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We consider a very general class of discrete classical one dimensional statistical mechanical
models and prove that generic finite range interactions have crystalline zero temperature
ensembles, and in particular satisfy the third law of thermodynamics.

Most of our understanding of the solid state relies on the experimental fact that, at
low temperature, matter strongly tends to ordered configurations at the molecular
level'. The old problem of deducing this tendency from statistical mechanics® (which
amounts to somewhat more than deriving the third law of thermodynamics) has only
recently begun to yield to attack®*®. We will derive below the fact that, at least in one
dimension, this ordering occurs for generic interactions.

We will consider rather general classical discrete alloy models (which can also be
thought of as spin models) in one dimension, with finite range translation invariant
interaction, and we will prove that generically such models are crystalline at zero
temperature—in particular they satisfy the third law of thermodynamics.

Specifically, the models we consider are the following. At each integer site j = 0,
+1, £2, ..., we have a classical occupation variable w; which can assume any one of
N possible values (N > 2 is fixed from here on) corresponding to the N possible
molecular species which can occupy the site . We allow many-body interactions of
range R as follows. To each finite set S of sites with occupation values w(S) = {w,, jin
S} we assign a many-body energy E(w(S)). This function is assumed translation
invariant. The total energy of a configurationw = w([—n,n]) = {w_,, ..., w,} of the
sitesj = 0, +1, ..., £nis E(w) = ) s.(_, ., E(W(S)). The finite range condition is just
that E(w(S)) = 0 if the diameter of S is larger than R. (Note that one gets a two-body
interaction if also E(w(S)) = 0 whenever S contains more than two sites).
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Our main construction?’ is that of a graph G which has N**' vertices, one for each
possible configuration of R + 1 sites. Given two such vertices, V and V',
corresponding to {w,, ..., wg,,} and {wj, ..., wg,,}, there is an ordered edge in G
from V'to V' ifand only if w/ = w;,,,j = 1, ..., R. The edge from V' to V' is denoted
(V, V") and the set of all ordered edges in G by G,. Note that G has the special
property T: If (V, V") € G, (V', V") € Ggand (V, V") € Gg then (V', V™) € Gg.

We shall call a nonempty ordered set L = {V,, ..., V;} of vertices of G a loop if
(V;, Vis1) € Gefor 1 < j < kand (V,, V,) € G,. We denote the number of vertices in
the loop L by |L|. The loop L = {V,, ..., V,} is called an atom if for any partition of
{Vi, ..., V,}into two nonempty ordered sets {V, ..., V, | and{V,, ..., Vi }s where
Tt r=1 ..on-landk, <R P® L. T 1, either {V}, ..., V,}
and/or {V},, ..., V) }isnota loop.

From property 7 we get immediately
Lemma 1. Let {V,, ..., V,} be a loop.

a) If (V,,V)eGzandj < r,then{V,, ..., V] and Vi, ..., Victs Viats -+ in K41 O
loops.

b) If(V,,V,)eGgandj < r — 2,then {V;,y, ..., V..i}and {¥,, .5 ¥,
are loops.

A corollary of b) is that all vertices in an atom are distinct.

From the definition of atoms it follows that every loop can be partitioned into
atoms, though not necessarily uniquely.

Given an interaction of range R we associate the following energies with each
vertex V = {w,, ..., wgeyandloop L = {V;, ..., Vi}of G

Vis oo os Vil

k
EV)= ¥ EwS) EL) = ¥ E(Y)

Sc[l,R+1]
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If w is a configuration of all sites j, —o0 < j < oo, we say it is periodic, and k 1s a
period, if w;,, = w; for all j. The energy density e(w) of w is then

e(w) = lim1 Y E(w(S)).

n— o0 n Sc<|[l,n]

We put this in a more convenient form as follows. First we associate the loop L,
with w by defining V,(w) = {w;, ..., Wes1}, Va(W) = {wy, ..., Wrin}, ..o, Viw) =
(W, ..., Wzt and L, = {V,(w), ..., vu(w)}. Then it is easily seen that

l

ew) = £ 3 E(Vw) = 7 E(L),

Let L, = | ) 4, be a partition of L, into atoms and note that
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1.e. the energy density of w is a convex combination of that of the atoms. Since there
are a finite number of possible atoms and each atom L gives rise to a periodic
configuration w (for which L, = L) it follows immediately that

Theorem 1. For any (finite range) interaction the energy density, as a function on
periodic configurations, attains an absolute minimum.

This fact was first proven several years ago?”'® after which examples were given'®
showing that the result fails even for some nearest neighbor models in two
dimensions. Our next goal is to combine this theorem with a result on nondegeneracy
(which will only hold generically, not for all interactions) to obtain a very strong
result about equilibrium at zero temperature.

The set of interactions of range R has a finite number of real parameters one for
each ordered set

D saiswmph . S SR+ By = N
The set of interactions is thus of the form R™ for some m. Generically these m energies
will be rationally independent, i.e. will not lie on one of the countably many
hyperplanes in R”, containing the origin, whose unit normal has rational coordinates.
(By “generically” we include any of the usual interpretations, such as having
complement of measure zero, or containing a countable intersection of dense open
sets.) It follows that for a generic interaction two atoms have the same energy if and
only if they are translates of each other, so there i1s a periodic configuration, unique up
to translation, with minimum energy density. (Minimum here means minimum
among all possible periodic configurations; an argument due to Sinai’®'’ however
shows that no lower energy density can then be achieved by any nonperiodic
configuration.) Unfortunately the existence of a unique periodic configuration with
minimum energy density does not of itself determine the nature of the zero
temperature structure, as shown by a recent preprint?4. What we must do next
therefore 1s draw some further consequences from our situation. For the rest of our
argument we assume we are working with one of our generic interactions.
- Lete = e(w) be the energy density of the unique (up to translation) periodic ground
state configuration w. Let w” be any sequence of periodic configurations whose energy
densities e, = e(w") converge to e as n — oo0. And let d, be the density in w” of all
vertices which do not occur 1n the atom L.
Lemma 2. d, - 0 as n - 0.
Proof by contradiction. Assume that w" = w'" is a subsequence of w" with d; > dfor
some d > 0. We will show thate, »e. Let Ly = {Vy, ..., V, }. Among V,, ..., V,
there are d,r, > dr, vertices which do not occur in L;. L;. can be partitioned into
atoms. We denote by b, the total number of vertices in atoms different from L in this
partition. Then
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where ¢ is the minimum difference between the energy density of L; and all other
atoms (besides translates). This proves the lemma.

Now let C be a ““coloring” of diameter D, i.e. the restriction of some configuration
to a finite subset (of diameter S) called the support of C. Translating the support of C,
define f and f, to be the densities with which C appears in w and w" respectively.
Lemma 3. f, = fasn — 0.

Proof. Fix ¢ > 0, and choose M such that forn > M, d, < ¢/(r + D) where r and r,
are the minimal periods of w and w” respectively. Consider the interval I of rr,
consecutive sites 1, 2, .. ., rr,, and all translations of the support of the coloring C for
which the leftmost site is in /. For any periodic configuration w let N(w) be the
number of times these translates of C appear in w. Clearly N(w) = frr,. Now for each
configuration w" and each lattice site j we associate the vertex V' = {w}, ..., Wi ge1}.
Let V"and V}, i < j, be two vertices in {V], ..., V7, } which do not occur in Lg, and
are also such that every V], i < k < j, does occur in L;. These V;’s may form many
copies of the atom L;. Let m > 0 be the number of such consecutive atoms L; such
that the distance between the last vertex of the last of these atoms and V' 1s larger
than D. Therefore the coloring C appears fimr times in w” with leftmost end of its

support at these mr sites. This gives us the bounds
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i.e.|f = f.| < d,(r + D), and therefore from lemma 2, f, = fas n — 0.

We now wish to use lemma 3 to get further information about the zero temperature
ensemble of our interaction. Technically, this ensemble 1s a probability measure, on
the set of all periodic and nonperiodic configurations, obtained as follows. At finite
temperature ¢ one defines a possibly nonunique probability measure m, as the infinite
volume limit of the grand canonical ensemble, the N chemical potentials being the
one-body terms in the interaction. By a zero temperature ensemble we mean any weak
accumulation point of these m, as t — 0. From Theorem 2 in Ref. 21 it follows that
there is exactly one translation invariant zero temperature ensemble and also, with the
existence of our periodic ground state configuration w, that the average { f ) of any
continuous function f in the ensemble can be computed as

(> = 3 X S(T)

j=1
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where T is space translation by one unit and r is the period of w. This proves that our
zero temperature ensemble is crystalline in the strongest possible sense.

In conclusion we have proven that for these rather general discrete one dimensional
models
Theorem 2. For generic finite range interactions there is a unique translation invariant
zero temperature grand canonical ensemble in the infinite volume limit. Furthermore
the ensemble is just the average, over a unit cell, of a periodic configuration.

Now although it is a delicate matter in general to compute the entropy at zero
temperature, in the ideal situation obtaining from Theorem 2 it follows?® immediately
that
Corollary. For generic finite range interactions the third law of thermodynamics

holds.
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