Question \#1

Define the vectors

$$
\begin{gathered}
\boldsymbol{u}=\langle 1,0,-2\rangle \\
\boldsymbol{v}=\langle 4,5,2\rangle \\
\boldsymbol{w}=\langle 1,2,1\rangle
\end{gathered}
$$

a) Using the scalar triple product $V=|\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})|$ find the volume of the parallelepiped determined by $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w}.

Solution: We first find that

$$
\boldsymbol{v} \times \boldsymbol{w}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
4 & 5 & 2 \\
1 & 2 & 1
\end{array}\right|=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}=\langle 1,-2,3\rangle .
$$

Then $\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})=1-6=-5$ so the volume of the parallelepiped is $V=5$.
b) Suppose we consider a plane A which is parallel to the vectors \boldsymbol{v} and \boldsymbol{w}, and passes through the point \boldsymbol{u}. Determine the scalar equation for the plane (which takes the form $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)+d=0$ with constants $\left.a, b, c, d, x_{0}, y_{0}, z_{0}\right)$.
[Hint: Find a normal vector \boldsymbol{n} to the plane. Then use the vector equation $\boldsymbol{n} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{\mathbf{0}}\right)=0$ for a plane with this normal vector which passes through a given point \boldsymbol{r}_{0}.]

Solution: Since the plane A is parallel to \boldsymbol{v} and \boldsymbol{w} and $\boldsymbol{v} \times \boldsymbol{w}$ is orthogonal to both vectors, we find that a normal vector to A is $\boldsymbol{n}=\boldsymbol{v} \times \boldsymbol{w}=\langle 1,-2,3\rangle$ by part (a). Here, $\boldsymbol{r}_{\mathbf{0}}=\boldsymbol{u}$. Therefore, the vector equation for the plane is

$$
\langle 1,-2,3\rangle \cdot(\langle x, y, z\rangle-\langle 1,0,-2\rangle)=0
$$

Expanding this out gives the desired answer:

$$
(x-1)-2 y+3(z+2)=0 \quad \text { or } \quad x-2 y+3 z+5=0 .
$$

c) (Bonus: +1 point) Suppose we have a plane B with normal vector \boldsymbol{m}. The orthogonal projection $\operatorname{proj}_{B} \boldsymbol{u}$ of \boldsymbol{u} onto the plane B is the vector projection of \boldsymbol{u} onto the line obtained by intersecting B with a plane C parallel to \boldsymbol{u} and orthogonal to B (see diagram). Give an expression for $\operatorname{proj}_{B} \boldsymbol{u}$ in terms of \boldsymbol{u} and \boldsymbol{m}.
[Hint: Remember that $\operatorname{proj}_{b} \boldsymbol{a}=\left(\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{b}|^{2}}\right) \boldsymbol{b}$.]
Solution: The easiest way to derive the expression for $\operatorname{proj}_{B} \boldsymbol{u}$ is to note that it is the difference between \boldsymbol{u} and the vector projection $\operatorname{proj}_{\boldsymbol{m}} \boldsymbol{u}$ of \boldsymbol{u} onto \boldsymbol{m} :

$$
\boldsymbol{u}=\operatorname{proj}_{\boldsymbol{m}} \boldsymbol{u}+\operatorname{proj}_{B} \boldsymbol{u}
$$

Therefore, $\operatorname{proj}_{B} \boldsymbol{u}=\boldsymbol{u}-\operatorname{proj}_{m} \boldsymbol{u}=\boldsymbol{u}-\left(\frac{\boldsymbol{u} \cdot \boldsymbol{m}}{|\boldsymbol{m}|^{2}}\right) \boldsymbol{m}$.

Question \#2

Consider the quadric surface given by

$$
x^{2}+y^{2}=9 z^{2} .
$$

a) Find the trace of the surface in the plane $-y+3 z=2$. What kind of curve is this?

Solution: The trace is the intersection of the surface with the plane, and so must satisfy both equations. Therefore, we substitute $3 z=y+2$ into the first equation to obtain that $x^{2}+y^{2}=(y+2)^{2}=y^{2}+4 y+4$, i.e., that

$$
y=\frac{x^{2}}{4}-1
$$

which is the equation for a parabola. Alternatively, this can be written in terms of z instead of y as

$$
z=\frac{x^{2}}{12}+\frac{1}{3}
$$

b) Is the surface $x^{2}+y^{2}=9 z^{2}$ an ellipsoid or a cone? Why?
[Hint: Remember that traces of ellipsoids are always ellipses, while traces of cones can be any conic section-ellipses, parabolas, or hyperbolas.]

Solution: The surface cannot be an ellipsoid since we see from part (a) that we can obtain traces of this surface that are not ellipses (in this case, a parabola). Therefore, it must be a cone. This can also be checked from the form of the equation or by considering vertical and horizontal traces.

