M408D (54690/95/00), Quiz \#6 Solutions

Question \#1

Let

$$
f(x, y)=4+x^{3}+y^{3}-3 x y
$$

a) Find the two critical points of f.

Solution: Since $\nabla f=\left(3 x^{2}-3 y, 3 y^{2}-3 x\right)$, we have critical points for (x, y) such that

$$
x^{2}-y=0, \quad y^{2}-x=0
$$

Substituting the first equation $y=x^{2}$ into the second equation, we have that

$$
x^{4}-x=0
$$

So $x=1$ or $x=0$ and critical points occur at $(1,1)$ and $(0,0)$.
b) Classify the critical points (i.e., determine if they correspond to local maxima, minima, or saddle points).
[Hint: If you've forgotten, remember to use the determinant $D(x, y)$ of the matrix of second partial derivatives. If $D>0$ at the point $\left(x_{0}, y_{0}\right)$, the function behaves the same way in both the x - and y-directions. If $D<0$, the opposite behavior occurs.]

Solution: The determinant of the Hessian of f is

$$
D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=(6 x)(6 y)-(-3)^{2}=36 x y-9
$$

So $D(1,1)=27>0$ and $f_{x x}(1,1)=6>0$ implies that $(1,1)$ is a local minimum of f, while $D(0,0)=-9<0$ implies that $(0,0)$ is a saddle point.
c) (Bonus: +2 point) Using the method of Lagrange multipliers, find extrema of f subject to the constraint

$$
3 x y=12 \text {. }
$$

Begin by writing out the equations in x, y, and the multiplier λ that need to be solved.
Solution: With constraint function $g(x, y)=3 x y$, we must solve

$$
\begin{aligned}
\nabla f & =\lambda \nabla g \\
g & =12 .
\end{aligned}
$$

Explicitly, this gives the set of equations

$$
\begin{gathered}
3 x^{2}-3 y=3 \lambda y \\
3 y^{2}-3 x=3 \lambda x \\
3 x y=12
\end{gathered}
$$

Simplifying, this is

$$
\begin{gathered}
(1+\lambda) y=x^{2} \\
(1+\lambda) x=y^{2} \\
3 x y=12 .
\end{gathered}
$$

Note that $x \neq 0$ and $y \neq 0$ by the third equation. This implies $\lambda \neq-1$ (otherwise this gives $x=y=0$). We can then divide the first equation by the second to get $x^{2} / y^{2}=y / x$, so $x^{3}=y^{3}$ and therefore $x=y$. Plugging this into the third equation we get $x=y= \pm 2$. Therefore, the only solutions are $(x, y, \lambda)=(2,2,1)$ and $(x, y, \lambda)=(-2,-2,-3)$.

Question \#2

Evaluate

$$
\iint_{D} 2 \sin \left(y^{2}\right) d A
$$

where the domain D in the $x y$-plane is a triangle with vertices $(0,0),(0, \sqrt{\pi})$, and $(\sqrt{\pi}, \sqrt{\pi})$. At the very least, write a proper expression (with limits of integration) for the double integral.
[Hint: Set this up as an iterated integral. Note that it is only possible to evaluate this explicitly by choosing the correct order of integration!]

Solution: The integral can either be written as

$$
\int_{0}^{\sqrt{\pi}} \int_{0}^{y} 2 \sin \left(y^{2}\right) d x d y
$$

or as

$$
\int_{0}^{\sqrt{\pi}} \int_{x}^{\sqrt{\pi}} 2 \sin \left(y^{2}\right) d y d x
$$

It is much easier to evaluate the first expression rather than the second. Doing this, we see that

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi}} \int_{0}^{y} 2 \sin \left(y^{2}\right) d x d y & =\int_{0}^{\sqrt{\pi}}[2 x]_{x=0}^{x=y} \sin \left(y^{2}\right) d y \\
& =\int_{0}^{\sqrt{\pi}} 2 y \sin \left(y^{2}\right) d y \\
& =\int_{0}^{\pi} \sin (u) d u \\
& =[-\cos (u)]_{u=0}^{u=\pi} \\
& =2
\end{aligned}
$$

where we have used the substitution $u=y^{2}$ in the third equality.

