M341 (92150), Homework #4

Due: 10:00am, Thursday, Jul. 25

Instructions: Questions are from the book "Elementary Linear Algebra, 4th ed." by Andrilli & Hecker. Please show all your work, not only your final answer, to receive credit. Keep answers organized in the same order the problems have been assigned.

Linear systems and Gaussian elimination (2.1)

p. 96-98, #1(b,c,f), 2, 5, 10

Reduced row echelon form (2.2)

p. 107-110, #1, 4(a), 11, 12

In addition:

A) Suppose $A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix}$ and $\boldsymbol{b} = \begin{bmatrix} 3 \\ -4 \\ c \end{bmatrix}$. For what values of $c \in \mathbb{R}$ does the system $A\boldsymbol{x} = \boldsymbol{b}$ have solutions (that is, for what values of c is the system consistent)? Find the

complete solution set in this case.B) What is the rank(A) in the previous problem? Verify that the rank of A plus the number

- B) What is the rank (A) in the previous problem? Verify that the rank of A plus the number of non-pivot columns of A equals the number of variables in the system.
- C) True or false (justify your answers):
 - i. If the matrix A for a linear system with n variables satisfies rank(A) < n, then the system must have a nontrivial (i.e., nonzero) solution.
 - ii. If the matrix A for a linear system with m equations satisfies rank(A) = m, then the system must have a nontrivial (i.e., nonzero) solution.