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1 Introducticn

After a short discussion of traditional ideas about
the symmetries of patterns in the plane and space,
we introduce a slight extension of the traditional
notions. This new “statistical symmetry” is being
used in various ways, from modeling quasicrystals
to constructing new forms of graph paper.

2 Periodic Tilings

It is easy to determine the symmetries of a regular
n-gon, for instance a regular octagon as in Figure 1
Such a figure coincides with itself after a rotation
about its center by the angle 2w /8 (radians), or any
integer multiple of that angle such as 47 /8 or Gm /8.
The figure also has the symmetry of reflection about
any of the four lines which bisect a pair of opposite
sides, or the four which join opposite vertices. (The
set of all symmetries of the octagon is called the
dihedral group Ds.)

Figure 1: Octagon

More interesting are the symmetries of patterns
which fill the whole plane, for example the “bath-
room tiling” shown in part in Figure 2, made of
regular hexagons. It is an interesting exercise to
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work out the symmeiries of this pattern, which now
includes some translations.

There has been a great deal of study of patterns
in the plane such as that of Figure 2, that is pat-
terns in which there is some “unit cell” such that
the whole pattern is obtained by translating the cell
by integer multiples of vectors in two different direc-
tions. (We will call such patterns “periodic”. For
the hexagonal tiling we can use a hexagon for the
unit cell and can take as vectors those perpendicular
to two gpptsite sides of one of the hexagons, and /3
times their length.) It has been shown that there
are precisely 17 different sorts of periodic patterns
in the plane; that is, there are precisely 17 differ-
ent sets of symmetries that can occur for periodic
patterns. These 17 sets are called “the wallpaper
groups”. (As a general reference see [1].)

3 Aperiodic Tilings

There is a simple method for producing periodic
tilings, namely first make a cell and then “grow”

a larger and larger pattern by repeatedly adding
on certain translations of the cell. We now con-

Figure 2: Tiling with Hexagons
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Figure 3: Hierarchy
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sider patterns made by a different sort of algorithm, .
called “hierarchical” (or fractal). An interesting ex- LA
ample is produced by starting with a right triangle
with legs of length one and two (and hypotenuse
v/5). Divide it into five smaller triangles as in Fig-
ure 3, noting that the five smaller triangles are con-
gruent to each other and similar to the original large
triangle, and then expand the collection of triangles
by stretching in all directions by a factor /5, so
again the triangles each have legs of size one and
two.

Repeat this process in each of the five triangles,
obtaining now twenty-five triangles each congruent
to the one we started with. If you do this pro-
cess five times you get a pattern like Figure 4. If
yvou keep repeating this algorithm forever you get a
pattern filling the plane, of which a part appears in
Figure 5. (If you look carefully at the twenty-five
triangles after the second expansion, you will find
one in the interior with edges parallel to the edges
of the original triangle. Therefore if the expansions
of our process are always taken about an appropri-
ate point in this interior triangle, each two applica-
tions of the process amounts to simply adding more
triangles around the original, and shows more ex-
plicitly in what way the process leads to a tiling of
the plane.) Such a tiling of the plane is called a
“pinwheel” [3].

There are better known tilings of the plane, cre-
ated by Roger Penrose, made out of two shapes
with a similar hierarchical growth algorithm; Fig-
ure 6 contains part of such a “Penrose tiling”. For
more on Penrose tilings, including the hierarchical
algorithm, see [1].

These pinwheel and Penrose patterns and others Figure 4: Result of 5 Subdivisions
like them, all of which we will call “hierarchical”,
have symmetry properties different from the peri-
odic patterns considered above; this new kind of
symmetry is the main focus of this article. To be
specific, we claim that in some appropriate sense a
Penrose tiling is symmetric under rotation by the
angle 27 /10 about any point, and a pinwheel tiling
is symmetric under rotation by any angle about any
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Figure 5: Pinwheel Tiling

point. Clearly we have some explaining to dol

We begin our explanation by introducing a notion
of “frequencies” for patterns. Consider the Penrose
tiling and fix some finite portion f of it, say the
three tiles with heavy outline in Figure 7. Fix also
some arc a of a unit circle, say the arc containing
all angles from 0 to /20 inclusive. Now take any
large circle C in the tiling, of radius R and centered
at a point P, and count the number of times the
finite pattern f appears (completely) in the circle,
where we only count occurrences of f for which the
orientation is rotated from that of the original by
some angle in a.

That means we count occurrences that have the
original orientation as in Figure 7, or such an orien-
tation rotated counterclockwise by any angle up to
w/20. We claim that if one makes such a count, get-
ting the number N, then one will find that N/xR?
is approximately +/5 — 2, and this approximation
will be better and better the larger the size of the
circle used. (We are assuming for definiteness that
the area of the kite-like tile is 1.) We say that as-
sociated with the finite pattern f and arc a there is
a “frequency” F(f,a) which in this case is +/5 — 2.
Of course this is just one example, and we are re-
ally claiming that there are analogous frequencies
for each finite pattern f and arc a.
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Figure 6: Penrose Tiling

4 Statistical Symmetry

We are now ready to clarify the new “statistical”
notion of symmetry. We say the Penrose tilings
have the statistical symmetry of rotation by 2w /10
because if such a tiling is rotated about any point by
27 /10 none of its frequencies change. Note that in
a Penrose tiling all the edges of the tiles are parallel
to one of five lines, and the tiles only appear in ten
different orientations. The statistical symmetry we
have claimed means that the tiles appear equally
often in each of these orientations; more generally,
not just individual kites and darts but any finite
pattern in the tiling has this property [3].

A move surprising fact is that for a pinwheel
tiling, roughly speaking each finite part f appears
equally often in all directions! In particular picking
some elementary triangle in a pinwheel tiling, about
one eighth of any large region is filled with copies of
that triangle with orientation within +2r/8 of the
original.

This notion of symmetry is weaker than the usual
one, in that if a pattern is invariant in the ordinary
sense under a rotation by angle a about some point
(as is the hexagonal tiling under rotation by 2w /3
about any vertex), then it is also statistically sym-
metric under rotation by o, while from the above
examples the converse is not true in general. At
this point we should give some indication why this
notion of statistical symmetry is of interest.
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Figure 7: Tiling Frequencies

Figure §: Expanding Circles off Trees

5 Diffraction Patterns

Imagine the surface of a large lake, out of which
is growing a collection of isolated, thin trees. If
a wind created a sequence of parallel waves on the
lake surface, as these waves struck each tree circular
rings of waves would appear to come out of the tree;
see Figure 8.

The expanding rings from different trees eventu-
ally overlap and “interfere” with each other, pro-
ducing complicated patterns of reinforcement, both
positive (where the heights of two intersecting rings-
waves are both high or both low) and negative
(where one height is high and the other is low).
This is similar to a mechanism which allows physi-
cists to investigate the internal (atomic) structure

......

________

Figure 9: Expanding Spheres off Atoms

of solids. To “visualize” their internal structure,
parallel plane waves of very short wavelength (such
as X-rays) are sent into the material, creating ex-
panding spheres of waves issuing from each atom;
the expanding spheres from different atoms inter-
fere, and the patterns of interference are recorded
on appropriate film. (The result is called a “diffrac-
tion pattern” for the material.)

We analyze the situation as follows. Imagine we
have two atoms in the target material, at positions
P and @, and there are parallel waves hitting these
atoms, the waves moving in the direction of the
unit vector V'; see Figures 9 and 10. (We use two
dimensional drawings for simplicity, with lines for
the waves instead of planes, and circles instead of
spheres.) The atoms emit expanding spheres of out-
going waves. At a point far away these spheres ap-
pear as plane waves, and we assume we will measure
the size of the resulting waves at such a point in the
direction of some unit vector W from the atoms.
Comparing the distance traveled by the waves hit-
ting the two atoms, we see there is an extra distance
of size V-(P—Q)+(-W)-(P-Q) = (V-W)-(P-Q)
for the wave going through P, as in Figure 10. Mea-
suring distances by the natural scale of the wave-
length of the waves, and recalling that waves rein-
force optimally when corresponding maxima meet,
we see that for maximum reinforcement this ex-
tra distance should be a multiple of a wavelength,
which occurs only in special directions W.

So far we have considered how the spherical waves
emanating from two atoms interfere. Now consider
the total diffraction from the target, the sum of the
contributions of all pairs of atoms. If the atoms
in the target are arranged in a periodic array then
there will be many copies of each vector of the sort
P - @ and one can then calculate precisely which
directions W will show a large effect for given in-



Statistical Symmetry

167

~

Figure 10: Diffraction

coming beam direction V. (Each individual X-ray
picture samples a small range of directions W: the
bright spots are due to positive reinforcement from
many sources (atoms). For a discussion of diffrac-
tion see [2, 5.)

The relevance of all this to statistical symmetry
is the following, To get bright spots in a diffraction
pattern of a material does not require that the ma-
terial be a periodic crystal, all one needs is a lot of
vectors P — () creating the same contribution. That
is, the effect is a consequence of the appropriate sta-
tistical nature of the locations of the atoms in the
material, namely the frequencies of finite clusters
of atoms. And in particular, a diffraction pattern
will show an ordinary rotational symmetry if the
frequencies of finite sets of atomic locations have
the corresponding statistical symmetry. (As noted
above this is automatic if the configuration of atoms
itself has the rotational symmetry in the ordinary
sense, but this is not necessary to achieve statistical

symimetry. )

About ten years ago certain metallic alloys, called
quasicrystals, were discovered which exhibit un-
usual diffraction patterns, unusual in that they have
rotational symmetries never seen before and which
in fact were known to be impossible for any ordi-
nary solid. The location of the atoms in an ordi-
nary solid is periodic in the sense discussed above,
and it has been known for many years what sort
of symmetries could be produced by diffraction of
any such periodic pattern. In an attempt to under-
stand what sort of atomic structure could be pro-
ducing these unusual diffraction patterns, physicists
used three dimensional versions of Penrose tilings,

with what we would now call their statistical sym-
metry of rotation by 27 /10, and showed that they
could reproduce the unusual diffraction patterns
with such models; see [5]. In this way the statistical
symmetry of tilings can help us understand previ-
ously unknown atomic structures of solids. And
furthermore, the pinwheel with its complete rota-
tional symmetry suggests that there are even wilder
structures possible for the atoms in solids.

6 Conclusion

Although we were led to the pinwheel to understand
the structure of materials, now that we have it be-
fore us we find that it has other uses. For instance,
imagine a piece of graph paper, made up of many
little squares all lined up. Such a pattern can be
used as a model of a sort of (planar) discrete world,
where you can only travel along the lines. (This is
sometimes called a “taxicab geometry”, from anal-
ogy with the way a taxi travels along city streets.)
There are all sorts of things one can imagine inves-
tigating about such a world. For a mathematician
the isoperimetric problem comes to mind. That
is, imagine we wanted to enclose a large region in
such a world with the smallest possible amount of
perimeter (“fencing material”), where the perime-
ter consists of lines in the pattern. What shape
would be optimal for the region? The same prob-
lem in the ordinary plane, in which there are no con-
straining lines, goes back to the ancient Greeks and
is called “Dido’s problem™, and of course has a circle
for its solution. In taxicab geometry a little thought
shows that for large regions the shape is not circular
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but square, oriented the same as the little squares.
Of course what we are leading up to is: What is
the optimal shape for “pinwheel geometry”? This
is quite a bit harder, and has only recently been
shown [4] to be—again a circle! (asymptotically,
for large regions).

The pinwheel, with its statistical roundness, is
a recent discovery and it must still be hiding lots
of unknown but interesting properties. The above
are just some of the first ones we have found. And
then one can try to investigate statistical symmetry
in three dimensions . ..
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