Multiple choice questions \#1.1-1.4 (20 points)

See last two pages of solutions.

Question \#1.1 (20 points)

Define the function

$$
f(x, t)=t^{-1 / 2} e^{-x^{2} / t}, \quad t>0
$$

a) Determine $\partial f / \partial t$ and $\partial f / \partial x$.

Solution:

$$
\frac{\partial f}{\partial x}=-\frac{2 x}{t^{3 / 2}} e^{-x^{2} / t}, \quad \frac{\partial f}{\partial t}=\left(\frac{x^{2}}{t^{5 / 2}}-\frac{1}{2 t^{3 / 2}}\right) e^{-x^{2} / t}
$$

b) Consider the partial differential equation (PDE)

$$
\frac{\partial f}{\partial t}=\frac{1}{4} \frac{\partial^{2} f}{\partial x^{2}},
$$

known as the heat equation since it describes the flow of heat in a thin tube. Show that $f(x, t)$ as defined above a solution to this PDE (i.e., verify that it satisfies the equation).

Solution: Since

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(-\frac{2 x}{t^{3 / 2}} e^{-x^{2} / t}\right)=\left(\frac{4 x^{2}}{t^{5 / 2}}-\frac{2}{t^{3 / 2}}\right) e^{-x^{2} / t}=4 \frac{\partial f}{\partial t}
$$

f satisfies the heat equation.
c) Let $\boldsymbol{v}=\boldsymbol{i}-\boldsymbol{j}$ be the direction of a unit vector \boldsymbol{u} in the $x t$-plane. Find the directional derivative $D_{\boldsymbol{u}} f$ at the point $P(0,1)$.
[Hint: Use part (a).]
Solution: In part (a) we have computed the gradient

$$
\nabla f=\left\langle f_{x}, f_{t}\right\rangle=-\frac{2 x}{t^{3 / 2}} e^{-x^{2} / t} \boldsymbol{i}+\left(\frac{x^{2}}{t^{5 / 2}}-\frac{1}{2 t^{3 / 2}}\right) e^{-x^{2} / t} \boldsymbol{j}
$$

Therefore, with $\boldsymbol{u}=\frac{1}{\sqrt{2}}(\boldsymbol{i}-\boldsymbol{j})$ the unit vector in the direction of \boldsymbol{v}, the directional derivative at $P(0,1)$ is

$$
\left.D_{u} f\right|_{(0,1)}=\left.\frac{1}{\sqrt{2}} \nabla f \cdot\langle 1,-1\rangle\right|_{(0,1)}=\frac{1}{2 \sqrt{2}}
$$

d) Now let $x(s, v, w)=s v w$ and $t(s, v)=v+\sin (2 s)$. Determine $\partial f / \partial s$ at $s=0$.

Solution: First note that $\frac{\partial x}{\partial s}=v w$ and $\frac{\partial t}{\partial s}=2 \cos (2 s)$. Using the chain rule, we find

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial t} \frac{\partial t}{\partial s}=-\frac{2 v w x}{t^{3 / 2}} e^{-x^{2} / t}+2 \cos (2 s)\left(\frac{x^{2}}{t^{5 / 2}}-\frac{1}{2 t^{3 / 2}}\right) e^{-x^{2} / t}
$$

Since $\left.x\right|_{s=0}=0$ and $\left.t\right|_{s=0}=v$, we get that $\partial f /\left.\partial s\right|_{s=0}=-v^{-3 / 2}$.

Question \#1.2 (20 points)

Define

$$
f(x, y)=e^{y}\left(y^{2}-x^{2}\right)
$$

a) Find the critical points of f.

Solution: First we note that $\nabla f=\left\langle-2 x e^{y},\left(y^{2}-x^{2}+2 y\right) e^{y}\right\rangle$. The critical points of f satisfy $\nabla f=0$, so that $-2 x=\left(y^{2}-x^{2}+2 y\right)=0$. This implies that $x=0$ and that $(0,0)$ and $(0,-2)$ are the only critical points of f.
b) Compute the Hessian

$$
H(x, y)=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)
$$

of the function. Then classify all critical points by using the second derivative test (i.e., determine if they are local maxima, minima, or saddle points).
Solution: Since $f_{x x}=-2 e^{y}, f_{x y}=f_{y x}=-2 x e^{y}, f_{y y}=\left(y^{2}-x^{2}+4 y+2\right) e^{y}$. Then $D(0,0)=$ $\operatorname{det} H(0,0)=-2 \cdot 2-0^{2}=-4<0$ so $(0,0)$ is a saddle point. However, $D(0,-2)=\operatorname{det} H(0$, $-2)=\left(-2 e^{-2}\right)\left(-2 e^{-2}\right)-0^{2}=4 e^{-4}>0$. Since $f_{x x}(0,-2)=-2 e^{-2}<0,(0,-2)$ is a local maximum.
c) What is the absolute maximum value of f on $D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$?

Solution: Since f is continuous and has no local maxima in the interior of D, it must achieve its absolute maximum on the boundary of D. Testing f on each of the four boundaries of the square D, we find that the absolute maximum is e (achieved at (0,1)).

Question \#1.3 (20 points)

Evaluate the following integrals. Remember that iterated integrals are sometimes easier to evaluate after switching the order of integration, or after changing to different coordinates.
a) Determine

$$
\iint_{R}\left(4+x^{2}-y^{2}\right) d A
$$

where the region of integration is the rectangle $R=\{(x, y):-1 \leq x \leq 1,0 \leq y \leq 2\}$.
Solution: Writing this integral with the proper boundaries of integration we find that

$$
\begin{aligned}
\int_{-1}^{1} \int_{0}^{2}\left(4+x^{2}-y^{2}\right) d y d x & =\int_{-1}^{1}\left[4 y+x^{2} y-\frac{1}{3} y^{3}\right]_{y=0}^{y=2} d x \\
& =\int_{-1}^{1}\left(2 x^{2}+\frac{16}{3}\right) d x \\
& =\left[\frac{2}{3} x^{3}+\frac{16}{3} x\right]_{-1}^{1}=12
\end{aligned}
$$

b) Consider the integral

$$
\iint_{D} 2 x^{2} e^{x y} d A
$$

over the triangular region $D=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq x\}$. Provide expressions for the two possible iterated integrals (one integrating in x first, the other in y first) with correct boundaries of integration. Do not evaluate these yet.

Solution: The two (equivalent) iterated integrals are

$$
\int_{0}^{2} \int_{y}^{2} 2 x^{2} e^{x y} d x d y, \quad \int_{0}^{2} \int_{0}^{x} 2 x^{2} e^{x y} d y d x
$$

c) Evaluate the integral in part (b) using one of the two iterated integrals.

Solution: It is easier to evaluate the integral by first integrating in y, then in x. Then,

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{x} 2 x^{2} e^{x y} d y d x & =\int_{0}^{2}\left[2 x e^{x y}\right]_{y=0}^{y=x} d x \\
& =\int_{0}^{2}\left(2 x e^{x^{2}}-2 x\right) d x \\
& =\int_{0}^{4} e^{u} d u-4 \\
& =e^{4}-5
\end{aligned}
$$

Question \#1.4 (20 points)

We will evaluate the double integral

$$
I=\iint_{R} \sin \left(\pi\left(9 x^{2}+4 y^{2}\right)\right) d A
$$

over the region R bounded by the the ellipse $9 x^{2}+4 y^{2}=1$ by completing the following sequence of steps.
a) Consider the linear transformation $T:(u, v) \rightarrow(x, y)$ given by

$$
x=\frac{1}{3} u, \quad y=\frac{1}{2} v .
$$

Find the Jacobian $J=\frac{\partial(x, y)}{\partial(u, v)}$ of the transformation.
Solution:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
\frac{1}{3} & 0 \\
0 & \frac{1}{2}
\end{array}\right)=\frac{1}{6}
$$

b) After the change of variables to (u, v) coordinates, the integral I becomes

$$
\iint_{S} \sin \left(\pi\left(u^{2}+v^{2}\right)\right)|J| d u d v
$$

with $S=\left\{(u, v): u^{2}+v^{2} \leq 1\right\}$. Transform to polar coordinates to express this as an iterated integral in terms of the variables r and θ.
Solution: With $r^{2}=u^{2}+v^{2}$ we write the integral as

$$
I=\int_{0}^{2 \pi} \int_{0}^{1} \frac{1}{6} \sin \left(\pi r^{2}\right) r d r d \theta
$$

c) Evaluate the answer obtained in (b).

Solution: With the substitution $w=r^{2}$ we find that

$$
I=\frac{\pi}{6} \int_{0}^{1} \sin (\pi u) d u=-\frac{1}{6}[\cos (\pi u)]_{0}^{1}=\frac{1}{3}
$$

Multiple choice questions \#2.1-2.4 (*0 points*)

Not included in exam (failed to print).

Question \#2.1 (20 points)

Determine if the following series is absolutely convergent, conditionally convergent, or divergent. You must show your work and justify the use of any test to obtain credit.
a)

$$
\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}}
$$

[Hint: Consider $\lim _{n \rightarrow \infty} e^{n} / n^{2}$.]
Solution: By L'Hospital's rule applied twice,

$$
\lim _{n \rightarrow \infty} e^{x} / x^{2}=\lim _{n \rightarrow \infty} e^{x} / 2 x=\lim _{n \rightarrow \infty} e^{x} / 2=+\infty .
$$

Therefore, by the divergence test we have that the series diverges (since the sequence being summed does not go to zero as $n \rightarrow 0$).
b)

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{2 / 3}+n^{2 / 3} \ln n}
$$

Solution: This problem is nearly identical to that from the first midterm. First we test for absolute convergence of the series. We must find whether the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2 / 3}+n^{2 / 3} \ln n}
$$

converges or not. To do so, note that the first term in the denominator grows faster than the second term and is therefore the dominant contribution as $n \rightarrow \infty$. This can be seen by noting that

$$
\lim _{n \rightarrow \infty} \frac{n^{2 / 3} \ln n}{n(\ln n)^{2 / 3}}=\left(\lim _{n \rightarrow \infty} \frac{\ln n}{n}\right)^{1 / 3}=0
$$

by L'Hospital's rule. Therefore, by the limit comparison test we have that the series converges/diverges if the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2 / 3}}
$$

converges/diverges. Now note that $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2 / 3}}$ diverges by the integral test since the improper integral

$$
\int_{2}^{\infty} \frac{1}{x(\ln x)^{2 / 3}} d x=\int_{\ln 2}^{\infty} \frac{1}{u^{2 / 3}} d u \quad(\text { substitution with } u=\ln x \text {) }
$$

diverges. So $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2 / 3}}$ diverges and the original series is not absolutely convergent. [There are many other ways to solve this problem by comparing against a series which we know is divergent. For example, since $\frac{1}{n(\ln n)^{2 / 3}+n^{2 / 3} \ln n} \geq \frac{1}{2 n \ln n}$ and $\sum \frac{1}{2 n \ln n}$ diverges by the integral test, we find that the original series is not absolutely convergent.]

Now we show that

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{2 / 3}+n^{2 / 3} \ln n}
$$

is in fact conditionally convergent by the alternating series test. Indeed, it is simple to check that

$$
b_{n}=\frac{1}{n(\ln n)^{2 / 3}+n^{2 / 3} \ln n}
$$

satisfies $\lim _{n \rightarrow \infty} b_{n}=0$ and $\left\{b_{n}\right\}$ is a decreasing sequence of terms. We therefore conclude that the series is conditionally convergent.

Question \#2.2 (20 points)

a) Determine the interval of convergence of the following power series centered at $a=1$:

$$
\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{2^{n} \sqrt{n}}
$$

[Hint: Start by using the ratio or root test to find the radius of convergence of the series.]
Solution: By the ratio test, we find that the series is absolutely convergent when

$$
\lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{(x-1)^{n}} \cdot \frac{2^{n} \sqrt{n}}{2^{n+1} \sqrt{n+1}}\right|=\frac{1}{2}|x-1| \lim _{n \rightarrow \infty} \sqrt{\frac{n}{n+1}}=\frac{1}{2}|x-1|<1 .
$$

So the radius of convergence of the series is 2 and the interval of convergence is either $(-1,3),[-1,3),(-1,3]$, or $[-1,3]$. Testing the endpoints we see that $x=-1$ is in the interval of convergence using the alternating series test, but $x=3$ is not using the p-series test with $p=1 / 2$. So $I=[-1,3)$.
b) Find the second-degree polynomial $T_{2}(x)$ that best approximates the function $f(x)=e^{-x^{2}}$ near $x=1$.

Solution: We must find the second-order Taylor polynomial centered at $a=1$. Since

$$
f^{\prime}(x)=-2 x e^{-x^{2}}, \quad f^{\prime \prime}(x)=\left(4 x^{2}-2\right) e^{-x^{2}}
$$

we have that

$$
T_{2}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{1}{2!} f^{\prime \prime}(1)(x-1)^{2}=e^{-1}\left(1-2(x-1)+(x-1)^{2}\right) .
$$

c) Derive the Maclaurin series (i.e., Taylor series centered at 0) of $e^{-x^{2}}$. What is the radius of convergence of the series?

Solution: Finding the nth derivative of $e^{-x^{2}}$ is not particularly easy, so instead we use the known Maclaurin series for e^{x}. Since

$$
e^{z}=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}, \quad-\infty<z<\infty
$$

making the substitution $z=-x^{2}$ we have that

$$
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}, \quad-\infty<x<\infty
$$

The radius of convergence of the series is infinite (series converges everywhere).

Question \#2.3 (20 points)

Define the vectors

$$
\begin{gathered}
\boldsymbol{u}=\langle 4,5,-1\rangle \\
\boldsymbol{v}=\langle 1,0,1\rangle \\
\boldsymbol{w}=\langle 3,-2,2\rangle .
\end{gathered}
$$

a) Compute $\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})$.

Solution: First we compute $\boldsymbol{v} \times \boldsymbol{w}$:

$$
\boldsymbol{v} \times \boldsymbol{w}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & 0 & 1 \\
3 & -2 & 2
\end{array}\right|=2 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k}
$$

Therefore, $\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})=8+5+2=15$.
b) Determine the vector equation for the plane parallel to the vectors \boldsymbol{v} and \boldsymbol{w} that passes through the point $P(0,1,2)$ (i.e., express in the form $\boldsymbol{n} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{\mathbf{0}}\right)=0$ by determining a normal vector \boldsymbol{n} and an intercept $\boldsymbol{r}_{\mathbf{0}}$).
Solution: The plane parallel to \boldsymbol{v} and \boldsymbol{w} has normal vector $\boldsymbol{n}=\boldsymbol{v} \times \boldsymbol{w}=\langle 2,1,-2\rangle$. Since it passes through $P(0,1,2)$, the intercept is $\boldsymbol{r}_{0}=\langle 0,1,2\rangle$.
c) Find the shortest distance between the point $P(0,1,2)$ and the plane given by

$$
x+3 y+5 z=48
$$

using the method of Lagrange multipliers. At the least, write down the proper equations to be solved.
[Hint: Need to use equations $\nabla f=\lambda \nabla g, g=$ const., for an appropriate choice of function f to be extremized under some constraint g.]

Solution: The distance between the point $P(0,1,2)$ and any other point $Q(x, y, z)$ is

$$
d(x, y, z)=\sqrt{x^{2}+(y-1)^{2}+(z-2)^{2}} .
$$

Therefore, we seek to minimize $d(x, y, z)$ subject to the constraint

$$
g(x, y, z)=x+3 y+5 z=48
$$

(which simply says that Q must lie on the given plane). To make things simpler, note that we can, equivalently, minimize one-half the squared distance

$$
f(x, y, z)=\frac{1}{2} x^{2}+\frac{1}{2}(y-1)^{2}+\frac{1}{2}(z-2)^{2}
$$

subject to $g(x, y, z)=48$. We minimize this using Lagrange multipliers. That is, we need to solve the system of equations $\nabla f=\lambda \nabla g, g=48$. This yields the system of equations

$$
\begin{gathered}
x=\lambda \\
y=1+3 \lambda \\
z=2+5 \lambda \\
x+3 y+5 z=48 .
\end{gathered}
$$

Substituting x, y, z in terms of λ into the last equation we find that $13+35 \lambda=48$, i.e., $\lambda=1$ and $(x, y, z)=(1,4,7)$. Is is then simple to check that this corresponds to a minimal distance of $d(1,4,7)=\sqrt{35}$ between P and the plane.

Question \#2.4 (20 points)

Define the vector-valued function $\boldsymbol{r}(t)$ through its derivative

$$
\boldsymbol{r}^{\prime}(t)=\langle\cos t,-\sin t, 0\rangle
$$

and suppose $\boldsymbol{r}(0)=\langle 1,1,1\rangle$.
a) Find $\boldsymbol{r}(t)$.

Solution: Integrating, we have that

$$
\boldsymbol{r}(t)=\boldsymbol{r}(0)+\int_{0}^{t} \boldsymbol{r}^{\prime}(s) d s=\langle 1+\sin t, \cos t, 0\rangle
$$

b) Find the unit tangent vector $\boldsymbol{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left|\boldsymbol{r}^{\prime}(t)\right|}$.

Solution: Since $\left|\boldsymbol{r}^{\prime}(t)\right|=\sqrt{\cos ^{2} t+\sin ^{2} t}=1$, we find that $\boldsymbol{T}(t)=\boldsymbol{r}^{\prime}(t)=\langle\cos t,-\sin t, 0\rangle$.
c) The parametric curve traced by $\boldsymbol{r}(t)$ lies on the surface of the paraboloid

$$
z=x^{2}+(y-1)^{2}-c
$$

for which value of c ?
Solution: The parametric curve traced out by $\boldsymbol{r}(t)$ is a circle of radius 1 in the $x y$-plane centered at $(1,0)$. Therefore, the curve lies on the surface $(x-1)^{2}+y^{2}=1$, implying that

$$
c=2(x-y)+1=2(\sin t-\cos t)+3
$$

Note that there was an error in the statement of the question that made the problem more complicated - the equation for the paraboloid was originally meant to read " $z=(x-$ $1)^{2}+y^{2}-c, "$ in which case the answer was $c=1$. Regardless, it was possible to solve for c by substituting the coordinates of $\mathfrak{r}(t)$ for x, y, and z in the given equation.
d) Find the arc length of one loop of the parametric curve, either by using the arc length formula $L=\int_{a}^{b}\left|r^{\prime}(t)\right| d t$ or by using a more direct method.
Solution: The curve returns to its starting position each time t increases by 2π. Using the arc length formula we find $L=\int_{0}^{2 \pi} 1 d t=2 \pi$. More simply, this is found using the formula for the length of a circle with radius 1 .

This print-out should have 4 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

CalC15a20b
 001
 5.0 points

Which one of the following could be the contour map of a cone?

2.

5.
cor-

rect

Which one of the following surfaces is the graph of

$$
f(x, y)=2 x^{2} ?
$$

1.

2.

correct

3.

4.

5.

CalC15f23s
 0035.0 points

Find the maximum slope on the graph of

$$
f(x, y)=3 \sin (x y)
$$

at the point $P(0,4)$.

1. max slope $=12$ correct
2. max slope $=4 \pi$
3. \max slope $=\pi$
4. max slope $=3$
5. \max slope $=1$
6. \max slope $=12 \pi$
7. max slope $=3 \pi$
8. max slope $=4$

CalC16c28s
 0045.0 points

Find the volume of the solid in the first octant bounded by the cylinders

$$
x^{2}+y^{2}=16, \quad y^{2}+z^{2}=16
$$

Hint: in the first octant the cylinders are shown in

1. volume $=\frac{112}{3}$ cu. units
2. volume $=\frac{128}{3} \mathrm{cu}$. units correct
3. volume $=40 \mathrm{cu}$. units
4. volume $=\frac{116}{3}$ cu. units
5. volume $=\frac{124}{3}$ cu. units
