
M427L (55200), Midterm #1 Solutions

Question #1 (25 points)

Suppose

u= (3,−1, 1)

v =(1, 2, 0)

w =(3, 1, 2).

a) What is cos θ, where θ is the angle between u and v?

Solution:

cos θ =
u · v

‖u‖‖v‖ =
1

55
√ .

b) Compute |u · (v ×w)|. Geometrically, what does this positive number describe?

Solution: Since

v ×w =

∣

∣
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∣
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∣

∣

∣

∣

∣

= (4,−2,−5),

|u · (v ×w)|= 9.

This is the volume of the parallelpiped with sides given by the vectors u, v, w.

c) Consider two parallel planes, both normal to u, such that the point (1, 4, 6) lies in the
first plane and (5, 6, 7) in the second plane. What is the distance between these planes?

Solution: We need only find the distance between the point (5, 6, 7) and the first plane,
since the planes are parallel. This can either be done directly using the distance formula
or by using vector projection. The first plane has unit normal vector

n=
u

‖u‖ =
1

11
√ (3,−1, 1).

The vector that goes from the point (1, 4, 6) in the plane to the external point (5, 6, 7) is
a = (4, 2, 1). Therefore, the distance between the planes is the magnitude of the vector
projection (a ·n)n:

d = |a ·n|= 11

11
√ = 11

√
.

d) (Harder...) Suppose we are given two lines, the first having direction v and passing
through r0 = (0, 0, 0) and the second having direction w and passing through the point
s0 = (1, 3, −1). Their parametric equations are r(t) = r0 + tv and s(t) = s0 + tw, −∞ <

t <∞, respectively. Compute the distance between these two lines.
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Solution: First note that the points on the two lines which are closest to each other
must lie on a line which is orthogonal to both v and w (the other way to see this is that
there is a unique pair of parallel planes such that each contains one of the lines). We
must therefore find the distance between the point s0 and the plane in the direction of
v ×w which contains the point r0. Letting b= s0− r0 =(1, 3,−1) and

m =
(v ×w)

‖v ×w‖ =
1

45
√ (4,−2,−5)

we find that the desired distance is

d = |b ·m|= 3

45
√ =

1

5
√ .

Question #2 (10 points)

Spherical coordinates are given by

x= ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ.

If u(x, y, z) is some known function given in Euclidean coordinates, compute ∂u/∂φ in terms of
∂u/∂x, ∂u/∂y, and ∂u/∂z.

Solution: By the chain rule,

∂u

∂φ
=

∂u

∂x

∂x

∂φ
+

∂u

∂y

∂y

∂φ
+

∂u

∂z

∂z

∂φ
= ρ cos θ cos φ

∂u

∂x
+ ρ sin θ cos φ

∂u

∂y
− ρ sin φ

∂u

∂z
.

Question #3 (25 points)

The height z of a mountain above the point (x, y) is given by

z =x(2− sin y).

a) Starting at the point (1, π/2), in what direction should one proceed to go down the
fastest?

Solution: The direction of fastest ascent at (x, y) is the gradient vector

∇z(x, y) = (2− sin y,−x cos y).

Therefore, the gradient at (1, π/2) is (1, 0) and the direction of fastest descent is

−∇z(1, π/2) = (−1, 0).

b) At the point (1, π/2), in what two directions can one go so that the elevation is increasing
at a rate equal to 50% the rate of steepest ascent?
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Solution: The rate of steepest ascent is |∇z(1, π, 2)| = 1, so we seek unit (direction) vec-
tors n = (a, b) (with a, b to be determined) such that the directional derivative with
respect to n is 1/2. That is,

a2 + b2 = 1 and 1/2 =∇z(1, π/2) ·n = a.

This implies that a = 1/2 and b = ± 3
√

/2, so the desired directions are
(

1/2, 3
√

/2
)

and
(

1/2,− 3
√

/2
)

.

c) Find the equation of the plane tangent to the mountain at the point (1, π/2).

Solution: The tangent plane at a point (x0, y0) on the graph z = f(x, y) is given by the
equation

z = f(x0, y0) +∇f(x0, y0) · (x− x0, y − y0).

(This can be derived by noting that gradients are orthogonal to level surfaces, or directly
by a first order Taylor expansion.) Therefore the tangent plane is given by the equation

z = 1+ (1, 0) · (x− 1, y −π/2)= x,

that is, x− z =0.

d) (Harder...) A particle follows a path on the mountain such that the corresponding path in
the (x, y) plane is given by c(t) =

(

t, t2
)

. How fast is the altitude changing at t = π
√

?

[Hint: Consider the direction of the vector tangent to the path at t = π
√

.]

Solution: The path in the (x, y) plane at the point c
(

π
√ )

=
(

π
√

, π
)

has tangent vector

c′
(

π
√ )

=
(

1, 2 π
√ )

. The rate of elevation change at t = π
√

is therefore

∇z
(

π
√

, π
)

· c′
(

π
√ )

∥

∥c′

(

π
√ )

∥

∥

=
(

2, π
√ )

·
(

1, 2 π
√ )

1+ 4π
√ =

2+ 2π

1+ 4π
√ .

Question #4 (25 points)

Consider the function

f(x, y)= x2y − 1

2
x2− 1

2
y2

a) Find all critical points of f .

Solution: We seek (x, y) such that

(0, 0)=∇f(x, y) =
(

2xy −x, x2− y
)

.

Therefore, y = x2 and (2y − 1)x = 0. Plugging the first equation into the second yields
that

(

2x2− 1
)

x = 0, so x = 0 (and y = 0) or x =± 1/ 2
√

(and y = 1/2). So we have critical

points at (0, 0),
(

1/ 2
√

, 1/2
)

and
(

−1/ 2
√

, 1/2
)

.
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b) Classify each of these critical points as local maxima, minima, or saddle points using the
second derivative test.

Solution: The Hessian matrix is

H(x, y)=

[

fxx fxy

fyx fyy

]

=

[

2y − 1 2x

2x −1

]

which gives the discriminant

D(x, y) =det (H(x, y))= 1− 2y − 4x2.

Since D(0, 0) = 1 > 0 and fxx(0, 0) =−1, the point (0, 0) is a local maximum. For the two

remaining critical points, D
(

± 1/ 2
√

, 1/2
)

=−2< 0 implies that these are saddle points.

c) (Harder...) Find the global maximum and minimum of f restricted to the domain

D =
{

(x, y): x2 + y2≤ 6
}

.

[Hint: To look for extrema on the boundary ∂D of D, use either a parametrization of the
boundary or the method of Lagrange multipliers. Note that f(x, y) = x2y − 3 on ∂D

(since x2 + y2 = 6 on ∂D) which simplifies the expression you need to extremize!]

Solution: We can do this using a parametrization of the boundary as follows. Let x =
3

√
cos t and y = 3

√
sin t for 0≤ t < 2π. Then on ∂D, the function to be extremized is

h(t) = f(x(t), y(t))= 3 3
√

cos2 t sin t− 3.

We seek t such that

0= h′(t)= 3 3
√

(

−2 cos t sin2 t + cos3 t
)

= 3 3
√

cos t
(

−2 sin2 t + cos2 t
)

.

Therefore, either cos t = 0 or |cos t| = 2
√

|sin t|. The first expression implies that t = π/2
or 3π/2, and the second that t = π/6, 5π/6, 7π/6 or 11π/6. These correspond to the six

candidate points
(

0,± 6
√ )

,
(

± 2,± 2
√ )

. Since

f
(

0,± 6
√ )

=− 3, f
(

± 2, 2
√ )

= 4 2
√

− 3, f
(

± 2,− 2
√ )

=−4 2
√

− 3

and maximum value of f in the interior of D is f(0, 0) = 0, we conclude that the global

maximum value is 4 2
√

− 3 and the global minimum value is −4 2
√

− 3 (both of which are
achieved on ∂D).

Alternatively, we can extremize f(x, y) = x2y − 3 with the constraint g(x, y) = x2 + y2 = 6
by using Lagrange multipliers. We seek x, y, and λ such that ∇f = λ∇g, giving the set of
equations

2xy = 2λx

x2 = 2λy

x2 + y2 = 6.
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First note that if x = 0 then λ = 0 and y =± 6
√

, giving two candidate points
(

0, ± 6
√ )

.

Alternatively, if x � 0 then λ � 0 and y � 0. In this case we can divide the first equation
by the second and rearrange terms to get that x2 = 2y2. Inserting this into the third

equation implies that x = ± 2 and y = ± 2
√

, yielding the four candidate points
(

± 2, ±
2

√ )

. This yields the global minimum and maximum as before.

Question #5 (15 points)

Determine if the following statements are true or false. Justify your answers.

a)

lim
(x,y)→(0,0)

x3y3

x4y2 + x2y4
= 1.

Solution: This is false. An easy way to see this is that along paths x = y, the limiting
value is 1/2. Furthermore, it can be seen that the limiting value is not 1 even when trav-
eling along the x or y axes as follows. Note that the function can be rewritten as xy/
(

x2 + y2
)

after cancelling the term x2y2 from both the numerator and denominator.

Along the path x =0 or y = 0,

lim
(x,y)→(0,0)

xy

x2 + y2
=0

so one has different limiting values along different paths and the limit does not exist at
(0, 0).

b) The length l, width w, and height h of a rectangular box with no top which has fixed sur-
face area 16 and maximal volume must satisfy the set of equations

wh

w + 2h
=

lh

l + 2h
=

lw

2l +2w
and lw + 2lh + 2wh = 16.

Solution: This is true. We seek to maximize the function

V (l, w, h)= lwh

subject to the constraint S(l, w, h) = lw + 2 lh + 2wh = 16. By the method of Lagrange
multipliers we therefore seek (l, w, h) and λ such that ∇V = λ∇S, which yields the equa-
tions

wh = λ(w + 2h)

lh = λ(l + 2h)

lw = λ(2l + 2w)

lw +2 lh +2wh= 16.

This is exactly the set of equations given above after eliminating λ.
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