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SUMMARY

We consider the use of initially rigid cohesive interface models in a two-dimensional dynamic finite-
element solution of a fracture process. Our focus is on convergence of finite-element solutions to a
solution of the undiscretized medium as the mesh spacing �x (and therefore time-step �t) tends to
zero. We propose the use of pinwheel meshes, which possess the ‘isoperimetric property’ that for
any curve C in the computational domain, there is an approximation to C using mesh edges that
tends to C including a correct representation of its length, as the grid size tends to zero. We suggest
that the isoperimetric property is a necessary condition for any possible spatial convergence proof in
the general case that the crack path is not known in advance. Conversely, we establish that if the
pinwheel mesh is used, the discrete interface first activated in the finite-element model will converge
to the initial crack in the undiscretized medium. Finally, we carry out a mesh refinement experiment
to check convergence of both nucleation and propagation. Our results indicate that the crack path
computed in the pinwheel mesh is more stable as the mesh is refined compared to other types of
meshes. Copyright � 2006 John Wiley & Sons, Ltd.

KEY WORDS: cohesive zone modelling; finite element; convergence; crack nucleation; mesh dependence

1. RIGID COHESIVE MODELS

Cohesive zone modelling, which was originally proposed by Dugdale [1], Barenblatt [2] and
Rice [3], represents cracks as displacement discontinuities in a solid body. The separation of
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bulk material across the crack is resisted by cohesive tractions, governed by the corresponding
cohesive constitutive model. The cohesive tractions are usually taken to be a function of the
opening displacement of the interface.

The most straightforward application of cohesive modelling is to problems where predefined
interfaces exist [4–15]. In such analyses, the fracture path is assumed a priori and can usually be
justified by the nature of the problem (e.g. physical weak interfaces in delamination problems)
or by experimental data. Cohesive interface elements are prepositioned along the specified
crack path.

On the other hand, for applications in which the crack path is not known in advance [16–20],
cohesive interface elements must be placed along the path a posteriori as it opens, and the path
must be determined as part of the solution of the governing equations. Generally, this requires
some kind of adaptive approach, in which cohesive surfaces are activated only as needed.

Three kinds of adaptive methods are prominent in the literature: remeshing every time-step
at the tip of the crack thereby adapting the mesh [21], adaptively enriching finite-element basis
functions to represent displacement discontinuities [22], or adaptively inserting (also called
‘activating’) cohesive elements on the boundaries of existing volume elements [17, 23], which
is the focus of this paper. It is typical in the latter approach to consider every single element
boundary as a potential cohesive interface site. Both remeshing and enriched basis functions
entail additional complexity in the computational methods as well as new issues concerning
the validity of the numerical modelling (e.g. criteria for direction of propagation and issues of
transferring state variable information).

A major advantage of adaptive approaches is that the effective initial stiffness of the cohesive
model (prior to activation) is infinite, and therefore the inactive cohesive interfaces have no
effect on the bulk elastic properties [24]. We call this type of model initially rigid or simply
rigid [25] (also called extrinsic [26]).

2. REPRESENTING THE CRACK PATH IN THE MESH

As explained in the previous section, in this paper it is assumed that the crack path in the
finite-element model is composed of activated interfaces all of which lie on boundaries of finite
elements in the initial mesh. The crack path in the undiscretized medium, henceforth called
the ‘mathematical crack path’, on the other hand, has no such constraint. This discrepancy has
been noted by other authors, and indeed has led some to propose new classes of cohesive
fracture models that represent cracks as collections of disconnected line segments [27] or using
particle-based discretization [28]. Enriched basis function techniques have also been extended to
dynamic cohesive fracture, including branching cracks [29]. Although these classes of methods
are able to solve the crack discrepancy problem, they introduce new issues because they give
up some of the advantages of traditional finite elements.

To analyse the impact of this discrepancy, we first consider the sense in which a discrete
crack representation can converge to the mathematical path. One simple approach would use the
classical Hausdorff distance, which states that the distance from curve A to curve B, both lying
in the same two-dimensional domain, is the maximum over a ∈ A of the distance from a to the
closest b ∈ B. Convergence in the Hausdorff sense, however, does not guarantee convergence
of the length: a sequence of paths P1, P2, . . . can converge to a path P while the sequence
length(P1), length(P2), . . . converges to a quantity strictly greater than length(P ). An example
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Figure 1. If the mathematical crack path is the line segment connecting the extreme corners of
this cross-quadrilateral mesh, then the best approximation to it (which is not uniquely determined)
using mesh edges is the jagged path indicated. No matter how much the mesh is refined, the

jagged path will always be approximately 8% longer than the mathematical path.

like this is not pathological; indeed, failure of length to converge is the typical behaviour for
any family of structured meshes. For example, consider the standard cross-quadrilateral mesh
family with aspect ratio 1 : 1. This mesh is formed by dividing the computational domain into
equally sized axis-parallel squares and then dividing each square with two diagonal cuts into
four triangles. Let P be a line segment in the computational domain and let P1, P2, . . . be the
closest approximations to P in a sequence of cross-quadrilateral meshes of the domain whose
mesh size tends to zero. It is not hard to see that unless the orientation of P with respect to
the x-axis is 0, 45, 90 or 135◦, the sequence length(P1), length(P2), . . . , does not converge to
length(P ) (see Figure 1).

The length of the discrete versus mathematical crack path is significant physically because
a fundamental assumption for most cohesive models is that the energy needed to create a
crack is proportional to its length. This leads us to conjecture that a necessary condition for
spatial convergence in cohesive modelling is that the sequence of meshes M1,M2, . . . must
contain a sequence of paths P1, P2, . . . such that Pi → P in the Hausdorff sense and such that
length(Pi) → length(P ), where P is the mathematical crack solution.

Evidence for this conjecture arises from computational experiments as well. For example,
Sam [30] modelled the laboratory experiment due to Kalthoff and Winkler [31] in which a
plate of high-strength steel with two edge notches was impacted by a steel projectile. The
laboratory experiment showed that the crack propagated at an angle of about 70◦ from one of
the notches with respect to the notch. Sam used cross-triangle quadrilateral meshes in which
the aspect ratio of the quadrilaterals were varied. The point of varying the aspect ratio was to
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make the diagonals of the quadrilaterals either closely aligned or not so closely aligned with
the 70◦ direction. He found that the crack path depended significantly on the aspect ratio. In
meshes with diagonals close to 70◦, the crack generally followed one of the available diagonal
paths. In meshes with no diagonals close to 70◦, the crack zigzagged substantially. (Zhang and
Paulino [32] reported results on the Kalthoff experiment that were less mesh dependent.)

3. PINWHEEL MESHES

As mentioned earlier, the goal of rigid cohesive modelling is often to solve problems in which
the crack path is not known in advance but is an outcome of the simulation. Based on the
results in the previous section, we conclude that if spatial convergence is desired, the family of
meshes must represent every possible crack path both in the Hausdorff sense and in the sense
of length. There is one family of meshes known to have this property, namely, pinwheel meshes
in two dimensions. The pinwheel mesh is derived from Radin and Conway’s [33] pinwheel
tiling, which we now describe. The pinwheel tiling starts with a 1 : 2 : √5 right triangle T0 and
subdivides it into five 1 : 2 : √5 subtriangles that are similar to each other, see Figure 2(a). This
subdivision process may be repeated indefinitely, yielding a tiling of the original triangle with
an arbitrary level of refinement. The distinction between a tiling and a mesh is that the triangles
in a tiling are not required to meet edge-to-edge and therefore may have hanging nodes. To
change the tiling into a triangulation, one splits all the 1 : 2 : √5 triangles at the final recursion
level of the tiling into three as shown in Figure 2(b) by bisecting their hypotenuse and longer
leg. This creates new nodes and causes all triangles to meet simplicially (edge-to-edge).

Radin and Sadun [34] have proved that the pinwheel tiling has the following isoperimetric
property. Let M1,M2, . . . be the sequence of pinwheel tilings such that Mi repeats the
construction in the previous paragraph to the ith level (and thus contains 5i tiles). Let L be an
arbitrary line segment in the initial triangle T0. Then the 1-skeleton (i.e. union of tile edges)
of Mi contains a path Li such that the Li’s converge to L in the Hausdorff and length sense.
Their theorem extends easily to arbitrary curves, since any curve can be approximated in the
two senses by a path of line segments, and then the line segments can be approximated by
the 1-skeleton of the mesh.

In recent work [35], we generalized the pinwheel tiling to arbitrary triangles (not only
1 : 2 : √5) and showed how to use this generalization to develop a mesh generator called PINW

(a) (b)

Figure 2. (a) The basic recursive pinwheel subdivision of a 1:2:
√

5 right
triangle; and (b) subdividing a triangle at the final recursion level into three

subtriangles to eliminate hanging nodes.
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for arbitrary two-dimensional polygonal domains. The meshes produced by PINW possess the
isoperimetric property.

4. STATEMENT OF THE MAIN RESULT

In this section, we state the main theoretical result of this paper. Its proof is in the next section.
We first describe our assumptions about the mathematical problem, and then we describe our
assumptions about the finite-element method. The setting is as follows. Let B be a two-
dimensional body with piecewise smooth boundaries and no cusps or cracks. Let the initial
displacements within the body be denoted u0(x) and the initial velocities v0(x), where u0 and
v0 are given vector functions. Assume the body is subject to given time-varying continuous
displacement boundary conditions �(x, t) for x ∈ �1 and given time-varying traction boundary
conditions �̄(x, t) for x ∈ �2, where �1, �2 form a partition of �B. Suppose the body is also
subject to body forces f (x, t). The subsequent motion of the body is driven by these loads and
is determined by plane-stress isotropic linear elasticity with Young’s modulus E and Poisson
ratio �. Let B̄ be the closure of B, i.e. B̄=B∪ �B. We assume that boundary and initial
conditions and loads are sufficiently smooth so that �(x, t), the Cauchy stress, is a C1 function
of both space and time until the time of crack nucleation.

Assume that a crack nucleates in the body at time t∗, where t∗>0, and spatial coordinate
x∗ ∈ B̄. Assume that crack nucleation occurs when a criterion of the form �max(�(x, t))��c,
where �max denotes the maximum eigenvalue of a tensor and �c is the critical traction for the
material. Assume also that the orientation of the initial crack is orthogonal to the maximum
normal stress. Denote the angle with respect to the x-axis of the normal to the initial crack as �∗.
That implies that (cos �∗, sin �∗) is eigenvector of �(x∗, t∗) whose eigenvalue is �c. Let h(�, �),
where � is a 2 × 2 symmetric tensor and � is an angle, be defined as (cos �, sin �)T�(cos �, sin �).
Then equivalently we could say that the criterion is first satisfied when h(�(x∗, t∗), �∗)��c.

For the rest of this section and the next, we assume that the angle �∗ is understood mod �
to avoid specifying the sign of the eigenvector (cos �∗, sin �∗). We let A denote the set of
all angles taken mod �, and we define the distance distA(�, �′) between two angles to be the
absolute difference between them, mod �. Thus, for � ∈A, cos � and sin � are not uniquely
determined (since the signs are unknown) and yet the function h(�, �) is well determined and
continuously depends on both � and �.

To ensure that (x∗, t∗, �∗) is well-defined, we assume that the only solution (x, t, �) to the
inequality h(�(x, t), �)��c lying in the set B̄× [0, t∗] ×A is the single point (x∗, t∗, �∗).

Finally, we assume that

dh(�(x∗, t), �∗)
dt

∣
∣
∣
∣
(t∗)−

>0

to prevent a pathological situation in which h(�(x∗, t∗), �∗) attains the value �c but h imme-
diately starts to decrease again. The notation d/dt |(t∗)− means the left-derivative with respect
to t evaluated at t∗.

Suppose that this problem is discretized with a linear elastic finite-element method in which
initially rigid cohesive interface edge elements are placed between all the area elements. In
order to show convergence as the spatial mesh is refined, we need to postulate the existence of
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an infinite sequence of triangular meshes M1,M2, . . . of B. Let hi be the maximum diameter
among triangles in mesh Mi . We assume that limi→∞ hi = 0.

We assume that the interface elements are activated when the normal component of traction
evaluated at the midpoint of the interface exceeds �c. (The assumption of the midpoint is
made for simplicity and is not crucial to our analysis.) There are several ways to evaluate
this normal traction (see, e.g. Reference [36]). We allow any such method to be used as long
as the following convergence property holds. As the mesh is refined, the computed value of
the normal component of the traction on an interface whose normal is n should tend to �n,
where � is the stress evaluated on either adjacent bulk element at the interface point. (Note that
common finite-element discretizations possess jump discontinuities in � at element boundaries.
For such discretizations, it would be impossible to require that �n evaluated from the bulk
element at the interface point be equal to the interface traction, since this value would be
inconsistent with the value of �n computed from the other bulk element. So therefore, we
require agreement only in the limit of hi → 0.)

In addition to assuming that hi → 0, we also assume that the meshes are quasi-uniform,
which has the following definition. For i = 1, 2, . . . , let �i = min{inradius(T ) : T ∈Mi}. Quasi-
uniformity means that for all i, hi/�i�K , where K is a fixed constant. This assumption has
two implications. First, it implies that every triangle in every mesh is well-shaped, i.e. no
triangle has a very small angle. Second, it implies that the degree of nonuniformity in the
meshes does not increase as the mesh is refined, i.e. for each i, all the elements in Mi are
roughly the same size. This assumption is commonplace in proofs of convergence.

An uncommon assumption, but one that is necessary for our analysis, is that as i → ∞, for
every point x ∈ B̄ and every direction � ∈A, Mi has an edge arbitrarily close to x aligned
arbitrarily close to �. It is clear that some assumption like this must be necessary if we want
to show that the first cohesive interface to nucleate is aligned in the correct orientation. We
state this property of the sequence of meshes formally as follows. For every �>0, there exists
an I such that for all x ∈ B̄, all � ∈A and all i�I , mesh Mi contains a triangle edge e such
that dist(x, e)�� and distA(�, �e)��. Let us call this property ‘Property P ’. We know of only
one family of meshes with the three properties enumerated here (mesh diameter tends to zero,
quasi-uniform and Property P ), namely, the pinwheel family described in Section 3.

The finite-element method includes a time-stepping method. We assume that the time-step
�ti used for mesh Mi is chosen sufficiently small so that convergence of the method is assured
for the linear elastic bulk model, and specifically, limi→∞ �ti = 0. If explicit time-stepping is
used, then the time-step must satisfy the CFL stability condition.

Now finally, we can state the consequence of all these assumptions. For the finite-element
method on mesh Mi , let the first interface to be activated be edge ei , let its midpoint be
xi and its normal angle be �i . Let the time of its activation be ti . Then as i → ∞, xi → x∗,
ti → t∗, and distA(�i , �

∗) → 0.
The proof of this result is given in the next section.

5. PROOF OF THE MAIN RESULT

In this section, we provide the proof that (xi , ti , �i ) → (x∗, t∗, �∗) as i → ∞. Suppose we are
given an � > 0. The task of this section is to show how to select an I such that ‖xi − x∗‖��,
|ti − t∗|�� and distA(�i , �

∗)�� for all i�I .
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The proof uses primarily compactness arguments. Compactness arguments have been used
before for proving convergence of numerical methods, e.g. the Lax-Wendroff theorem for
hyperbolic conservation laws [37].

The following simple topological lemma is crucial to our proof.

Lemma 1
Let g : C → R be a continuous function, where C is a compact set with a metric. Let a be a
scalar, and suppose that the set U = {w ∈ C : g(w)�a} is nonempty. Then for every �>0, there
exists a 	>0 such that the set V = {w ∈ C : g(w)�a−	} is contained in an open �-neighbourhood
of U .

Proof
Suppose not; then there exists an �>0 and a sequence 	1, 	2, . . . of positive numbers tending to
zero such that for each i, there is a wi ∈ C satisfying g(wi)�a − 	i and dist(wi, U)��. Since
C is compact, it must contain an accumulation point w of the wi’s. By continuity of g, this
accumulation point satisfies g(w)�a. By continuity of ‘dist’, this point satisfies dist(w, U)��.
This is a contradiction, since w ∈ U by definition of U . �

Let �(x, t) be the continuum elastodynamic stress solution, where x ∈ B̄ is the spatial coordi-
nate and t ∈ [0, t∗] is the time coordinate. Let us extend this solution to the interval [0, t∗+�t1],
where �t1 is the time-step for mesh M1 (which, without loss of generality, is assumed to be the
largest among the �ti’s). In this extension of �, we prevent crack nucleation by disabling the
initiation criterion (so that the solution during [t∗, t∗ +�t1] continues to obey linear elasticity).
It is assumed that this extension continues to be C1 since crack formation was prevented.

By Lemma 1 (taking C = B̄× [0, t∗] ×A, w = (x, t, �), g(w) = h(�(x, t), �), a = �c and
U = {(x∗, t∗, �∗)}), there exists a 	1 such that the set of (x, t, �) ∈ B̄× [0, t∗] ×A satisfying
h(�(x, t), �)��c − 	1 must also satisfy ‖x − x∗‖��, |t − t∗|�� and distA(�, �∗)��.

Since �(x, t) is C1 on a compact set B̄× [0, t∗ + �t1], there is a finite scalar L such that
‖�(x, t)−�(x′, t ′)‖�L max(‖x −x′‖, |t − t ′|) for all x, x′ ∈ B̄ and t, t ′ ∈ [0, t∗ +�t1]. Similarly,
since h is Lipschitz, for all 2 × 2 tensors �, �′ whose norms are bounded by the maximum stress
occurring in the problem, and for all �, �′ ∈A, |h(�, �) − h(�′, �′)|�M max(‖� − �′‖, distA
(� − �′)), where M is a fixed scalar.

Next, let p = dh(�(x, t), �)/dt evaluated at (x∗, t∗, �∗). By the assumption made in
Section 4, p>0.

Choose 
>0 sufficiently small so that 
LM�	1/4, p
�	1, and 
��. Then for any
t ∈ [t∗, t∗+
], x ∈ B̄ and � ∈A, |h(�(x, t), �)−h(�(x, t∗), �)|�	1/4 (because the Lipschitz con-
stant of � is L and of h is M , and 
LM�	1/4). Consider a point (x, t, �) ∈ B̄× [0, t∗+
] ×A
satisfying

h(�(x, t), �)��c − 0.75	1 (1)

If t�t∗, then by the inequality derived in this paragraph, h(�(x, t∗), �)��c − 	1, which is
possible only if ‖x − x∗‖��, |t − t∗|�
��, and distA(�, �∗)�� by choice of 	1. On the
other hand, if t<t∗, then these same conclusions hold by the defining property of 	1 (since
�c − 0.75	1 > �c − 	1).

The definition of p means that for s>0, h(�(x∗, t∗ + s), �∗) = �c + ps + O(s2). By further
decreasing 
 defined in the last paragraph (if necessary), we can assume that

h(�(x∗, t∗ + 
), �∗)��c + p
/2 (2)
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For each mesh Mi , let �i (x, t) be the finite-element approximation to �(x, t) computed
using Mi . In more detail, use the finite-element approximation to define �i spatially; if �i is
discontinuous at element boundaries, then use any kind of averaging rule to also define �i on
the boundaries. Use piecewise linear interpolation in time between discrete time-steps to make
�i (x, t) defined for all values of t . Let us now proceed with selecting I to satisfy the result.
We accomplish this by stating several different requirements for I ; the final I to select is the
one that satisfies all the requirements (i.e. the maximum among the requirements).

Süli [38] has shown that the finite-element approximation will converge to the true linear
elastic solution in the max-norm applied to the stress field under the assumptions made so far.
This means that we can find an I sufficiently large so that for all i�I ,

‖�(x, t) − �i (x, t)‖�p
/(4M) (3)

uniformly over (x, t) ∈ B̄× [0, min(t∗i , t∗ + 
)], where t∗i is the activation time of the first
activated interface in the finite-element model based on Mi .

Select I sufficiently large so that for all i�I , mesh Mi contains an interface edge e′
i whose

midpoint x′
i satisfies ‖x∗ − x′

i‖�p
/(4LM) and whose normal angle �′
i satisfies distA(�∗, �′

i )

�p
/(2M). (For this step, we invoke Property P of the sequence of meshes.) Furthermore,
assume I is sufficiently large so that the finite-element model defined on Mi possesses a
discrete time-step t ′i satisfying |t ′i − (t∗ + 
)|�p
/(4LM) (i.e. choose I sufficiently large so
that �ti�p
/(4LM) for all i�I ).

Now we observe that the activation criterion in the discrete model is guaranteed to be
satisfied for this edge e′

i at time-step t ′i , unless it has satisfied earlier by a different edge
(i.e. unless t∗i <t ′i ). This is because, assuming t∗i �t ′i , we have ‖x∗ − x′

i‖�p
/(4LM) and
|t∗ + 
 − t ′i |�p
/(4LM) so ‖�(x∗, t∗ + 
) − �(x′

i , t
′
i )‖�p
/(4M). Combining with (3) im-

plies that ‖�(x∗, t∗ + 
) − �i (x′
i , t

′
i )‖�p
/(2M). Because h has Lipschitz-constant M , and

by the assumption about �′
i in the last paragraph, we conclude that |h(�(x∗, t∗ + 
), �∗) −

h(�i (x′
i , t

′
i ), �

′
i )|�p
/2. By (2), this means h(�i (x′

i , t
′
i ), �

′
i )��c, i.e. the activation criterion will

be satisfied at that interface at time ti in the finite-element model.
Now, let ei be the first activated interface in the model based on Mi (which could be

equal to e′
i identified in the last paragraph). Suppose ei is activated at time ti , and let its

midpoint and normal angle be xi and �i , respectively. By definition of activation, we know
that h(�i (xi , ti), �i )��c. Thanks to the existence of e′

i , we are assured that ti�t∗ + 
. Since
|�i (xi , ti) − �(xi , ti)|�p
/(4M) by (3), then

|h(�(xi , ti), �i ) − h(�i (xi , ti), �i )︸ ︷︷ ︸
��c

|�p
/4

which implies

h(�(xi , ti), �i )��c − p
/4

We assumed earlier that 
 is sufficiently small so that p
�	1/4, and thus

h(�(xi , ti), �i )��c − 	1/4

This means that xi , ti , �i satisfy hypothesis (1), and the outcome of that hypothesis is that
‖xi − x∗‖��, |ti − t∗|��, and distA(�∗, �i )��. This concludes the proof of the main result.
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6. A MESH REFINEMENT STUDY

In this section, we carry out a mesh refinement study, which is based on laboratory experiment,
comparing pinwheel meshes to two other meshes. The set-up of the study is of the compact
compression specimen (CCS) impact experiment used by Rittel and Maigre [39] and Maigre
and Rittel [40]. The schematic of the experiment is shown in Figure 3. The PMMA specimen is
fractured by impacting with a Hopkinson bar, and the load at the bar–specimen interface can be
measured and subsequently used for the boundary condition of our simulations. We investigate,
through a series of simulations, the effects of different mesh layouts on the crack path. This set-
up is more interesting for a convergence study than the Kalthoff–Winkler experiment mentioned
earlier because the crack path is not a straight line segment, and therefore there is no structured
mesh that faithfully represents it.

Three mesh types—structured, unstructured, and pinwheel—are considered with two levels
of refinement repeated for each of them. Our meshing procedure is as follows. First, a mesh is
generated for a rectangle. In the case of the pinwheel family, this is accomplished by dividing
the rectangle into subrectangles of aspect ratio 1 : 2 and then using the Radin–Conway pinwheel
tiling of two right-angle triangles that result from bisecting each subrectangle with a diagonal.
The resulting tiling is turned into a mesh by splitting each triangle into three subtriangles as
illustrated in Figure 2. In the case of the structured family, a standard cross-quadrilateral mesh
is generated for the rectangle. In the case of the unstructured family, Shewchuk’s Triangle mesh
generator [41] is used to mesh a rectangle, with irregular (randomized) spacing of the nodes
on the rectangle’s boundary.

The meshes of the rectangle are then mapped to a subregion of the CCS geometry, namely,
the crack-path zone illustrated in Figure 4, via a carefully chosen curvilinear coordinate trans-
formation. This curvilinear transformation first maps the meshed rectangle into another rectangle
of aspect ratio approximately 1 : 1.47 using simple uniaxial dilation, and then maps the 1 : 1.47
rectangle conformally into the crack-path zone using linear fractional transformations and an
exponential map. This quantity (approximately 1.47) is the ‘conformal modulus’ of the crack-
path zone [42]. The same conformal mapping is used in all experiments reported here. The
resulting meshes of the crack-path zone are illustrated in Figure 5. The portion of the CCS
geometry outside the crack-path zone is meshed by Triangle with an unstructured triangulation
that matches the subdivision of the boundary of the crack-path zone mesh described earlier.
The PINW program described earlier was not used for this study because two exterior bound-
aries of the CCS specimen are curves, while the current version of PINW can mesh only
polygons.

striker incident bar CCS

interface

gauge

Figure 3. Schematic of CCS impact experiment. The dimensions of the specimen are
51 mm high, 46 mm wide, 11 mm deep. The notch at the bottom is 12 mm long, and the

U-shaped notch is 15 mm wide and 27.5 mm high.
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Figure 4. The crack-path zone is shaded in grey. Its boundary is composed of four circular
arcs. This zone is meshed with a structured, unstructured or pinwheel mesh. The mesh is
generated initially for a rectangle and then mapped to the crack-path zone via a composition of
a uniaxial dilation followed by a conformal mapping. The region of the CCS geometry outside

the crack-path zone is meshed using Shewchuk’s Triangle.

(a) (b) (c)

Figure 5. Examples of the three mesh families used for the crack-path zone: (a) structured;
(b) unstructured; and (c) pinwheel.

Each of the three mesh types has two parameters that may be varied. The first parameter is
the level of refinement. The second is the aspect ratio of the rectangle that is mapped to the
crack-path zone. This second parameter affects the shape of the triangles in the final mesh.
If a mesh family produces spatially convergent simulation results, then one expects that the
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second parameter should have a diminishing effect on the crack path as the mesh is refined. In
other words, suppose one has four distinct meshes M, N, M ′, N ′ of the same domain subject
to the same loads such that the mesh sizes of M, N are both h and of M ′, N ′ are both h′,
where h′ 
 h. The distinction between M and N depends on some other parameter (aspect
ratio in this case), as does the distinction between M ′ and N ′. For a convergent method, one
expects the crack paths in M ′, N ′ to be closer to one another than are the two crack paths
in M, N . This is because the crack paths in M ′, N ′ are each expected to be closer to the
mathematical crack path compared to those in M, N . On the other hand, for a nonconvergent
method, the dependence of the crack path on the mesh is not expected to decrease as the
mesh size is reduced. Thus, by considering four meshes in this manner, we can check for
convergence without having direct knowledge of the mathematical crack path.

Therefore, the methodology of our study is to consider the effect of varying the aspect-ratio
parameter on each of two refinement levels for each of the three mesh families. Thus, this
study involves a total of 18 meshes: for each of the three families, we used three aspect ratio
values at the coarse level and three at the fine level. The actual mesh sizes ranged from 2800 to
5400 elements for the coarse meshes and from 12 000 to 21 000 elements for the fine meshes.

The initially rigid model cohesive model used in the experiments including the activation cri-
terion are described in Reference [36]. The material parameters of the model are �c = 105MPa,
Gc = 0.0048 MPa m, � = 1. These parameters are, respectively, the critical normal traction that
causes an interface element to activate, the fracture toughness, i.e. energy required to cause an
interface to fail completely and become traction-free, and the mixity factor, which measures
how shear and normal tractions are weighted in determining the effective opening displacement.
Traction boundary conditions are used throughout; every surface is traction-free except for a
boundary segment 12.7 mm long where the striker impacts. Along this segment, the traction is
time-varying (although constant spatially along the length of the segment); the values of this
traction were obtained from experimental measurements made at 260 equally spaced temporal
points.

The results of the study are shown in Figures 6–8. It is evident from the figures that the
aspect ratio parameter seemed to have a lesser effect on the fine pinwheel mesh than on
the coarse pinwheel mesh, which is behaviour consistent with convergence. In other words,
a visual inspection of the figure indicates that the crack paths in the fine mesh are more
clustered together than the crack paths in the coarse mesh. We do not attempt to quantify this
clustering because the convergence study in this example is not intended to be a rigorous effort
to demonstrate convergence. Our rigorous analysis of Section 5 applies to crack initiation only.

In the structured mesh, on the other hand, the crack paths in the fine mesh do not appear
to be any more closely clustered than those in the coarse mesh. In other words, changing
the aspect ratio has a comparable effect at both refinement levels, a behaviour that is not
consistent with convergence. In the case of the unstructured mesh, again varying the aspect
ratio parameter seemed to have an almost equal effect on the fine and coarse meshes. For one
of the values of the aspect-ratio parameter for the unstructured fine mesh, all the interfaces in
a dense cloud were activated, so that a crack path is not even well defined. Other experiments
we have carried out (not reported here) indicate that a reduction in the time-step can eliminate
this cloud of activations. Because we did not see this anomalous behaviour in any of the other
meshes of comparable size and because the time-step is already very small (50 times smaller
than the elastodynamic CFL limit for this mesh), we did not attempt to vary the time-step for
this single mesh.
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Figure 6. Crack path results on: (a) the coarse pinwheel mesh; and (b) the fine pinwheel
mesh. The different paths shown in each plot correspond to different values of the second

meshing parameter (aspect ratio).
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Figure 7. Crack path results on: (a) the coarse structured mesh; and (b) the fine structured
mesh. The different paths shown in each plot correspond to different values of the second

meshing parameter (aspect ratio).

Since our theory covers only the initiation of the crack (i.e. the first active interface), we
also provide close-up views of the beginning of the crack for the unstructured and pinwheel
families in Figures 9–10. In the case of the structured mesh, the initial portion of the crack
is similar for both refinement levels and for all choices of the aspect ratio parameter for the
artificial reason that in the structured mesh of the rectangular domain, the crack always initiates
along one of the grid lines corresponding to vertical in the rectangular domain. This same grid
line is present in all the mapped structured meshes. The pinwheel family seems to yield much
more consistent crack patterns than unstructured, especially for the finer mesh.
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Figure 8. Crack path results on: (a) the coarse unstructured mesh; and (b) the fine unstruc-
tured mesh. The different paths shown in each plot correspond to different values of the

second meshing parameter (aspect ratio).
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Figure 9. Close-up of the initial portion of the crack path on: (a) the coarse pinwheel mesh;
and (b) the fine pinwheel mesh. The different paths shown in each plot correspond to different

values of the second meshing parameter (aspect ratio).

The computational study presented in this section should not be interpreted as a computational
‘proof’ of the main theorem because only two refinement levels were considered. Rather, it
should be understood as an indication that pinwheel meshes are an attractive choice for cohesive
finite elements with moderate levels of refinement. A computational study intended to prove
the main theorem would require an amount of computer time that is difficult to estimate but
is expected to be very large. This is because the convergence rate of the main theorem is
apparently slow. See further remarks on this matter in Section 7.
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Figure 10. Close-up of the initial portion of the crack path on: (a) the coarse unstructured
mesh; and (b) the fine unstructured mesh. The different paths shown in each plot correspond to

different values of the second meshing parameter (aspect ratio).

7. CONCLUDING REMARKS

As mentioned in the introduction, this proof is the first spatial convergence proof of any kind
for cohesive finite elements. It has, however, a number of limitations that perhaps could be
resolved with further research.

One obvious limitation is that this result concerns only crack nucleation and not crack
propagation. It seems quite difficult to extend the result to propagation for several reasons. First,
there is no proof that the mathematical solution exists or is unique. Second, there is a limitation
in pinwheel meshes that merits further discussion. As proved in Reference [35], pinwheel meshes
have the property that any path is arbitrarily well approximated (in terms of its length) by a
path in the mesh, as the mesh size tends to zero. Thus, the mathematical crack path could be
well approximated in this purely geometric sense by a path in the pinwheel mesh. The proof
of this approximation theorem, however, allows for an occasional edge in the approximation
to be completely misaligned with the mathematical crack path. This occasional misalignment
might be enough to cause the simulated crack path to diverge from the mathematical path in
the setting of dynamics and fracture mechanics.

Another obvious limitation is that the result here covers only two dimensions. We expect
that all the theory proposed here extends to three dimensions. The difficulty, however, is that
there is no known mesh generator for three dimensions with Property P , i.e. no 3D version
of PINW, even for very simple 3D geometries such as cubes.

A more subtle limitation is the assumption of smoothness of the stress field. This precludes
the possibility of applying the result in the case that the crack initiates at a sharp notch in
the domain. A moment’s thought will convince the reader that this assumption is not merely
a shortcoming of our proof technique but is rather a fundamental limitation of the theorem
itself. If there were a sharp notch at the point of nucleation, then the choice of possible initial
interface to activate is limited to the mesh edges emanating from that node, of which there are
only a small constant number (e.g. five or six) regardless of the degree of refinement. Therefore,
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the correct crack angle could not be captured in the limit of mesh refinement. In contrast, a
smooth notch tip (such as the notch tip in the computational experiment of Section 6) has an
infinite number of mesh edges emanating from it in the limit as the mesh size tends to zero.

A final limitation of the result here is that because the proof is primarily topological rather
than analytical, no estimates of the convergence rate are forthcoming. We expect that the
convergence rate in practice will be extremely poor (sublinear) because the convergence rate
of Property P (i.e. how � in the statement of Property P decreases as the mesh is refined)
is known to be very slow. It would be interesting to come up with a convergence result like
the one presented here but with a better convergence rate. Despite the expectation of a poor
convergence rate, our computational experiment performed surprisingly well when compared
to either a family of structured meshes or unstructured meshes. This hints that the computed
answers may be close to the mathematical limits even when Property P is far from asymptotic
convergence.
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