Multiple choice questions (20 points)

See last two pages.

Question \#1 (25 points)

Define the vector-valued function

$$
\boldsymbol{r}(t)=\left\langle e^{t}, 2,3 e^{t}\right\rangle .
$$

a) At what point $P\left(x_{0}, y_{0}, z_{0}\right)$ does the curve $\boldsymbol{r}(t)$ intersect the surface $y=x^{2}+1$?

Solution: We need to find a t such that $2=e^{2 t}+1$, i.e., $t=0$. This corresponds to the point $\boldsymbol{r}(0)=\langle 1,2,3\rangle$.
b) Find $\boldsymbol{r}^{\prime}(t)$ and $\left|\boldsymbol{r}^{\prime}(t)\right|$ to determine the unit tangent vector $\boldsymbol{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left|\boldsymbol{r}^{\prime}(t)\right|}$ at the point $P(1,2,3)$.

Solution: $\boldsymbol{r}^{\prime}(t)=\left\langle e^{t}, 0,3 e^{t}\right\rangle$ and $\left|\boldsymbol{r}^{\prime}(t)\right|=\sqrt{10} e^{t}$ so $\boldsymbol{T}(t)=\frac{1}{\sqrt{10}}\langle 1,0,3\rangle$ and the unit tangent vector at $P(1,2,3)$ is $\frac{1}{\sqrt{10}}\langle 1,0,3\rangle$.
c) What is the arc length $L=\int_{a}^{b}\left|r^{\prime}(u)\right| d u$ of the curve between the points $P(1,2,3)$ and $Q(e, 2,3 e)$?

Solution: $L=\int_{0}^{1} \sqrt{10} e^{u} d u=\sqrt{10}(e-1)$.
d) Write a vector equation of the form $\boldsymbol{n} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{\mathbf{0}}\right)=0$ for the plane normal to the curve at the point $P(1,2,3)$.

Solution: A normal vector for the plane normal to the curve at $P(1,2,3)$ is simply the tangent vector $\boldsymbol{r}^{\prime}(0)=\langle 1,0,3\rangle$. So the equation is $\langle 1,0,3\rangle \cdot(\langle x, y, z\rangle-\langle 1,2,3\rangle)=0$.

Question \#2 (25 points)

Define the vectors

$$
\begin{gathered}
\boldsymbol{a}=\langle-3,1,1\rangle \\
\boldsymbol{b}=\langle 4,0,3\rangle \\
\boldsymbol{c}=\langle 2,3,4\rangle .
\end{gathered}
$$

a) What is $\boldsymbol{b} \times \boldsymbol{c}$?

Solution: $\boldsymbol{b} \times \boldsymbol{c}=\langle-9,-10,12\rangle$.
b) Determine the volume of the parallelepiped determined by $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} using the scalar triple product $V=|\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})|$.

Solution: $V=29$.
c) Are $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} coplanar (i.e., do the lines which pass through the origin with directions $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} lie in the same plane), and why or why not? [Hint: Use part (b).]

Solution: No, the vectors are not coplanar because if they were than the triple scalar product would be zero (i.e., we would have had $V=0$ in part (b)).
d) Find the vector projection $\operatorname{proj}_{b} \boldsymbol{a}$ of \boldsymbol{a} onto \boldsymbol{b}. [Hint: If you do not remember the definition, recall that the vector projection of \boldsymbol{u} onto a unit vector \boldsymbol{e} is $(\boldsymbol{u} \cdot \boldsymbol{e}) \boldsymbol{e}$ (i.e., the component of \boldsymbol{u} in the direction \boldsymbol{e}). Then $\operatorname{proj}_{b} \boldsymbol{a}$ is the vector projection of \boldsymbol{a} onto the unit vector $\frac{b}{|\boldsymbol{b}|}$.]

Solution: $\operatorname{proj}_{b} \boldsymbol{a}=\left\langle-\frac{36}{25}, 0,-\frac{27}{25}\right\rangle$.

Question $\# 3$ (15 points)

Consider the surface consisting of all points $P(x, y, z)$ equidistant from the point $P(0,0,1)$ and the plane $z=-1$.
a) Using the formula for the distance between two points, write an equation for this surface.

Solution: The distance between $P(x, y, z)$ and $P(0,0,1)$ is $d_{1}=\sqrt{x^{2}+y^{2}+(z-1)^{2}}$. Since the point on the plane $z=-1$ closest to $P(x, y, z)$ is $P(x, y,-1)$, the distance to the plane is $d_{2}=|z+1|$. Therefore, since $d_{1}^{2}=d_{2}^{2}$ we have that the equation for the surface is $x^{2}+y^{2}+(z-1)^{2}=(z+1)^{2}$, i.e.,

$$
x^{2}+y^{2}=4 z
$$

b) Is this quadric surface a cone or a paraboloid? [Hint: Remember that for surfaces symmetric about the z-axis, vertical traces of cones are hyperbolas while vertical traces of paraboloids are parabolas.]

Solution: Setting $y=k$ where k is a constant, we see that the vertical traces of the surface are of the form $z=\frac{1}{4} x^{2}+\frac{1}{4} k^{2}$, which is the equation for a parabola in the $x z$-plane. Therefore, the quadric surface is a paraboloid.

Question $\# 4$ (15 points)

Let a curve C in the $x y$-plane be given by the parametric equations

$$
x(t)=t^{2}, \quad y(t)=t^{3}-3 t
$$

a) Find $d y / d x=\frac{d y / d t}{d x / d t}$ and compute the slope of the tangent line to the curve at the point $P(4,2)$.

Solution: We have that $d y / d x=\frac{3 t^{2}-3}{2 t}$. Since the curve is at the point $P(4,2)$ at $t=2$ we have that the slope of the tangent line is $d y / d x=9 / 4$.
b) At what two points $P(x, y)$ and $Q(x, y)$ does the curve have a horizontal tangent?

Solution: We have that $y^{\prime}(t)=3 t^{2}-3=0$ when $t=-1$ and $t=1$. Since $x^{\prime}(\pm 1)=1 \neq 0$ we have that $d y / d x=0$ (horizonal tangent) at the points $(x(-1), y(-1))$ and $(x(1), y(1))$, i.e., at $P(1,2)$ and $Q(1,-2)$.

This print-out should have 4 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

CalC13c02a
 $001 \quad 10.0$ points

Determine the dot product of the vectors

$$
\mathbf{a}=\langle 1,2,-3\rangle, \quad \mathbf{b}=\langle-1,2,1\rangle .
$$

1. $\mathbf{a} \cdot \mathbf{b}=-2$
2. $\mathbf{a} \cdot \mathbf{b}=-8$
3. $\mathbf{a} \cdot \mathbf{b}=-4$
4. $\mathbf{a} \cdot \mathbf{b}=-6$
5. $\mathbf{a} \cdot \mathbf{b}=0$ correct

> | CalC13f03b | |
| :---: | :---: |
| $002 \quad 10.0$ points | |

Which one of the following equations has graph

when the circular cylinder has radius 2 .

1. $y^{2}+z^{2}+2 z=0$
2. $z^{2}+x^{2}+4 x=0$
3. $x^{2}+z^{2}-4 z=0$
4. $x^{2}+z^{2}-2 z=0$
5. $y^{2}+z^{2}+4 z=0$ correct
6. $z^{2}+x^{2}+2 x=0$

CalC11c26a
 $003 \quad 10.0$ points

Use the graph in Cartesian coordinates

of r as a function of θ to determine which one of the following is the graph of the corresponding polar function?
1.

2.

3.

4.

5.

6.

\[

\]

Find a polar representation for the curve whose Cartesian equation is

$$
x^{2}+(y+2)^{2}=4
$$

1. $r=2 \cos \theta$
2. $r=4 \sin \theta$
3. $r+4 \cos \theta=0$
4. $r=2 \sin \theta$
5. $r+2 \cos \theta=0$
6. $r+4 \sin \theta=0$ correct
7. $r+2 \sin \theta=0$
8. $r=4 \cos \theta$
