1. Define the vectors

$$a = (4, 2, 0)$$

 $b = (1, -3, 5)$
 $c = (-2, 2, 1).$

- a) What is the volume of the parallelpiped whose edges are given by the vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$? Solution: $\boldsymbol{c} \cdot (\boldsymbol{b} \times \boldsymbol{a}) = 74$.
- b) What is the cosine of the angle between the vectors \boldsymbol{b} and \boldsymbol{c} ?

Solution: $\cos \theta = \frac{\boldsymbol{b} \cdot \boldsymbol{c}}{\|\boldsymbol{b}\| \|\boldsymbol{c}\|} = \frac{-1}{\sqrt{35}}.$

c) Determine the equation for the plane parallel to the vectors \boldsymbol{a} and \boldsymbol{b} that passes through the point (1, 1, 1) (write in the form $\boldsymbol{n} \cdot (\boldsymbol{r} - \boldsymbol{r_0}) = 0$).

Solution: $n = a \times b = (10, -20, -14)$ and $r_0 = (1, 1, 1)$.

2. Define

$$h(x, y) = 2x^3 + xy^2 + 5x^2 + y^2.$$

- a) Find all critical points of h.
 Solution: (0,0), (-5/3,0), (-1, ±2).
- b) Classify all critical points (i.e., determine if they are local maxima, minima, or saddle points) by using the second derivative test. To begin, compute the Hessian of h(x, y).

Solution: (0,0) local minimum, (-5/3,0) local maximum, $(-1,\pm 2)$ saddle points.

c) What are the absolute maximum and minimum values of h on the domain $D_1 = \{(x, y): 0 \le x \le 4, 0 \le y \le 5\}$?

Solution: h(4,5) = 333 absolute maximum, h(0,0) = 0 absolute minimum.

3.

a) Find the equation of the tangent plane to the surface $x^2 - e^{xy} + z^2 = 1$ at (1, 0, 1).

Solution: With $f(x, y, z) = x^2 - e^{xy} + z^2$, $\nabla f|_{(1,0,1)} = (2, -1, 2)$ is tangent to surface at (1, 0, 1). Therefore, vector equation for plane is $\boldsymbol{n} \cdot (\boldsymbol{r} - \boldsymbol{r_0}) = 0$ with $\boldsymbol{n} = (2, -1, 2)$ and $\boldsymbol{r_0} = (1, 0, 1)$.

- b) Find the equation of the line perpendicular to the surface in part (a) at the point (1,0,1). Solution: $r(t) = r_0 + tn$ with n, r_0 as above.
- c) What is the distance between the plane found in part (a) and the origin?

Solution: Let $\boldsymbol{a} = (1, 0, 1) - (0, 0, 0) = (1, 0, 1)$, and $\boldsymbol{u} = \frac{\boldsymbol{n}}{\|\boldsymbol{n}\|} = \frac{1}{3}(2, -1, 2)$. The desired distance is $d = |\boldsymbol{a} \cdot \boldsymbol{u}| = \frac{4}{3}$.

a) Determine the maximum and minimum values of the function

$$f(x,y) = xy^2$$

on the ellipse $x^2 + \frac{1}{4}y^2 = 1$.

Solution: Max. value $=\frac{8}{3\sqrt{3}}$, min. value $=\frac{-8}{3\sqrt{3}}$.

b) Moving clockwise along the ellipse, is the function increasing or decreasing at the point (0, -2)?

Solution: Decreasing, since the directional derivative of f at (0, -2) in the direction (-1, 0) (unit tangent vector to ellipse at (0, -2) when traversing clockwise) is $\nabla f_{(0,-2)} \cdot (-1, 0) = -4 < 0$.

5. Define the function

$$f(x, y, z) = x \sin(yz).$$

- a) Determine $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$. **Solution:** $\frac{\partial f}{\partial x} = \sin(yz)$, $\frac{\partial f}{\partial y} = xz\cos(yz)$, $\frac{\partial f}{\partial z} = xy\cos(yz)$.
- b) Does f satisfy Laplace's equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$? Solution: No.
- c) Suppose

$$\begin{aligned} x(s,t) &= \cos{(s^2+t)} \\ y(s,t) &= e^{-2st} \\ z(s,t) &= s^3 - 2st^2 + 4. \end{aligned}$$

Determine $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$.

Solution:

$$\frac{\partial f}{\partial s} = -2s\sin\left(s^2 + t\right)\sin\left(yz\right) - 2te^{-2st}xz\cos\left(yz\right) + (3s^2 - 2t^2)xy\cos\left(yz\right)$$
$$\frac{\partial f}{\partial t} = -\sin\left(s^2 + t\right)\sin\left(yz\right) - 2se^{-2st}xz\cos\left(yz\right) - 4stxy\cos\left(yz\right).$$

d) Find the directional derivative of f at the point (2, 0, 1) in the direction of the vector v = -i + j + 4k. How does this value compare to the maximal rate of increase at (2, 0, 1)?

Solution: The gradient at (2, 0, 1) is $\nabla f|_{(2,0,1)} = (0, 2, 0)$, and directional derivative in direction (-1, 1, 4) is $\nabla f|_{(2,0,1)} \cdot \frac{1}{\sqrt{18}}(-1, 1, 4) = \frac{\sqrt{2}}{3}$. Maximal rate of increase is $\|\nabla f(2, 0, 1)\| = 2$.

6. Consider the vector-valued function

$$\boldsymbol{r}(t) = \left(2e^t, 3t^2, t\,e^{4t}\right).$$

- a) What is r''(t)? Solution: $(2e^t, 6, 8e^{4t} + 16te^{4t})$.
- b) At what point does the curve r(t) intersect the surface $16z = x^4$? Solution: When t = 1, i.e., the point $(2e, 3, e^4)$.
- c) Find the tangent vector to the curve at the point (2,0,0).Solution: (2,0,1).
- 7. Does the limit

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^2y-z}{x^4+y^2+z}$$

exist? Show why or why not.

Solution: No. Take limit along paths x = z = 0 and $y = x^2$, $z = x^4$ to obtain different values.