Multiple choice questions (5 points each)

Solutions: 5, 3, 2, 2, 2 .

Question \#1 (20 points)

Define

$$
\begin{gathered}
\boldsymbol{u}=\langle 0,-1,2\rangle \\
\boldsymbol{v}=\langle 3,4,5\rangle \\
\boldsymbol{w}=\langle-3,7,1\rangle .
\end{gathered}
$$

a) What is $\boldsymbol{u} \times \boldsymbol{v} \times \boldsymbol{w}$?

Solution: $\boldsymbol{u} \times \boldsymbol{v} \times \boldsymbol{w}=(-15,4,-73)$.
b) Find a vector equation for the plane parallel to \boldsymbol{v} and \boldsymbol{w} that passes through the point \boldsymbol{u}.

Solution: $\boldsymbol{n} \cdot(\boldsymbol{r}-\boldsymbol{u})=0$ where $\boldsymbol{n}=\boldsymbol{v} \times \boldsymbol{w}=(-31,-18,33)$.
c) What is the scalar projection $\operatorname{comp}_{\boldsymbol{w}} \boldsymbol{u}$? [Hint: Remember that the scalar projection of \boldsymbol{a} onto a unit vector \boldsymbol{e} is $|\boldsymbol{a} \cdot \boldsymbol{e}|$. Now take $\boldsymbol{e}=\boldsymbol{b} /|\boldsymbol{b}|$ to find the scalar projection onto some arbitrary vector \boldsymbol{b}.]

Solution: $\operatorname{comp}_{\boldsymbol{w}} \boldsymbol{u}=\frac{1}{\sqrt{59}}(0,-7,2)$.

Question \#2 (20 points)

Consider the quadric surface given by

$$
6 z=x^{2}+4 y^{2}-1
$$

a) Find the trace of the surface in the plane $2 y-z-1=0$. What kind of curve is this?

Solution: $x^{2}+(z-2)^{2}=4$, circle with radius 2 .
b) Does the curve $\boldsymbol{r}(t)=\left\langle\sin t, \frac{1}{2} \cos t, t\right\rangle$ lie on the surface $6 z=x^{2}+4 y^{2}-1$? If not, at what point $P\left(x_{0}, y_{0}, z_{0}\right)$ does it intersect it?

Solution: No, but it does intersect it when $t=0$, i.e., at the point $P(0,1 / 2,0)$.

Question $\# 3$ (20 points)

Define

$$
\boldsymbol{r}^{\prime}(t)=\langle-2 \sin t, 2 \cos t, 0\rangle
$$

and suppose $\boldsymbol{r}(0)=\langle 1,2,3\rangle$.
a) What is $\boldsymbol{r}(t)$?

Solution: $\boldsymbol{r}(t)=(-1+2 \cos t, 2+2 \sin t, 3)$.
b) Find the unit tangent vector $\boldsymbol{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left|\boldsymbol{r}^{\prime}(t)\right|}$.

Solution: $\boldsymbol{T}(t)=\langle-\sin t, \cos t, 0\rangle$.
c) What is the curvature $\kappa(t)=\frac{\left|\boldsymbol{T}^{\prime}(t)\right|}{\left|\boldsymbol{r}^{\prime}(t)\right|}$ of the curve at the point $P(1,2,3)$?

Solution: $\boldsymbol{T}^{\prime}(t)=\langle-\cos t,-\sin t, 0\rangle$. The point $P(1,2,3)$ corresponds to $t=0$, so since $\boldsymbol{T}^{\prime}(0)=\langle-1,0,0\rangle$ and $\left|\boldsymbol{r}^{\prime}(0)\right|=2, \kappa(0)=1 / 2$.
d) Determine a normal vector to the curve at $P(1,2,3)$. [Hint: Remember that \boldsymbol{T} and \boldsymbol{T}^{\prime} are perpendicular to each other!]
Solution: A normal vector is given by $\boldsymbol{T}^{\prime}(0)=\langle-1,0,0\rangle$.

Question \#4 (15 points)

Consider the polar equation

$$
r=\sin \theta
$$

a) Rewrite this equation in Cartesian coordinates and graph the curve. That is, find the corresponding equation in x and y. What conic section is this?
Solution: $x^{2}+y^{2}=y$ or $x^{2}+(y-1 / 2)^{2}=1 / 4$, a circle with radius $1 / 2$.
b) The polar curve $r=2 \theta$ lies further away from the origin than $r=\sin \theta$ since for every θ $2 \theta \geq \sin \theta$. Find the area that lies between these two curves between the angles $\theta=0$ and $\theta=\pi / 2$ using the formula $A=\frac{1}{2} \int_{\theta_{0}}^{\theta_{1}}\left|f^{2}(\theta)-g^{2}(\theta)\right| d \theta$ for the area between two polar functions.
Solution: $A=\frac{1}{2} \int_{0}^{\pi / 2}\left(4 \theta^{2}-\sin ^{2}(\theta)\right) d \theta$.

