M408D (54690/95/00), Quiz \#3 Solutions

Question \#1

Consider the "hourglass shape" given by the parametric equations

$$
x=1+\sin (\pi t), \quad y=\cos (\pi t / 2)
$$

with $-2 \leq t<2$.
a) The curve intersects itself once at the point $(1,0)$. Find the slope of one of the two tangent lines to the curve at $(1,0)$ using the formula $d y / d x=\frac{d y / d t}{d x / d t}$.

Solution: Drawing the parametric curve yields the figure:
Parametric plot:

The slope of the tangent line at a point $(x(t), y(t))$ on the curve is

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=-\frac{\sin (\pi t / 2)}{2 \cos (\pi t)}
$$

Since the point $(1,0)$ is reached at $t=-1$ and $t=1$, this gives that the slopes of the two tangent lines at $(1,0)$ are $-1 / 2$ and $1 / 2$, respectively.
b) Find all (x, y) such that the curve has a horizontal tangent.

Solution: We seek all $(x(t), y(t))$ such that $d y / d t=0$ while $d x / d t \neq 0$. First note that $d y / d t=-\sin (\pi t / 2)=0$ when $t=-2$ or $t=0$ (since we restrict ourselves to $-2 \leq t<2$). It is easy to check that for $d x / d t=2 \cos (\pi t) \neq 0$ at these values of t. Therefore, the curve has horizontal tangents at $(x(-2), y(-2))$ and $(x(0), y(0))$, i.e., at $(1,-1)$ and $(1,1)$.

Question \#2

Consider the polar equation $r=\cos (\theta / 5)$, graphed below.

a) Give an expression for the area of the shaded region (i.e., only write down the proper integral(s), don't evaluate them!) using the polar area formula $A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta$. Make sure that you specify correct boundaries of integration for any integral(s).

Solution: We only need to find the proper boundaries of integration. Note that when $\theta=0$ we start at the point $(1,0)$ (in Cartesian coordinates), then trace out the outermost part of the curve as we increase θ, passing through the x-axis again when $\theta=\pi$. Using the symmetry of the curve we find that the shaded area is

$$
A=\int_{0}^{\pi} \frac{1}{2} \cos ^{2}(\theta / 5) d \theta-\int_{\pi}^{2 \pi} \frac{1}{2} \cos ^{2}(\theta / 5) d \theta
$$

There are many other ways to express this area, such as

$$
A=\int_{0}^{\pi} \frac{1}{2} \cos ^{2}(\theta / 5) d \theta+\int_{-\pi}^{-2 \pi} \frac{1}{2} \cos ^{2}(\theta / 5) d \theta
$$

b) Give an expression for the arc length of the part of the curve that lies to the right of the y-axis (again, no need to evaluate) using the polar arc length formula $L_{C}=$ $\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$. Be careful when specifying boundaries of integration.

Solution:

$$
L_{C}=2\left(\int_{0}^{\pi / 2} \sqrt{\cos ^{2}(\theta / 5)+\frac{1}{25} \sin ^{2}(\theta / 5)} d \theta+\int_{3 \pi / 2}^{5 \pi / 2} \sqrt{\cos ^{2}(\theta / 5)+\frac{1}{25} \sin ^{2}(\theta / 5)} d \theta\right)
$$

Again, there are many other ways to express this quantity.

