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Smoluchowski’s coagulation equation
n(t,r) = number density of clusters of size z > 0 at time ¢ > (

K(x,y) = K(y,x) symmetric rate kernel

on(t,x) = /K:v—yy n(t,z —y)n(t,y)dy

_/O K(z,y)n(t,z)n(t,y)dy



Smoluchowski’s equation been used as a mean-field model for a
variety of agglomeration phenomena:

* coagulation of colloids

* formation of clouds and smog

* kinetics of polymerization

* mass aggregation in astrophysics

* schooling of fishes

* merging of banks

* random graph theory

* ballistic aggregation of shocks in Burgers turbulence (K=x+y)



More generally, consider measure-valued solutions under weak
formulation (moment identity), with suitable test functions ¢:

n(t,dr) = number measure of clusters of size in |z, z + dx)

Oy /o - o(x)n(t, dx)
/ / y) — 8(y) — B(x)) K (2, y)n(t, dy)n(t, dx)
0,00) (0 oo)

Many recent studies have focused on the homogeneous, “solvable”

rate kernels K(az,ay) = o K(z,y),Ya > 0

/\ ——

* For these kernels one can obtain exact solutions via the Laplace
transform

K=2x+y,xy
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Smoluchowski’s classical limit theorems
coagulation equation in probability
n(t,dx) Sp=X1+ ...+ X,

(i) Well-posedness of dynamical system on space of prob. measures
* Menon & Pego (CPAM, 2004)

* Well-posedness for general homogeneous K:

Fournier & Laurencot, Escobedo; Mischler & Rodriguez Ricard

(i) Existence of |-parameter family of self-similar solutions, domains

of attraction:
* Menon & Pego (CPAM, 2004)

SSS w/exp. decay —> Gaussian
SSS w/power law decay —> Lévy stable laws
convergence to SSS, —> central limit

regular variation theorem
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Smoluchowski’s classical limit theorems
coagulation equation in probability
n(t,dr) Sp=X1+ ...+ X,

(iv) Interplay between moment hypothesis on the initial data and stronger
modes of convergence
* Menon & Pego (SIAM Review, 2006): For SSS with exp. decay,

uniform convergence of densities under dynamic scaling

There are more correspondences, which we do not discuss here:

(v) Attractor of the dynamical system modulo scaling
* Menon & Pego (2008)

eternal solutions — infinitely divisible
distributions



Continuing the analogy...

rates of convergence to : : Berry-Esseen theorem
SSS with exponential : for convergence to
tail : ; Gaussian
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* Self-similar solution with exponential tail

m~(t) . A A X
n(t,dxr) = —-Z1, - (di) T =
Ay () Ay (t)
. 1 .
Ay o(dE) = e %di &hy 1 (8) = 3% Ay o(8) = —1 Y2 2/2d3

V2m



||ndoma|nof
: (t07 df) =1 < »  attraction of S8S

(0,00) with exponential tail :

T0(t) = log(t), T(t) =t, (1) = log(1 —t)~*

* Rescaled solution converges to SSS (weak convergence of
measures)

A (1)
M (1)

AT, di) =

n(t, A, (t)dz)

A

(7, d2) — it (d2)



* Exponential convergence in terms of distribution functions

F, (7, &) = /( A, Fan(#) S /( e ()
0,2 0,z

Theorem (Srinivasan, 2009): For any 7,(t) € |0, 00)

SAU-IS Ey(Ty, 2) = Fioy (2)] < Clptyg2) (1 + 74)e"™
x>




* Holds for a broad class of initial data with minimal assumptions
(existence of an additional higher moment)

* Near optimal: For monodisperse initial data ng(dx) = 61 (dx),

Sli% (7, %) — Fiy(2)] = O(e™ ™)

* For K=2: Canizo, Mischer, Mouhot (2008) showed exponential
convergence to SSS in a weighted Sobolev norm for initial densities
satisfying decay assumptions on its derivatives, also using Fourier
methods



Main ingredients of proof for K=2:

* Consider Fourier-Laplace representation of number measure

s€ Cy :={z€C:Re(z) >0}
u(r, s) = / (T, di),  wa(s) = / e, (di)
(0,00) (0,00)

* Smoothing argument (Feller, Vol. Il)

1 st 24
sup [F'(7,2) — Fi(2)] < —sup / “—(u(r, s) — w.(s))ds| + —
#>0 T >0 |J—iT S ml

T

main term to
estimate




(i) Smoluchowski’s equation <—> PDE for Laplace transform
Oru 4 s0su = —u(l — u)

For K=2, characteristics s(7;0,sg) = e’ so do not depend on initial data.

Main term with 7 = Je”:

/7;5 63(7;0,80)3?: (UO(SO) — u, (80)) dse
—is $(730,50) (1 — s (50)(1 —e77))(1 — uo(s0)(L —e77))




(i) Moment hypothesis (decay of tails of initial data) gives
approximation for difference of Laplace transforms near origin

uo(0) = —up(0) =1, uf(0) = ps
— .l (0)=1,  u(0)=2

o (s0) = wx(s0)] < (14 57) [sol?

This approximation is good in the region |sg| < d(u2) with
20(p2) = \/1+2 (1+ ”22) —1

(iii) Plug in estimates—main contribution:

’ 2 > 1
/ < 2 (1 + ) (1+ 5)%”/ ——d|sg]
de— 2 de—T ’SO‘

eT

2 (1 —- /;2) (1+0)*7e™™  done!



What about K=x+y?

* Idea of proof is same as for K=2. But characteristics depend on
initial data and are no longer rays, but curves in the complex plane.
We use a contour deformation argument as in Menon-Pego (2006):

pts) = [ (- il d
(0,00)

Orp + (25 — p)0s0 = @

—_
U(t, S) _ / e_SAZ%ﬁ(t, dl%) 8tu (28 — gp)ﬁsu — —U(l — U)
(0,00) \
T ~ §(u3)et
S
S — S0




What about K=xy!?

* Solutions can be obtained from the case K=x+y by a well-known

change of variables given in Drake (1972). We therefore get the
convergence rate for K=xy for free.
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