Instructions: Please show all your work, not only your final answer, in order to receive credit. Please keep answers organized in the same order the problems have been assigned.

Recommended time: 1 hour

1. (Pitman, p. 490, \#1) Ten dice are rolled. Fice dice are red and five are green. Write down numerical expressions for:
a) The probability of the event that exactly four of the ten dice are sixes.
b) The probability of the event that exactly two of the red dice are sixes and exactly three of the green dice show even numbers.
c) The probability that there are the same number of sixes among the red dice as among the green dice.
d) The probability that there are strictly more sixes among the red dice than among the green dice.
2. (Pitman, p. 490, $\# 4(\mathrm{a}, \mathrm{b}))$ Let A, B, and C be events which are mutually independent, with probabilites a, b, and c. Let N be the random number of events which occur.
a) What is the event $(N=2)$ in terms of A, B, and C ?
b) What is the probability of this event in terms of a, b, and c ?
3. (Pitman, p. 491, \#1) Coin spinning. I have two coins. One shows heads with probability $1 / 10$ when spun. The other shows heads with probability $1 / 2$. Suppose you pick one of my two coins at random and spin it twice. Find:
a) P (heads on first spin);
b) P (heads on second spin);
c) P (heads on both spin);
d) the probability that the coin is the $1 / 2$ coin given heads on both spins.
4. (Pitman, p. 491, \#2) True or false. A student answers a set of 100 true/false questions by answering 36 questions correctly, and guessing the other 64 at random.
a) If the pass mark is 70 questions correct, what is the student's chance of passing? Give your answer (by using an approximation) as a decimal correct to two places.
b) Another student also knows 36 correct answers and guesses the rest at random. What is the chance that just one of these two students passes?
5. (Pitman, p. 491, \#3) Rare white balls. A box contains 998 black and 2 white balls. Let $X=$ the number of whites in 500 random draws with replacement from this box. Calculate:
a) $P(X=1) / P(X=2)$ exactly, and approximately using the Poisson approximation;
b) $P(X=1$ given $X=1$ or 2$)$ exactly, and approximately using the Poisson approximation;
c) repeat (b) assuming draws without replacement (only compute exactly).
6. (Pitman, p. 492, \#2) A box contains 5 tickets. An unknown number of them are red, the rest are green. Suppose that to start off with you think there are equally likely to be $0,1,2,3,4$, or 5 red tickets in the box.
a) Three tickets are drawn from the box with replacement between draws. The tickets drawn are red, green, and red. Given this information, what is the chance there are actually 3 red tickets in the box?
b) What would your answer to (a) be if you knew the draws were made without replacement?
c) Now suppose that there actually are 3 red tickets in the box. Suppose we sample tickets from the box 3 times without replacement. Let $R=\#$ of red tickets drawn and $G=\#$ of green tickets drawn. What is the joint distribution of the random variables R and G ?
d) Are R and G independent? Show why or why not.
