M408D (54690/95/00), Sample Midterm \#2

Multiple choice questions (5 points each)

See last two pages.

Question \#1 (20 points)

Define

$$
\begin{gathered}
\boldsymbol{u}=\langle 0,-1,2\rangle \\
\boldsymbol{v}=\langle 3,4,5\rangle \\
\boldsymbol{w}=\langle-3,7,1\rangle .
\end{gathered}
$$

a) What is $\boldsymbol{u} \times \boldsymbol{v} \times \boldsymbol{w}$?
b) Find a vector equation for the plane parallel to \boldsymbol{v} and \boldsymbol{w} that passes through the point \boldsymbol{u}.
c) What is the scalar projection comp $_{\boldsymbol{w}} u$? [Hint: Remember that the scalar projection of \boldsymbol{a} onto a unit vector \boldsymbol{e} is $|\boldsymbol{a} \cdot \boldsymbol{e}|$. Now take $\boldsymbol{e}=\boldsymbol{b} /|\boldsymbol{b}|$ to find the scalar projection onto some arbitrary vector \boldsymbol{b}.]

Question \#2 (20 points)

Consider the quadric surface given by

$$
6 z=x^{2}+4 y^{2}-1 .
$$

a) Find the trace of the surface in the plane $2 y-z-1=0$. What kind of curve is this?
b) Does the curve $\boldsymbol{r}(t)=\left\langle\sin t, \frac{1}{2} \cos t, t\right\rangle$ lie on the surface $6 z=x^{2}+4 y^{2}-1$? If not, at what point $P\left(x_{0}, y_{0}, z_{0}\right)$ does it intersect it?

Question \#3 (20 points)

Define

$$
\boldsymbol{r}^{\prime}(t)=\langle-2 \sin t, 2 \cos t, 0\rangle
$$

and suppose $\boldsymbol{r}(0)=\langle 1,2,3\rangle$.
a) What is $\boldsymbol{r}(t)$?
b) Find the unit tangent vector $\boldsymbol{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left|\boldsymbol{r}^{\prime}(t)\right|}$.
c) What is the curvature $\kappa(t)=\frac{\left|\boldsymbol{T}^{\prime}(t)\right|}{\left|\boldsymbol{r}^{\prime}(t)\right|}$ of the curve at the point $P(1,2,3)$?
d) Determine a normal vector to the curve at $P(1,2,3)$. [Hint: Remember that \boldsymbol{T} and \boldsymbol{T}^{\prime} are perpendicular to each other!]

Question $\# 4$ (15 points)

Consider the polar equation

$$
r=\sin \theta
$$

a) Rewrite this equation in Cartesian coordinates and graph the curve. That is, find the corresponding equation in x and y. What conic section is this?
b) The polar curve $r=2 \theta$ lies further away from the origin than $r=\sin \theta$ since for every θ $2 \theta \geq \sin \theta$. Find the area that lies between these two curves between the angles $\theta=0$ and $\theta=\pi / 2$ using the formula $A=\frac{1}{2} \int_{\theta_{0}}^{\theta_{1}}\left|f^{2}(\theta)-g^{2}(\theta)\right| d \theta$ for the area between two polar functions.

This print-out should have 5 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

CalC11a16s
 00110.0 points

Determine a Cartesian equation for the curve given in parametric form by

$$
x(t)=4 \ln (4 t), \quad y(t)=\sqrt{t}
$$

1. $y=\frac{1}{4} e^{x / 2}$
2. $y=\frac{1}{4} e^{x / 4}$
3. $y=\frac{1}{4} e^{4 / x}$
4. $y=\frac{1}{2} e^{8 / x}$
5. $y=\frac{1}{2} e^{x / 8}$ correct
6. $y=\frac{1}{2} e^{x / 4}$

CalC13a30a
 00210.0 points

Find an equation for the set of all points in 3 -space equidistant from the points

$$
A(-1,-4,1), \quad B(3,-3,4)
$$

1. $x+4 y-3 z-8=0$
2. $4 x+y+3 z+8=0$
3. $4 x+y+3 z-8=0$ correct
4. $3 x+y+4 z+8=0$
5. $x-3 y+4 z+8=0$
6. $3 x-4 y-z-8=0$

CalC13e02b
00310.0 points

Which equation has the surface

as its graph in the first octant?

1. $\frac{x}{5}+\frac{y}{4}+\frac{z}{3}=1$
2. $\frac{x}{4}+\frac{y}{5}+\frac{z}{3}=1$ correct
3. $\frac{x}{3}+\frac{y}{5}+\frac{z}{4}=1$
4. $\frac{x}{4}+\frac{y}{3}+\frac{z}{5}=1$
5. $\frac{x}{5}+\frac{y}{3}+\frac{z}{4}=1$
6. $\frac{x}{3}+\frac{y}{4}+\frac{z}{5}=1$

CalC13c31a
 $004 \quad 10.0$ points

Find the vector projection of \mathbf{b} onto \mathbf{a} when

$$
\mathbf{b}=\langle-1,3\rangle, \quad \mathbf{a}=\langle 2,1\rangle .
$$

1. vector proj. $=\frac{3}{\sqrt{5}}\langle-1,3\rangle$
2. vector proj. $=\frac{1}{5}\langle 2,1\rangle$ correct
3. vector proj. $=\frac{1}{5}\langle-1,3\rangle$
4. vector proj. $=\frac{3}{\sqrt{5}}\langle 2,1\rangle$
5. vector proj. $=\frac{3}{5}\langle 2,1\rangle$
6. vector proj. $=\frac{1}{\sqrt{5}}\langle-1,3\rangle$

CalC13f04d
 $005 \quad 10.0$ points

Which one of the following is the graph of the equation

$$
x^{2}+z=1 ?
$$

1.

2.

3.

4.

5.

6.

