M408D (54690/95/00), Quiz \#2, 09/22/2010

Question \#1

Define the series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}+2 n \ln n}
$$

a) Is the series absolutely convergent? Justify your answer and any tests you use.

Solution: The series is not absolutely convergent. To see this, we show that

$$
\sum_{n=2}^{\infty}\left|\frac{(-1)^{n-1}}{\sqrt{n}+2 n \ln n}\right|=\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}+2 n \ln n}
$$

diverges. Note that we are working with a series with only positive terms. To simplify matters, we use the limit comparison test to compare this series to

$$
\sum_{n=2}^{\infty} \frac{1}{2 n \ln n}
$$

Let $c_{n}=\frac{1}{\sqrt{n}+2 n \ln n}$ and $d_{n}=\frac{1}{2 n \ln n}$. Since

$$
\lim _{n \rightarrow \infty} \frac{c_{n}}{d_{n}}=\lim _{n \rightarrow \infty} \frac{2 n \ln n}{\sqrt{n}+2 n \ln n}=\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{2 \sqrt{n} \ln n}+1}=1
$$

the limit comparison test holds and $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}+2 n \ln n}$ diverges if $\sum_{n=2}^{\infty} \frac{1}{2 n \ln n}$ diverges. Finally, we know that $\sum_{n=2}^{\infty} \frac{1}{2 n \ln n}$ diverges by the integral test since the improper integral

$$
\int_{2}^{\infty} \frac{1}{2 x \ln x} d x=\int_{\ln 2}^{\infty} \frac{1}{2 u} d u
$$

diverges. Therefore, the original series is not absolutely convergent.
b) If not, is the series conditionally convergent or divergent? Justify your use of any test.

Solution: The series is conditionally convergent. To see this, we use the alternating series test. Here, the terms of the series are of the form

$$
a_{n}=(-1)^{n-1} b_{n}, \quad b_{n}=\frac{1}{\sqrt{n}+2 n \ln n} .
$$

First we note that $\lim _{n \rightarrow \infty} b_{n}=0$. Next, since $\sqrt{n}+2 n \ln n$ is increasing in n, we have that $\frac{1}{\sqrt{n}+2 n \ln n}$ is decreasing in n. That is, $b_{n+1} \leq b_{n}$ for all n. The alternating series test therefore holds and the series is conditionally convergent.

Question \#2

Consider the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1 / 3}}(x-5)^{n}
$$

a) Find R, the radius of convergence of the series.

Solution: We use the ratio test to find R. With $a_{n}=\frac{(-1)^{n}}{n^{1 / 3}}(x-5)^{n}$, we have that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(x-5)^{n+1}}{(n+1)^{1 / 3}} \cdot \frac{n^{1 / 3}}{(x-5)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{1 / 3}|x-5| \\
& =|x-5|
\end{aligned}
$$

The test implies that the series converges when $|x-5|<1$ and diverges when $|x-5|>1$. Therefore, $R=1$.
b) Find I, the interval of convergence of the series. At the least, name any tests you use.

We know that the series converges at least when $|x-5|<1$, i.e. when $4<x<6$. Now we must test the boundaries of the interval. In the case $x=4$, the series diverges by the p series test with $p=1 / 3$ since

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1 / 3}}(-1)^{n}=\sum_{n=1}^{\infty} \frac{1}{n^{1 / 3}}
$$

In the case $x=6$, the series converges by the alternating series test since

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1 / 3}}(1)^{n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{1 / 3}}
$$

and with $b_{n}=\frac{1}{n^{1 / 3}}$ we find that $\lim _{n \rightarrow \infty} b_{n}=0$ and $b_{n+1} \leq b_{n}$ for all n. To conclude, the interval of convergence is $I=(4,6]$.

