1. Let $A=\left(\begin{array}{ccc}-2 & 2 & 1 \\ -7 & 4 & 2 \\ 5 & 0 & 0\end{array}\right)$.
a) Find the eigenvalues of A.

Solution: $p_{A}(\lambda)=-\lambda(1-\lambda)^{2}$, so the eigenvalues are 0 and 1.
b) Verify that you have obtained the correct eigenvalues by using the trace of A. Compute the determinant of A using the eigenvalues.

Solution: The sum of the eigenvalues of A is $0+1+1=2$ (counting multiplicities), which agrees with $\operatorname{Tr}(A)=2$. The determinant is $0 \cdot 1 \cdot 1=0$.
c) Is A diagonalizable? Why or why not?

Solution: A basis for E_{0} is $\left\{(0,-1,2)^{T}\right\}$ while a basis for E_{1} is $\left\{(1,-1,5)^{T}\right\}$. Since the algebraic multiplicity of eigenvalue $\lambda=1$ is 2 but its geometric multiplicity is $1, A$ is not diagonalizable.
d) Write A in its Jordan normal form $P \tilde{D} P^{-1}$ for an appropriate \tilde{D} and P.

Solution: We need to find a generalized eigenvector (power vector) $\boldsymbol{\xi}$ for the eigenvalue $\lambda=1$. Setting $(A-1 I) \boldsymbol{\xi}=\boldsymbol{b}$ where $\boldsymbol{b}=(1,-1,5)^{T}$, we find $\boldsymbol{\xi}=(0,3,-5)^{T}$. Therefore, $A=$ $P \tilde{D} P^{-1}$ with $\tilde{D}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), P=\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & -1 & 3 \\ 2 & 5 & -5\end{array}\right)$.
2. The matrix $A=\left(\begin{array}{ccc}0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right)$ has eigenvalues $-2,1$, and 1 with corresponding eigenvectors $\boldsymbol{b}_{1}=(1,1,1)^{T}, \boldsymbol{b}_{2}=(1,-1,0)^{T}$, and $\boldsymbol{b}_{3}=(1,0,-1)^{T}$.
a) Suppose $\boldsymbol{x}(k)=A \boldsymbol{x}(k-1)$ for all $k \geq 1$ with initial condition $\boldsymbol{x}(0)=(6,-1,-2)^{T}=\boldsymbol{b}_{1}+$ $2 \boldsymbol{b}_{2}+3 \boldsymbol{b}_{3}$. Compute the solution $\boldsymbol{x}(k)=\left(x_{1}(k), x_{2}(k), x_{3}(k)\right)^{T}$ explicitly.

Solution: $\boldsymbol{x}(k)=(-2)^{k} \boldsymbol{b}_{1}+1^{k} 2 \boldsymbol{b}_{2}+1^{k} 3 \boldsymbol{b}_{3}=\left((-2)^{k}+5,(-2)^{k}-2,(-2)^{k}-3\right)^{T}$.
b) For part (a), what are the stable, unstable, and neutrally stable modes? Determine the limit of the ratios $x_{1}(k) / x_{2}(k)$ and $x_{1}(k) / x_{3}(k)$ as $k \rightarrow \infty$.

Solution: Since $\lambda=-2$ lies outside the unit circle in the complex plane, while $\lambda=1$ lies on the unit circle, we find that \boldsymbol{b}_{1} is an unstable mode while \boldsymbol{b}_{2} and \boldsymbol{b}_{3} are neutrally stable modes. Therefore, for large k we have $\boldsymbol{x}(k) \approx(-2)^{k} \boldsymbol{b}_{1}$ and the ratios $x_{1}(k) / x_{2}(k)$ and $x_{1}(k) / x_{3}(k)$ both approach 1 .
c) Now consider the continuous-time system $d \boldsymbol{x}(t) / d t=A \boldsymbol{x}(t)$ for $t \geq 0$ with initial condition $\boldsymbol{x}(0)=(6,-1,-2)^{T}$. Compute the solution $\boldsymbol{x}(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)^{T}$ explicitly.

Solution: $\boldsymbol{x}(t)=e^{-2 t} \boldsymbol{b}_{1}+2 e^{t} \boldsymbol{b}_{2}+3 e^{t} \boldsymbol{b}_{3}=\left(e^{-2 t}+5 e^{t}, e^{-2 t}-2 e^{t}, e^{-2 t}-3 e^{t}\right)^{T}$.
d) For part (c), what are the stable, unstable, and neutrally stable modes? Determine the limit of the ratios $x_{1}(t) / x_{2}(t)$ and $x_{1}(t) / x_{3}(t)$ as $t \rightarrow \infty$.

Solution: Since $\lambda=-2$ has negative real part and $\lambda=1$ has positive real part, \boldsymbol{b}_{1} is a stable mode while \boldsymbol{b}_{2} and \boldsymbol{b}_{3} are unstable modes. For large $t, \boldsymbol{x}(t) \approx 2 e^{t} \boldsymbol{b}_{2}+3 e^{t} \boldsymbol{b}_{3}$ and the ratios $x_{1}(t) / x_{2}(t)$ and $x_{1}(t) / x_{3}(t)$ approach $-5 / 2$ and $-5 / 3$, respectively..
3. Suppose $A=\left(\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right)$.
a) Diagonalize the matrix by writing it as $A=P D P^{-1}$.

Solution: $D=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & i \sqrt{3} & 0 \\ 0 & 0 & -i \sqrt{3}\end{array}\right), P=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -\frac{1}{2}+i \frac{\sqrt{3}}{2} & -\frac{1}{2}-i \frac{\sqrt{3}}{2} \\ 1 & -\frac{1}{2}-i \frac{\sqrt{3}}{2} & -\frac{1}{2}+i \frac{\sqrt{3}}{2}\end{array}\right)$.
b) Write the matrix exponential e^{D} as $E+i F$, where E and F are real matrices.

Solution: $e^{D}=\left(\begin{array}{ccc}e^{0} & 0 & 0 \\ 0 & e^{i \sqrt{3}} & 0 \\ 0 & 0 & e^{-i \sqrt{3}}\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \sqrt{3} & 0 \\ 0 & 0 & \cos \sqrt{3}\end{array}\right)+i\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \sin \sqrt{3} & 0 \\ 0 & 0 & -\sin \sqrt{3}\end{array}\right)$.
4. Let $T=\left(\begin{array}{cccc}0.8 & 0.4 & 0 & 0 \\ 0.2 & 0.6 & 0 & 0 \\ 0 & 0 & 0.6 & 0.2 \\ 0 & 0 & 0.4 & 0.8\end{array}\right)$.
a) Is T a transition matrix? If so, draw the states of the Markov chain with directed edges between states and their corresponding transition probabilities.
Solution: Yes, T is a transition matrix.
b) Is T irreducible? Is it aperiodic? Is it a regular transition matrix?

Solution: T is aperiodic, but it is not irreducible. Therefore, it is not regular.
c) Determine all possible stationary distributions $\boldsymbol{\pi}$ of the Markov chain.

Solution: $\boldsymbol{\pi}=c(2 / 3,1 / 3,0,0)^{T}+(1-c)(0,0,1 / 3,2 / 3)^{T}$ for any $0 \leq c \leq 1$.
d) Suppose $S=0.8 T+0.2 B$, where B is a matrix with all entries $1 / 4$. Estimate the rate of convergence of $\boldsymbol{x}(k)=S \boldsymbol{x}(0)$ to the unique stationary distribution $\boldsymbol{\pi}_{S}$ as $k \rightarrow \infty$.

Solution: The rate of convergence is determined by the second largest eigenvalue. Since $\left|\lambda_{2}\right| \leq\left(1-n \min _{i, j} S_{i, j}\right)=1-4 \times\left(\frac{1}{4} \cdot 0.2\right)=0.8$, the rate of convergence is at least as fast as 0.8^{k}.
5. True or false? Explain your answer by providing a complete justification if true, and a counterexample if false.
a) If A and B are similar (i.e., $B=P A P^{-1}$) then they have the same spectrum.

Solution: True. $p_{B}(\lambda)=\operatorname{det}(B-\lambda I)=\operatorname{det}\left(P(A-\lambda I) P^{-1}\right)=\operatorname{det}(A-\lambda I)=p_{A}(\lambda)$.
b) If A has eigenvalues $(1 \pm i) / 2$, any nonzero solution to the discrete-time system $\boldsymbol{x}(k)=$ $A \boldsymbol{x}(k-1)$ will have oscillations that grow arbitrarily large in magnitude for k large.

Solution: False. Since $|(1 \pm i) / 2|=1 / \sqrt{2}<1$ all modes are stable.
c) If A has eigenvalues $-1 \pm 4 i$, any nonzero solution to the continuous-time system $d \boldsymbol{x} / d t=$ $A \boldsymbol{x}$ will have oscillations with frequency 4 and amplitudes that decay exponentially in time.

Solution: True. The solution will be comprised of terms like $e^{(-1 \pm 4 i) t}=e^{-t}(\cos (4 t) \pm$ $i \sin (4 t))$.
d) For regular transition matrices A, every column of A^{k} converges to the stationary distribution $\boldsymbol{\pi}$ as $k \rightarrow \infty$.

Solution: True. Since $\boldsymbol{x}(k)=A^{k} \boldsymbol{x}(0) \rightarrow \boldsymbol{\pi}$ as $k \rightarrow \infty$ for any initial probability distribution $\boldsymbol{x}(0)$, we pick $\boldsymbol{x}(0)=\boldsymbol{e}_{i}$ to see that the $i^{\text {th }}$ column of A^{k} converges to $\boldsymbol{\pi}$.
e) The total number of cycles of length r in a directed network is $(\operatorname{Tr}(A))^{r}$.

Solution: False. The number of cycles of length r is $\operatorname{Tr}\left(A^{r}\right)=\lambda_{1}^{r}+\cdots+\lambda_{n}^{r}$ where λ_{1}, \ldots, λ_{n} are the eigenvalues of A.

