a constant
times B~ where J is the spectral radius of A[m]. Now from (b) it follows that
for each m # 0 some matrix element in A[m]" is smaller in absolute value than
the corresponding element in A[0]", and so by a result of Wielandt [3, p. 57] the
spectral radius of A[m]" is strictly less than that of A[0]". Therefore the spectral
radius of A[m)] is strictly less than that of A[0], and so (7) holds.

Getting back to (6), we therefore define Z; = ¢/2x. And from the above analysis
it is easy to see that (6) holds for large NV, which completes the proof. O

EXAMPLE. As an example we consider John Conway’s ‘pinwheel system’ [9]
defined as follows. There are two prototiles, a right triangle with legs 1, 2, 5!/2
and its reflection; two iterations of the substitution rule are given in Figure 1, and
a portion of a tiling is given in Figure 2.

(Although this example does not satisfy the condition that the boundary of a
prototile can only be covered in finitely many ways, this condition does hold in the
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Fig. 2. Part of a pinwheel tiling.

tilings associated with the substitution and therefore the theorem does apply to this
example.) The matrix A[m] associated with this substitution is:

g—ims + g—im(s+) 2e—im(s+x) + a—tm(s+3r/2)
2eim(s+) + gtm(s+3n/2) gims + I'3:'1-:1{|+1-r}

where s = tan~'(1/2) is irrational with respect to = [6, p. 143]. Since element
( A[m]?)22 contains angles 2s and 0, the substitution satisfies the conditions of our
theorem.

This substitution system is known to be of finite type, that is, measure-theoretical-
ly conjugate to a tiling dynamical system [9]. As for the spectrum of this substitution
system, we now use a well-known technique to show that since it is rotationally
symmetric it cannot have any discrete spectrum.

PROPOSITION. If(X(S)r, Gt) with G = £2 is uniquely ergodic, then it has no
discrete spectrum.

Proof. Since any rotation of R? leaves invariant the set of translation-invariant
probability measures on X(S)r, and since that set is assumed to be a singleton,
which we will call z, u must be invariant under rotations, and in fact all of £2.

Let U : g — U9 be the usual continuous unitary representation of £2 on the
complex separable Hilbert space H = L?(X(S)F, du). Assume f # 0 is an
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eigenvector for the translations, corresponding to A, that is: Utf = &'t f for all
translations ¢. The translations are a normal subgroup of £, and in fact for any
rotation R about the origin, and any translation ¢, U'URf = URUR(®) where
R(t) is the obvious translation. Therefore for all t, UtURf = URyRMOf =
eMROYRf = ¢RT'(NtyRF, which implies that R~'()) is also in the discrete
spectrum, for every rotation R. Since H is separable and eigenspaces of unitary
operators are orthogonal, this implies A = 0. 0

3. Conclusion

The study of symbolic dynamical systems of finite type and with Z™ action often
requires the use of symbolic substitution dynamical systems, as in [5].

We have considered here the generalization of such theory to dynamical systems
with R™ action, associated with tilings of R™; the generalization of systems of finite
type we call tiling dynamical systems, and the generalization of substitution systems
we call substitution-tiling dynamical systems.

We discuss two results. The first is a natural generalization of the classical tech-
nique of the matrix of a substitution, including in an effective way the geometrical
information needed to study tilings. Our second result is a new method for produc-
ing examples of tiling dynamical systems without discrete spectrum. Our method
uses the new matrix to give sufficient conditions for a substitution-tiling system to
be uniquely ergodic with respect to translations, and then uses the resulting rotation
invariance to eliminate discrete spectrum. In particular our results show that the
‘pinwheel tilings’ of the plane [9] have no discrete spectrum.
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