1. Let
$$B = \begin{bmatrix} -1 & 3 & -3 \\ 0 & -6 & 5 \\ -5 & -3 & 1 \end{bmatrix}$$
.

a) Show that B is invertible and compute B^{-1} .

Solution: B is invertible since when we compute the reduced row echelon form of the augmented matrix $[B|I_3]$ we get

$$\left[\begin{array}{cccc|c} 1 & 0 & 0 & 3/2 & 1 & -1/2 \\ 0 & 1 & 0 & -25/6 & -8/3 & 5/6 \\ 0 & 0 & 1 & -5 & -3 & 1 \end{array}\right]$$

which is of the form $[I_3] \cdot]$. The inverse is simply the right-hand side of this matrix:

$$B^{-1} = \left[\begin{array}{rrr} 3/2 & 1 & -1/2 \\ -25/6 & -8/3 & 5/6 \\ -5 & -3 & 1 \end{array} \right].$$

b) Suppose we replaced the second row [0, -6, 5] of B with [-2, 6, -6]. Will the resulting matrix still be invertible? [Hint: There is a very quick way of finding the answer that does not require any long computations!]

Solution: The resulting matrix $C = \begin{bmatrix} -1 & 3 & -3 \\ -2 & 6 & -6 \\ -5 & -3 & 1 \end{bmatrix}$ will not be invertible, since the

reduced row echelon form of C is not the identity (that is, C is not of full rank). To see why, note that by subtracting 2 times the first row from the second row we will obtain a row of all zeros. Therefore, $\operatorname{rref}(C)$ cannot possibly be the identity and C^{-1} does not exist.

2. Let
$$A = \begin{bmatrix} 4 & 3 & 1 & 2 \\ 1 & 9 & 0 & 2 \\ 8 & 3 & 2 & -2 \\ 4 & 3 & 1 & 1 \end{bmatrix}$$
.

a) Calculate the determinant of A using a cofactor expansion.

Solution: We expand det(A) about the third column:

$$\det (A) = 1 \cdot \begin{vmatrix} 1 & 9 & 2 \\ 8 & 3 & -2 \\ 4 & 3 & 1 \end{vmatrix} + 2 \cdot \begin{vmatrix} 4 & 3 & 2 \\ 1 & 9 & 2 \\ 4 & 3 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 4 & 3 & 2 \\ 1 & 9 & 2 \\ 8 & 3 & -2 \end{vmatrix}$$
$$= -111 - 66 + 180$$
$$= 3.$$

b) Recalculate the determinant using row reduction to verify your answer to (a).

Solution: To calculate the determinant, we can put A into upper triangular form using row operations as follows:

$$A = \begin{bmatrix} 4 & 3 & 1 & 2 \\ 1 & 9 & 0 & 2 \\ 8 & 3 & 2 & -2 \\ 4 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{(1) \leftrightarrow (2)} \begin{bmatrix} 1 & 9 & 0 & 2 \\ 4 & 3 & 1 & 2 \\ 8 & 3 & 2 & -2 \\ 4 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{(2) \leftrightarrow (3) - 8(1)} \xrightarrow{(2) \leftrightarrow (3) - 8(1)} \begin{bmatrix} 1 & 9 & 0 & 2 \\ 0 & -33 & 1 & -6 \\ 0 & -69 & 2 & -18 \\ 0 & -33 & 1 & -7 \end{bmatrix}$$

$$\xrightarrow{(3) \leftarrow (3) - 2(2)} \begin{bmatrix} 1 & 9 & 0 & 2 \\ 0 & -33 & 1 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & -3 & 0 & -6 \\ 0 & -3 & 0 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{(2) \leftrightarrow (3)} \begin{bmatrix} 1 & 9 & 0 & 2 \\ 0 & -3 & 0 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & -33 & 1 & -6 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{(3) \leftarrow (3) \rightarrow (1/2)} \begin{bmatrix} 1 & 9 & 0 & 2 \\ 0 & -3 & 0 & -6 \\ 0 & 0 & 1 & 60 \\ 0 & 0 & 0 & -1 \end{bmatrix} = U.$$

Therefore, $3 = \det(U) = (-1) \times (-1) \times \det(A)$ so $\det(A) = 3$ as expected.

c) What is the determinant of -2A? Why?

Solution: det $(-2A) = (-2)^4$ det $(A) = 16 \cdot 3 = 48$ since A has 4 rows.

3. Prove that if A is an orthogonal matrix (i.e., $A^T = A^{-1}$) then the determinant of A is either 1 or -1.

Solution: Since

$$\det (A) = \det (A^T) = \det (A^{-1}) = \frac{1}{\det (A)}$$

we have that $(\det(A))^2 = 1$, so $\det(A) = \pm 1$.

4. Let
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
.

a) Determine the eigenvalues of A.

Solution: The characteristic polynomial is

$$p_A(\lambda) = \det (A - \lambda I) = -\lambda^3 + \lambda = -\lambda(\lambda + 1)(\lambda - 1)$$

so the eigenvalues are $\lambda = 1, -1, 0$.

b) Find a nonsingular matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

Solution: Computing the eigenspaces for each eigenvalue and putting the corresponding fundamental eigenvectors as the columns of a matrix P, we find that $A = PDP^{-1}$ with

	-1	-1	-1	7		1	0	0]
P =	0	1	1	,	D =	0	-1	0	.
	1	0	1			0	0	0	

c) Compute the determinant of A only using your answer to part (a) (i.e., do not compute the determinant directly.

[Hint: Recall the definition of the characteristic polynomial $p_A(\lambda)$.]

Solution: det $(A) = p_A(0) = 0$.

- 5. The parts of the following question are unrelated.
 - a) Is $\mathcal{V} = \mathbb{R}$ with the usual scalar multiplication, but with addition defined as $\mathbf{x} \oplus \mathbf{y} = 3(x + y)$ a vector space? Justify your answer.

Solution: No. The operation \oplus is not associative since

 $(x \oplus y) \oplus z = 3(3(x+y)+z) = 9x + 9y + 3z \neq 3x + 9y + 9z = 3(x+3(y+z)) = x \oplus (y \oplus z).$

b) Find the zero vector and the additive inverse of the vector space \mathbb{R}^2 with operations $[x, y] \oplus [w, z] = [x + w + 3, y + z - 4]$ and $a \odot [x, y] = [ax + 3a - 3, ay - 4a + 4]$.

Solution: $\mathbf{0} = 0 \odot [x, y] = [0x + 3(0) - 3, 0y - 4(0) + 4] = [-3, 4]$ while -([x, y]) = [-x - 6, -y + 8].

c) If \mathcal{V} is a vector space with subspace \mathcal{W}_1 and \mathcal{W}_2 , prove that $\mathcal{W}_1 \cap \mathcal{W}_2$ is also a subspace.

[Hint: Do not forget to show that $\mathcal{W}_1 \cap \mathcal{W}_2$ is nonempty!]

Solution: Since the subspaces W_1 and W_2 both contain the zero vector, $\mathbf{0} \in W_1 \cap W_2$ and $W_1 \cap W_2$ is nonempty. Now suppose $\mathbf{x}, \mathbf{y} \in W_1 \cap W_2$ and c is a scalar. Then $\mathbf{x}, \mathbf{y} \in W_1$ and $\mathbf{x}, \mathbf{y} \in W_2$ so $\mathbf{x} + \mathbf{y} \in W_1$ and $\mathbf{x} + \mathbf{y} \in W_2$ since W_1 and W_2 are closed under vector addition. Therefore, $\mathbf{x} + \mathbf{y} \in W_1 \cap W_2$ and $W_1 \cap W_2$ is closed under vector addition as well. Similarly we find $W_1 \cap W_2$ is closed under scalar multiplication, so $W_1 \cap W_2$ is a subspace.

d) Prove that all vectors orthogonal to $[2, -3, 1]^T$ forms a subspace \mathcal{W} of \mathbb{R}^3 .

Solution: Let $\boldsymbol{v} = [2, -3, 1]^T$. Note that $\boldsymbol{0} \in \mathcal{W}$ since $\boldsymbol{0} \cdot \boldsymbol{v} = 0$ so \mathcal{W} is nonempty. Now suppose $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{W}$ and c is a scalar. Then $(\boldsymbol{x} + \boldsymbol{y}) \cdot \boldsymbol{v} = (\boldsymbol{x} \cdot \boldsymbol{v}) + (\boldsymbol{y} \cdot \boldsymbol{v}) = 0 + 0 = 0$ and $(c\boldsymbol{x}) \cdot \boldsymbol{v} = c(\boldsymbol{x} \cdot \boldsymbol{v}) = c0 = 0$.