M408D (54690/95/00), Quiz \#5 Solutions

Question \#1

Define the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y}{x^{4}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

a) Does $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist, and if so, what is it? Is $f(x, y)$ continuous at $(0,0)$?

Solution: This problem is similar to one done in lecture. No, the limit does not exist and therefore f is not continuous at the origin. To see this we note that along the path $y=0$ we have

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{x \rightarrow 0} 0=0
$$

while along the path $y=x^{2}$ we find

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}+x^{4}}=\lim _{x \rightarrow 0} \frac{1}{2}=\frac{1}{2}
$$

b) Now define

$$
h(x, y)=\ln (x+4 y)
$$

Find h_{x}, h_{y}, and $h_{x y}$.
Solution: Taking partial derivatives we find that

$$
\begin{aligned}
h_{x} & =\frac{1}{x+4 y} \\
h_{y} & =\frac{4}{x+4 y} \\
h_{x y} & =-\frac{4}{(x+4 y)^{2}} .
\end{aligned}
$$

c) Suppose that x and y are functions of s and t given by

$$
\begin{gathered}
x(s, t)=s e^{2 t} \\
y(s, t)=\sin \left(s^{2} t\right)
\end{gathered}
$$

Find $\partial h / \partial s$ as a function of s and t. [Hint: Use part (b)!]
Solution: Find we see that

$$
\frac{\partial x}{\partial s}=e^{2 t}, \quad \frac{\partial y}{\partial s}=2 s t \cos \left(s^{2} t\right)
$$

Therefore, by the chain rule and part (b) we find

$$
\begin{aligned}
\frac{\partial h}{\partial s} & =\frac{\partial h}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial h}{\partial y} \frac{\partial y}{\partial s} \\
& =\frac{e^{2 t}}{x+4 y}+\frac{8 s t \cos \left(s^{2} t\right)}{x+4 y} \\
& =\frac{e^{2 t}}{s e^{2 t}+4 \sin \left(s^{2} t\right)}+\frac{8 s t \cos \left(s^{2} t\right)}{s e^{2 t}+4 \sin \left(s^{2} t\right)}
\end{aligned}
$$

Question \#2

Let

$$
f(x, y, z)=z e^{x y}
$$

a) Determine the gradient $\nabla f(x, y, z)$.

Solution: The gradient is the vector

$$
\nabla f(x, y, z)=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left\langle y z e^{x y}, x z e^{x y}, e^{x y}\right\rangle
$$

b) What is the directional derivative of f at the point $(0,0,0)$ in the direction of the vector $\boldsymbol{v}=\langle 4,4,2\rangle$? That is, find $D_{\boldsymbol{u}} f=\nabla f \cdot \boldsymbol{u}$ at $(0,0,0)$ with $\boldsymbol{u}=\frac{\boldsymbol{v}}{|\boldsymbol{v}|}$.
Solution: Since $|\boldsymbol{v}|=\sqrt{4^{2}+4^{2}+2^{2}}=6$ we have that $\boldsymbol{u}=\left\langle\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle$. So,

$$
\nabla f \cdot \boldsymbol{u}=\frac{2}{3} y z e^{x y}+\frac{2}{3} x z e^{x y}+\frac{1}{3} e^{x y}
$$

and

$$
\left.D_{\boldsymbol{u}} f\right|_{(0,0,0)}=\left.\nabla f \cdot \boldsymbol{u}\right|_{(0,0,0)}=\frac{1}{3}
$$

