Note: Solutions to the multiple-choice questions for each section are listed below. Due to randomization between sections, explanations to a version of each of the multiple-choice problems are given at the end of the document.

	54690	54695	54700
MC\#1 (10 pts.)	7. none of them	8. all of them	1. B only
MC $\# 2$ (10 pts.)	6. A and B	$8 . A$ and B	$1 . A$ and B
MC $\# \mathbf{3}$ (5 pts.)	2. limit $=0$	4. limit $=0$	1. limit $=0$
MC $\# \mathbf{4}$ (5 pts.)	6. $a_{n}=\frac{n-2}{2^{n}}$	1. $a_{n}=\frac{4 n-5}{5^{n}}$	4. $a_{n}=\frac{n-2}{2^{n}}$

Question \#1 (25 points)

Define the series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \sqrt{\ln n}+\sqrt{n} \ln n}
$$

a) Is the series absolutely convergent? Justify your answer and your use of any test.

Solution: This problem is similar to Question \#1 in Quiz 2. We must find whether the series

$$
\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}+\sqrt{n} \ln n}
$$

converges or not. To do so, note that the first term in the denominator grows faster than the second term and is therefore the dominant contribution as $n \rightarrow \infty$. We can compare this series with

$$
\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}
$$

using the limit comparison test. Let $b_{n}=\frac{1}{n \sqrt{\ln n}+\sqrt{n} \ln n}$ and $c_{n}=\frac{1}{n \sqrt{\ln n}}$. We have that

$$
\lim _{n \rightarrow \infty} \frac{b_{n}}{c_{n}}=\lim _{n \rightarrow \infty} \frac{n \sqrt{\ln n}}{n \sqrt{\ln n}+\sqrt{n} \ln n}=\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{\frac{\ln n}{n}}}=1
$$

since $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$ (this is justified by L'Hospital's rule). Therefore, $\sum \frac{1}{n \sqrt{\ln n}+\sqrt{n} \ln n}$ converges if and only if $\sum \frac{1}{n \sqrt{\ln n}}$ converges.

Now note that $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$ diverges by the integral test since the improper integral

$$
\int_{2}^{\infty} \frac{1}{x \sqrt{\ln x}} d x=\int_{\ln 2}^{\infty} \frac{1}{\sqrt{u}} d u \quad(\text { substitution with } u=\ln x)
$$

diverges. So $\sum \frac{1}{n \sqrt{\ln n}}$ diverges and the original series is not absolutely convergent.
[There are many other ways to solve this problem by comparing against a series which we know is divergent. For example, since $\frac{1}{n \sqrt{\ln n}+\sqrt{n} \ln n} \geq \frac{1}{2 n \ln n}$ and $\sum \frac{1}{2 n \ln n}$ diverges by the integral test, we find that the original series is not absolutely convergent.]
b) If not, is the series conditionally convergent or divergent? Justify your use of any test.

Solution: We use the alternating series test. Let

$$
b_{n}=\frac{1}{n \sqrt{\ln n}+\sqrt{n} \ln n}
$$

First note that $b_{n} \rightarrow 0$ as $n \rightarrow \infty$. Next, since n and $\ln n$ are increasing functions of n we must have that $b_{n+1} \leq b_{n}$ for all n. The alternating series test then implies that the series is convergent. Since it is not absolutely convergent, it is conditionally convergent.

Question \#2 (20 points)

Consider the power series

$$
\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n 3^{n}}
$$

a) Find R, the radius of convergence of the series.

Solution: We will use the ratio test. Let

$$
a_{n}=\frac{(3 x-2)^{n}}{n 3^{n}}
$$

The series converges when

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(3 x-2)^{n+1}}{(3 x-2)^{n}} \cdot \frac{n 3^{n}}{(n+1) 3^{n+1}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{n}{n+1} \cdot \frac{|3 x-2|}{3} \\
& =\left|x-\frac{2}{3}\right|<1
\end{aligned}
$$

and diverges when $\left|x-\frac{2}{3}\right|>1$. Therefore, the radius of convergence is $R=1$.
b) Find I, the interval of convergence of the series. At the least, name any tests you use.

Solution: The interval of convergence is necessarily either $\left(-\frac{1}{3}, \frac{5}{3}\right),\left(-\frac{1}{3}, \frac{5}{3}\right],\left[-\frac{1}{3}, \frac{5}{3}\right)$, or $\left[-\frac{1}{3}, \frac{5}{3}\right]$. For $x=-\frac{1}{3}$ the series is

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

It is the alternating harmonic series, which we know converges (this can be shown by using the alternating series test). For $x=\frac{5}{3}$, the series is

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

which diverges as it is the harmonic series (i.e., a p-series with $p=1$). To conclude, the interval of convergence is $I=\left[-\frac{1}{3}, \frac{5}{3}\right)$.

Question \#3 (25 points)

Consider the function

$$
f(x)=\ln \left(1+\frac{1}{2} x^{2}\right)
$$

a) Find its second-degree Taylor polynomial $T_{2}(x)$ centered at $a=2$.

Solution: The polynomial $T_{2}(x)$ centered at 2 necessarily has the form

$$
T_{2}(x)=f(2)+\frac{f^{\prime}(2)}{1!}(x-2)+\frac{f^{\prime \prime}(2)}{2!}(x-2)^{2}
$$

Since

$$
f^{\prime}(x)=\frac{x}{1+\frac{1}{2} x^{2}}, \quad f^{\prime \prime}(x)=\frac{1-\frac{1}{2} x^{2}}{\left(1+\frac{1}{2} x^{2}\right)^{2}}
$$

we get that $f(2)=\ln 3, f^{\prime}(2)=2 / 3, f^{\prime \prime}(2)=-1 / 9$. So

$$
T_{2}(x)=\ln (3)+\frac{2}{3}(x-2)-\frac{1}{18}(x-2)^{2} .
$$

b) Find the Maclaurin series of f (i.e., series centered at $a=0$) and determine its radius of convergence. [Hint: Try using the known power series representation

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad|x|<1
$$

to find the answer quickly.]
Solution: First note that

$$
f^{\prime}(x)=\frac{x}{1+\frac{1}{2} x^{2}}=x \cdot \frac{1}{1-\left(-\frac{1}{2} x^{2}\right)} .
$$

Substituting $-\frac{1}{2} x^{2}$ for x in the series expansion of $\frac{1}{1-x}$ gives that

$$
x \cdot \frac{1}{1-\left(-\frac{1}{2} x^{2}\right)}=x \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}} x^{2 n}
$$

when $\left|-\frac{1}{2} x^{2}\right|<1$, i.e., when $|x|<\sqrt{2}$. We integrate the power series term by term to obtain

$$
f(x)=\int\left(x \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}} x^{2 n}\right) d x=\sum_{n=0}^{\infty} \int \frac{(-1)^{n}}{2^{n}} x^{2 n+1} d x=C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}(2 n+2)} x^{2 n+2} .
$$

To find the constant of integration C, note that $C=f(0)=\ln 1=0$. To conclude,

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}(2 n+2)} x^{2 n+2}, \quad R=\sqrt{2}
$$

This print-out should have 4 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

CalC12g01a
 00110.0 points

Which, if any, of the following statements are true?
A. If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum a_{n}$ converges.
B. The Ratio Test can be used to determine whether $\sum 1 / n^{3}$ converges.
C. If $\sum a_{n}$ is divergent, then $\sum\left|a_{n}\right|$ is divergent.

1. C only correct
2. A only
3. all of them
4. A and B only
5. B only
6. B and C only
7. none of them
8. A and C only

Explanation:

A. False: when $a_{n}=1 / n$, then $\lim _{n \rightarrow \infty} a_{n}=$ 0 , but

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

diverges by the Integral Test.
B. False: when $a_{n}=1 / n^{3}$, then

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n^{3}}{(n+1)^{3}} \longrightarrow 1
$$

as $n \rightarrow, \infty$, so the Ratio Test is inconclusive.
C. True: if $\sum\left|a_{n}\right|$ were convergent, then $\sum a_{n}$ would be absolutely convergent, hence convergent.

CalC12f33c
 $002 \quad 10.0$ points

Determine which, if any, of the following series converge.
(A) $\sum_{n=1}^{\infty} \frac{6^{n}}{(n+6)^{n}}$
(B) $\sum_{n=1}^{\infty}\left(\frac{3 n}{6 n+7}\right)^{n}\left(\frac{6}{5}\right)^{n}$
(C) $\sum_{n=1}^{\infty} n!\left(\frac{3}{n}\right)^{n}$

1. C only
2. A only
3. none of them
4. B only
5. B and C
6. all of them
7. A and C
8. A and B correct

Explanation:

To check for convergence we shall use either the Ratio test or the Root test which means computing one or other of

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|, \quad \lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}
$$

for each of the given series.

$$
\begin{equation*}
\text { Version } 001 \text { - tester - srinivasan - }(54690) \tag{2}
\end{equation*}
$$

(A) The root test is the better one to use because

$$
\left|a_{n}\right|^{1 / n}=\frac{6}{n+6} \longrightarrow 0
$$

as $n \rightarrow \infty$, so series (A) converges.
(B) The root test again is the better one to use because

$$
\left|a_{n}\right|^{1 / n}=\frac{6}{5}\left(\frac{3 n}{6 n+7}\right) \longrightarrow \frac{3}{5}<1
$$

as $n \rightarrow \infty$, so series (B) converges.
(C) The ratio test is the better one to use because

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=3\left(\frac{(n+1)!n^{n}}{n!(n+1)^{n+1}}\right)
$$

But

$$
\frac{(n+1)!}{n!}=n+1
$$

while

$$
\frac{n^{n}}{(n+1)^{n+1}}=\frac{1}{n+1}\left(\frac{n}{n+1}\right)^{n}
$$

Thus

$$
\frac{a_{n+1}}{a_{n}}=3\left(\frac{n}{n+1}\right)^{n} \longrightarrow \frac{3}{e}>1
$$

as $n \rightarrow \infty$, so series (C) diverges.
Consequently, of the given infinite series,

$$
\text { only } A \text { and } B
$$

converge.

\[

\]

Find the value of

$$
\lim _{x \rightarrow \infty} \frac{x^{3}}{3^{x}}
$$

1. limit $=0$ correct
2. limit $=3$
3. none of the other answers
4. limit $=\frac{1}{3}$
5. limit $=\infty$
6. limit $=-\infty$

Explanation:

Set

$$
f(x)=x^{3}, \quad g(x)=3^{x}=e^{x \ln 3}
$$

Then f, g are everywhere differentiable functions such that

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty
$$

Thus L'Hospital's Rule applies, in which case

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Now

$$
f^{\prime}(x)=3 x^{2}, \quad g^{\prime}(x)=(\ln 3) 3^{x}
$$

But then

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{(\ln 3) 3^{x}}
$$

which, up to a constant, is the same limit we started with except that x^{3} in the numerator has become x^{2}. Consequently, if we apply L'Hospital's rule sufficiently often, we finally end up with

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{\text { constant }}{3^{x}}
$$

Thus

$$
\lim _{x \rightarrow \infty} \frac{x^{3}}{3^{x}}=0
$$

CalC12b50s
$004 \quad 10.0$ points

If the $n^{\text {th }}$ partial sum S_{n} of an infinite series

$$
\sum_{n=1}^{\infty} a_{n}
$$

is given by

$$
S_{n}=3-\frac{n}{2^{n}}
$$

find a_{n} for $n>1$.

1. $a_{n}=\frac{n-2}{2^{n}}$ correct
2. $a_{n}=\frac{n-2}{2^{n-1}}$
3. $a_{n}=3\left(\frac{n-2}{2^{n}}\right)$
4. $a_{n}=\frac{3 n-2}{2^{n}}$
5. $a_{n}=3\left(\frac{3 n-2}{2^{n}}\right)$
6. $a_{n}=3\left(\frac{n-2}{2^{n-1}}\right)$

Explanation:

By definition, the $n^{\text {th }}$ partial sum of

$$
\sum_{n=1}^{\infty} a_{n}
$$

is given by

$$
S_{n}=a_{1}+a_{2}+\cdots+a_{n}
$$

In particular,

$$
a_{n}=\left\{\begin{array}{cl}
S_{n}-S_{n-1}, & n>1 \\
S_{n}, & n=1
\end{array}\right.
$$

Thus

$$
\begin{aligned}
a_{n}=S_{n} & -S_{n-1}=\frac{n-1}{2^{n-1}}-\frac{n}{2^{n}} \\
& =\frac{2(n-1)}{2^{n}}-\frac{n}{2^{n}}
\end{aligned}
$$

when $n>1$. Consequently,

$$
a_{n}=\frac{n-2}{2^{n}}
$$

for $n>1$.

