M427L (55200), Sample Midterm \#1 Solutions

1. Define the vectors

$$
\begin{gathered}
\boldsymbol{a}=(4,2,0) \\
\boldsymbol{b}=(1,-3,5) \\
\boldsymbol{c}=(-2,2,1) .
\end{gathered}
$$

a) What is the volume of the parallelpiped whose edges are given by the vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$?

Solution: $\boldsymbol{c} \cdot(\boldsymbol{b} \times \boldsymbol{a})=74$.
b) What is the cosine of the angle between the vectors \boldsymbol{b} and \boldsymbol{c} ?

Solution: $\cos \theta=\frac{\boldsymbol{b} \cdot \boldsymbol{c}}{\|\boldsymbol{b}\|\|\boldsymbol{c}\| \|}=\frac{-1}{\sqrt{35}}$.
c) Determine the equation for the plane parallel to the vectors \boldsymbol{a} and \boldsymbol{b} that passes through the point $(1,1,1)$ (write in the form $\boldsymbol{n} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{\mathbf{0}}\right)=0$).
Solution: $\boldsymbol{n}=\boldsymbol{a} \times \boldsymbol{b}=(10,-20,-14)$ and $\boldsymbol{r}_{\mathbf{0}}=(1,1,1)$.
2. Define

$$
h(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2} .
$$

a) Find all critical points of h.

Solution: $(0,0),(-5 / 3,0),(-1, \pm 2)$.
b) Classify all critical points (i.e., determine if they are local maxima, minima, or saddle points) by using the second derivative test. To begin, compute the Hessian of $h(x, y)$.
Solution: $(0,0)$ local minimum, $(-5 / 3,0)$ local maximum, $(-1, \pm 2)$ saddle points.
c) What are the absolute maximum and minimum values of h on the domain $D_{1}=\{(x, y)$: $0 \leq x \leq 4,0 \leq y \leq 5\} ?$

Solution: $h(4,5)=333$ absolute maximum, $h(0,0)=0$ absolute minimum.
3.
a) Find the equation of the tangent plane to the surface $x^{2}-e^{x y}+z^{2}=1$ at $(1,0,1)$.

Solution: With $f(x, y, z)=x^{2}-e^{x y}+z^{2},\left.\nabla f\right|_{(1,0,1)}=(2,-1,2)$ is tangent to surface at $(1,0,1)$. Therefore, vector equation for plane is $\boldsymbol{n} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{\mathbf{0}}\right)=0$ with $\boldsymbol{n}=(2,-1,2)$ and $\boldsymbol{r}_{\mathbf{0}}=(1,0,1)$.
b) Find the equation of the line perpendicular to the surface in part (a) at the point $(1,0,1)$.

Solution: $\boldsymbol{r}(t)=\boldsymbol{r}_{0}+t \boldsymbol{n}$ with $\boldsymbol{n}, \boldsymbol{r}_{0}$ as above.
c) What is the distance between the plane found in part (a) and the origin?

Solution: Let $\boldsymbol{a}=(1,0,1)-(0,0,0)=(1,0,1)$, and $\boldsymbol{u}=\frac{\boldsymbol{n}}{\|\boldsymbol{n}\|}=\frac{1}{3}(2,-1,2)$. The desired distance is $d=|\boldsymbol{a} \cdot \boldsymbol{u}|=\frac{4}{3}$.
a) Determine the maximum and minimum values of the function

$$
f(x, y)=x y^{2}
$$

on the ellipse $x^{2}+\frac{1}{4} y^{2}=1$.
Solution: Max. value $=\frac{8}{3 \sqrt{3}}$, min. value $=\frac{-8}{3 \sqrt{3}}$.
b) Moving clockwise along the ellipse, is the function increasing or decreasing at the point $(0,-2)$?
Solution: Decreasing, since the directional derivative of f at $(0,-2)$ in the direction $(-1,0)$ (unit tangent vector to ellipse at $(0,-2)$ when traversing clockwise) is $\nabla f_{(0,-2)}$. $(-1,0)=-4<0$.
5. Define the function

$$
f(x, y, z)=x \sin (y z)
$$

a) Determine $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$.

Solution: $\frac{\partial f}{\partial x}=\sin (y z), \frac{\partial f}{\partial y}=x z \cos (y z), \frac{\partial f}{\partial z}=x y \cos (y z)$.
b) Does f satisfy Laplace's equation $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0$?

Solution: No.
c) Suppose

$$
\begin{gathered}
x(s, t)=\cos \left(s^{2}+t\right) \\
y(s, t)=e^{-2 s t} \\
z(s, t)=s^{3}-2 s t^{2}+4
\end{gathered}
$$

Determine $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$.

Solution:

$$
\begin{gathered}
\frac{\partial f}{\partial s}=-2 s \sin \left(s^{2}+t\right) \sin (y z)-2 t e^{-2 s t} x z \cos (y z)+\left(3 s^{2}-2 t^{2}\right) x y \cos (y z) \\
\frac{\partial f}{\partial t}=-\sin \left(s^{2}+t\right) \sin (y z)-2 s e^{-2 s t} x z \cos (y z)-4 s t x y \cos (y z)
\end{gathered}
$$

d) Find the directional derivative of f at the point $(2,0,1)$ in the direction of the vector $\boldsymbol{v}=$ $-\boldsymbol{i}+\boldsymbol{j}+4 \boldsymbol{k}$. How does this value compare to the maximal rate of increase at $(2,0,1) ?$

Solution: The gradient at $(2,0,1)$ is $\left.\nabla f\right|_{(2,0,1)}=(0,2,0)$, and directional derivative in direction $(-1,1,4)$ is $\left.\nabla f\right|_{(2,0,1)} \cdot \frac{1}{\sqrt{18}}(-1,1,4)=\frac{\sqrt{2}}{3}$. Maximal rate of increase is $\| \nabla f(2,0$, $1) \|=2$.
6. Consider the vector-valued function

$$
\boldsymbol{r}(t)=\left(2 e^{t}, 3 t^{2}, t e^{4 t}\right) .
$$

a) What is $\boldsymbol{r}^{\prime \prime}(t)$?

Solution: $\left(2 e^{t}, 6,8 e^{4 t}+16 t e^{4 t}\right)$.
b) At what point does the curve $\boldsymbol{r}(t)$ intersect the surface $16 z=x^{4}$?

Solution: When $t=1$, i.e., the point $\left(2 e, 3, e^{4}\right)$.
c) Find the tangent vector to the curve at the point $(2,0,0)$.

Solution: $(2,0,1)$.
7. Does the limit

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2} y-z}{x^{4}+y^{2}+z}
$$

exist? Show why or why not.
Solution: No. Take limit along paths $x=z=0$ and $y=x^{2}, z=x^{4}$ to obtain different values.

