Multiple choice questions (20 points)

See last two pages.

Question #1 (25 points)

Define the vector-valued function

$$\boldsymbol{r}(t) = \langle e^t, 2, 3e^t \rangle.$$

a) At what point $P(x_0, y_0, z_0)$ does the curve r(t) intersect the surface $y = x^2 + 1$?

Solution: We need to find a t such that $2 = e^{2t} + 1$, i.e., t = 0. This corresponds to the point $r(0) = \langle 1, 2, 3 \rangle$.

b) Find $\mathbf{r}'(t)$ and $|\mathbf{r}'(t)|$ to determine the unit tangent vector $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$ at the point P(1,2,3).

Solution: $\mathbf{r}'(t) = \langle e^t, 0, 3e^t \rangle$ and $|\mathbf{r}'(t)| = \sqrt{10}e^t$ so $\mathbf{T}(t) = \frac{1}{\sqrt{10}} \langle 1, 0, 3 \rangle$ and the unit tangent vector at P(1, 2, 3) is $\frac{1}{\sqrt{10}} \langle 1, 0, 3 \rangle$.

c) What is the arc length $L = \int_a^b |\mathbf{r}'(u)| du$ of the curve between the points P(1, 2, 3) and Q(e, 2, 3e)?

Solution: $L = \int_0^1 \sqrt{10} e^u du = \sqrt{10} (e - 1)$.

d) Write a vector equation of the form $n \cdot (r - r_0) = 0$ for the plane normal to the curve at the point P(1,2,3).

Solution: A normal vector for the plane normal to the curve at P(1, 2, 3) is simply the tangent vector $\mathbf{r}'(0) = \langle 1, 0, 3 \rangle$. So the equation is $\langle 1, 0, 3 \rangle \cdot (\langle x, y, z \rangle - \langle 1, 2, 3 \rangle) = 0$.

Question #2 (25 points)

Define the vectors

$$a = \langle -3, 1, 1 \rangle$$
$$b = \langle 4, 0, 3 \rangle$$
$$c = \langle 2, 3, 4 \rangle.$$

a) What is $b \times c$?

Solution: $\mathbf{b} \times \mathbf{c} = \langle -9, -10, 12 \rangle$.

b) Determine the volume of the parallelepiped determined by \boldsymbol{a} , \boldsymbol{b} , and \boldsymbol{c} using the scalar triple product $V = |\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})|$.

Solution: V = 29.

c) Are *a*, *b*, and *c* coplanar (i.e., do the lines which pass through the origin with directions *a*, *b*, and *c* lie in the same plane), and **why** or **why not**? [Hint: Use part (b).]

Solution: No, the vectors are not coplanar because if they were than the triple scalar product would be zero (i.e., we would have had V = 0 in part (b)).

d) Find the vector projection $\mathbf{proj}_{b}a$ of a onto b. [Hint: If you do not remember the definition, recall that the vector projection of u onto a *unit* vector e is $(u \cdot e)e$ (i.e., the component of u in the direction e). Then $\mathbf{proj}_{b}a$ is the vector projection of a onto the unit vector $\frac{b}{|b|}$.]

Solution: $\operatorname{proj}_{b} a = \langle -\frac{36}{25}, 0, -\frac{27}{25} \rangle$.

Question #3 (15 points)

Consider the surface consisting of all points P(x, y, z) equidistant from the point P(0, 0, 1) and the plane z = -1.

a) Using the formula for the distance between two points, write an equation for this surface.

Solution: The distance between P(x, y, z) and P(0, 0, 1) is $d_1 = \sqrt{x^2 + y^2 + (z - 1)^2}$. Since the point on the plane z = -1 closest to P(x, y, z) is P(x, y, -1), the distance to the plane is $d_2 = |z + 1|$. Therefore, since $d_1^2 = d_2^2$ we have that the equation for the surface is $x^2 + y^2 + (z - 1)^2 = (z + 1)^2$, i.e.,

$$x^2 + y^2 = 4z$$

b) Is this quadric surface a cone or a paraboloid? [Hint: Remember that for surfaces symmetric about the z-axis, vertical traces of cones are hyperbolas while vertical traces of paraboloids are parabolas.]

Solution: Setting y = k where k is a constant, we see that the vertical traces of the surface are of the form $z = \frac{1}{4}x^2 + \frac{1}{4}k^2$, which is the equation for a parabola in the xz-plane. Therefore, the quadric surface is a paraboloid.

Question #4 (15 points)

Let a curve C in the xy-plane be given by the parametric equations

$$x(t) = t^2, \qquad y(t) = t^3 - 3t.$$

a) Find $dy/dx = \frac{dy/dt}{dx/dt}$ and compute the slope of the tangent line to the curve at the point P(4,2).

Solution: We have that $dy/dx = \frac{3t^2 - 3}{2t}$. Since the curve is at the point P(4, 2) at t = 2 we have that the slope of the tangent line is dy/dx = 9/4.

b) At what two points P(x, y) and Q(x, y) does the curve have a horizontal tangent?

Solution: We have that $y'(t) = 3t^2 - 3 = 0$ when t = -1 and t = 1. Since $x'(\pm 1) = 1 \neq 0$ we have that dy/dx = 0 (horizonal tangent) at the points (x(-1), y(-1)) and (x(1), y(1)), i.e., at P(1,2) and Q(1,-2).

This print-out should have 4 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

CalC13c02a 001 10.0 points

Determine the dot product of the vectors

- $\mathbf{a} = \langle 1, 2, -3 \rangle, \quad \mathbf{b} = \langle -1, 2, 1 \rangle.$
- 1. $\mathbf{a} \cdot \mathbf{b} = -2$
- **2.** $\mathbf{a} \cdot \mathbf{b} = -8$
- **3.** $\mathbf{a} \cdot \mathbf{b} = -4$
- **4.** $\mathbf{a} \cdot \mathbf{b} = -6$
- 5. $\mathbf{a} \cdot \mathbf{b} = 0$ correct

CalC13f03b 002 10.0 points

Which one of the following equations has graph

when the circular cylinder has radius 2.

- **1.** $y^2 + z^2 + 2z = 0$ **2.** $z^2 + x^2 + 4x = 0$
- **3.** $x^2 + z^2 4z = 0$
- 4. $x^2 + z^2 2z = 0$

5. $y^2 + z^2 + 4z = 0$ correct 6. $z^2 + x^2 + 2x = 0$

> CalC11c26a 003 10.0 points

Use the graph in Cartesian coordinates

of r as a function of θ to determine which one of the following is the graph of the corresponding polar function?

CalC11c17b 004 10.0 points

Find a polar representation for the curve whose Cartesian equation is

$$x^2 + (y+2)^2 = 4$$
.

- 1. $r = 2\cos\theta$
- 2. $r = 4\sin\theta$
- 3. $r + 4\cos\theta = 0$
- 4. $r = 2\sin\theta$
- 5. $r+2\cos\theta = 0$
- 6. $r + 4\sin\theta = 0$ correct
- 7. $r+2\sin\theta = 0$
- 8. $r = 4\cos\theta$