M341 (92150), Homework \#4

Due: 10:00am, Thursday, Jul. 25
Instructions: Questions are from the book "Elementary Linear Algebra, 4th ed." by Andrilli \mathcal{E} Hecker. Please show all your work, not only your final answer, to receive credit. Keep answers organized in the same order the problems have been assigned.

Linear systems and Gaussian elimination (2.1)

p. $96-98$, $\# 1(\mathrm{~b}, \mathrm{c}, \mathrm{f}), 2,5,10$

Reduced row echelon form (2.2)

p. $107-110, \# 1,4(\mathrm{a}), 11,12$

In addition:
A) Suppose $A=\left[\begin{array}{cccc}1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{c}3 \\ -4 \\ c\end{array}\right]$. For what values of $c \in \mathbb{R}$ does the system $A \boldsymbol{x}=\boldsymbol{b}$ have solutions (that is, for what values of c is the system consistent)? Find the complete solution set in this case.
B) What is the $\operatorname{rank}(A)$ in the previous problem? Verify that the rank of A plus the number of non-pivot columns of A equals the number of variables in the system.
C) True or false (justify your answers):
i. If the matrix A for a linear system with n variables satisfies $\operatorname{rank}(A)<n$, then the system must have a nontrivial (i.e., nonzero) solution.
ii. If the matrix A for a linear system with m equations satisfies $\operatorname{rank}(A)=m$, then the system must have a nontrivial (i.e., nonzero) solution.

