Gradient stability for the Sobolev inequality: the case $p \geq 2$

Robin Neumayer
Joint work with Alessio Figalli

University of Texas at Austin

Prairie Analysis Seminar, Kansas State University
September 25, 2015
Let $n \geq 2$ and $1 \leq p < n$. Then for all $u \in W^{1,p}$,

$$\| \nabla u \|_{L^p} \geq S \| u \|_{L^{p^*}}$$

where $p^* = \frac{np}{n-p}$.
Extremal functions: If $p > 1$, then $\| \nabla v \|_{L^p} = S \| v \|_{L^{p^*}}$ for

$$v(x) = (1 + |x|^{p'})^{-(n-p)/p}.$$
Extremal functions: If $p > 1$, then $\|\nabla v\|_{L^p} = S \|v\|_{L^{p^*}}$ for

$$v(x) = (1 + |x|^{p'})^{-(n-p)/p}.$$
Extremal functions: If $p > 1$, then $\| \nabla v \|_{L^p} = S \| v \|_{L^{p^*}}$ for

$$v(x) = (1 + |x|^{p'})^{-(n-p)/p}.$$
The Sobolev inequality

Extremal functions: If $p > 1$, then $\| \nabla v \|_{L^p} = S \| v \|_{L^{p^*}}$ for

$$v(x) = (1 + |x|^{p'})^{-(n-p)/p}.$$
The Sobolev inequality

Extremal functions: If $p > 1$, then $\| \nabla v \|_{L^p} = S \| v \|_{L^{p^*}}$ for

$$v(x) = (1 + |x|^{p'})^{-(n-p)/p}.$$
Extremal functions: If $p > 1$, then $\|\nabla v\|_{L^p} = S \|v\|_{L^{p^*}}$ for

$$v(x) = (1 + |x|^{p'})^{-(n-p)/p}.$$

All equality cases are

$$\mathcal{M} = \{cv(\lambda(x-x_0)) : c \in \mathbb{R}, \lambda \in \mathbb{R}_+, x_0 \in \mathbb{R}^n\}.$$
Stability for the Sobolev inequality

- **Stability:** If $u \in W^{1,p}$ *almost* attains equality in the Sobolev inequality, then how close is u to some $v \in \mathcal{M}$?
Stability: If $u \in W^{1,p}$ almost attains equality in the Sobolev inequality, then how close is u to some $v \in \mathcal{M}$?
Stability for the Sobolev inequality

- **Stability:** If \(u \in W^{1,p} \) *almost* attains equality in the Sobolev inequality, then how close is \(u \) to some \(v \in \mathcal{M} \)?

\[
\delta(u) = \|\nabla u\|_{L^p} - S_p \|u\|_{L^p}^* \geq 0.
\]
Stability: If $u \in W^{1,p}$ almost attains equality in the Sobolev inequality, then how close is u to some $v \in \mathcal{M}$?

Deficit:

$$\delta(u) = \|\nabla u\|_{L^p}^p - S^p \|u\|_{L^{p^*}}^p \geq 0.$$
Stability for the Sobolev inequality

- **Stability**: If \(u \in W^{1,p} \) almost attains equality in the Sobolev inequality, then how close is \(u \) to some \(v \in \mathcal{M} \)?

- **Deficit**: \[
\delta(u) = \|\nabla u\|_{L^p}^p - S^p \|u\|_{L^p^*}^p \geq 0.
\]

- The strongest distance we expect to control in this setting is \[
\inf_{v \in \mathcal{M}} \|\nabla (u - v)\|_{L^p}.
\]
Past stability results

- Bianchi, Egnell (1991), $p = 2$:
 \[C\delta(u) \geq \inf_{v \in M} \|\nabla(u - v)\|_{L^2}^2. \]
Past stability results

- Bianchi, Egnell (1991), $p = 2$:
 \[C \delta(u) \geq \inf_{v \in \mathcal{M}} \| \nabla (u - v) \|_{L^2}^2. \]

- Cianchi, Fusco, Maggi, Pratelli (2007), $p > 1$:
 \[C \delta(u) \geq \inf_{v \in \mathcal{M}} \| u - v \|_{L^{p^*}}^{\alpha}. \]
Past stability results

- Bianchi, Egnell (1991), $p = 2$:
 \[C \delta(u) \geq \inf_{v \in \mathcal{M}} \| \nabla (u - v) \|_{L^2}^2. \]

- Cianchi, Fusco, Maggi, Pratelli (2007), $p > 1$:
 \[C \delta(u) \geq \inf_{v \in \mathcal{M}} \| u - v \|_{L^{p^*}}^{\alpha}. \]

- Figalli, Maggi, Pratelli (2010), $p = 1$:
 \[C \delta(u) \geq (\text{optimal gradient distance})^2. \]
Past stability results

- Bianchi, Egnell (1991), $p = 2$:
 \[C\delta(u) \geq \inf_{v \in \mathcal{M}} \|\nabla(u - v)\|_{L^2}^2. \]

- Cianchi, Fusco, Maggi, Pratelli (2007), $p > 1$:
 \[C\delta(u) \geq \inf_{v \in \mathcal{M}} \|u - v\|_{L^{p^*}}^{\alpha}. \]

- Figalli, Maggi, Pratelli (2010), $p = 1$:
 \[C\delta(u) \geq (\text{optimal gradient distance})^2. \]
Gradient stability: $p \geq 2$

Theorem (Figalli, N., 2015)

Let $2 \leq p < n$. There exist C and α such that

$$C \delta(u) \geq \inf_{v \in \mathcal{M}} \|\nabla(u - v)\|_{L^p}^\alpha.$$

The proof has two main steps:
- Positivity of the second variation
- Controlling higher order terms

Robin Neumayer (UT Austin)
Quantitative Sobolev inequality
September 26, 2015 6 / 19
Gradient stability: \(p \geq 2 \)

Theorem (Figalli, N., 2015)

Let \(2 \leq p < n \). There exist \(C \) and \(\alpha \) such that

\[
C \delta(u) \geq \inf_{v \in \mathcal{M}} \| \nabla (u - v) \|_{L^p}^\alpha.
\]

The proof has two main steps:

- Positivity of the second variation
- Controlling higher order terms
Positivity of the second variation

We want to introduce a Hilbert space structure.
We want to introduce a Hilbert space structure.

\[
d(u, \mathcal{M}) = \inf_{v \in \mathcal{M}} \left(\int | \nabla (u - v) |^2 | \nabla v |^{p-2} \right)^{1/2}.
\]
Positivity of the second variation

We want to introduce a Hilbert space structure.

\[d(u, \mathcal{M}) = \inf_{v \in \mathcal{M}} \left(\int |\nabla (u - v)|^2 |\nabla v|^{p-2} \right)^{1/2} \]

Given \(u \in W^{1,p} \), suppose the infimum is attained at \(v \in \mathcal{M} \).
We want to introduce a **Hilbert space structure**.

\[
d(u, \mathcal{M}) = \inf_{v \in \mathcal{M}} \left(\int |\nabla (u - v)|^2 |\nabla v|^{p-2} \right)^{1/2}.
\]

Given \(u \in W^{1,p} \), suppose the infimum is attained at \(v \in \mathcal{M} \).

![Diagram showing a manifold \(\mathcal{M} \) with points \(v \) and \(u \).]
Positivity of the second variation

We want to introduce a Hilbert space structure.

\[d(u, M) = \inf_{v \in M} \left(\int |\nabla (u - v)|^2 |\nabla v|^{p-2} \right)^{1/2} = \varepsilon \left(\int |\nabla \varphi|^2 |\nabla v|^{p-2} \right)^{1/2}. \]

- Given \(u \in W^{1,p} \), suppose the infimum is attained at \(v \in M \).
- Let \(\varepsilon \varphi = u - v \), with the normalization \(\int |\nabla \varphi|^p = 1 \).
Part 1: Positivity of the second variation

Expand $\delta(u)$ around v:

$$\delta(u) = \delta(v) + \varepsilon \text{ first variation} + \varepsilon^2 \text{ second variation} + o(\varepsilon^2).$$
Part 1: Positivity of the second variation

Expand $\delta(u)$ around v:

$$\delta(u) = \varepsilon^2 \text{ second variation} + o(\varepsilon^2).$$
Part 1: Positivity of the second variation

Expand $\delta(u)$ around v:

$$\delta(u) = \varepsilon^2 \text{ second variation } + o(\varepsilon^2).$$

The second variation is:

$$\text{second variation} = \int |\nabla \varphi|^2 |\nabla v|^{p-2} - S \int |\varphi|^2 v^{p^* - 2}$$
Part 1: Positivity of the second variation

Expand $\delta(u)$ around v:

$$\delta(u) = \varepsilon^2 \text{ second variation} + o(\varepsilon^2).$$

The second variation is:

$$\text{second variation} = \int |\nabla \varphi|^2 |\nabla v|^{p-2} - S \int |\varphi|^2 v^{p^*-2}$$

Expand this expression in a basis of eigenfunctions.
Part 1: Positivity of the second variation

Expand $\delta(u)$ around v:

$$\delta(u) = \varepsilon^2 \text{ second variation} + o(\varepsilon^2).$$

$$\text{second variation} = \int |\nabla \varphi|^2 |\nabla v|^{p-2} - S \int |\varphi|^2 v^{p^* - 2}$$

Expand this expression in a basis of eigenfunctions. φ is orthogonal to $T_v \mathcal{M}$, which allows us to exploit a spectral gap.

$$\varepsilon^2 \text{ second variation} \geq d(u, \mathcal{M})^2.$$
So

\[\delta(u) \geq c d(u, M)^2 + o(\varepsilon^2) \]
The problem

So

$$\delta(u) \geq cd(u, \mathcal{M})^2 + o(\varepsilon^2)$$

Problem: Our higher order terms are not really higher order.

$$d(u, \mathcal{M})^2 = \int |\nabla (u - \nu)|^2 |\nabla \nu|^{p-2}, \quad \varepsilon^2 = \|\nabla (u - \nu)\|_{L^p}^2$$
The problem

So
\[\delta(u) \geq cd(u, M)^2 + o(\varepsilon^2) \]

Problem: Our higher order terms are not really higher order.

\[d(u, M)^2 = \int |\nabla(u - v)|^2|\nabla v|^{p-2}, \quad \varepsilon^2 = \|\nabla(u - v)\|_{L^p}^2 \]

Recall: \(\varepsilon \varphi = u - v, \int |\nabla \varphi|^p = 1. \)
A Taylor expansion of $\delta(u)$ cannot work, as we can never absorb the higher order terms.
Part 2: Handling the higher order terms

A Taylor expansion of $\delta(u)$ cannot work, as we can never absorb the higher order terms.

Two inequalities for numbers/vectors:

$$|a + \varepsilon b|^p \geq a^p + \varepsilon p a^{p-1} b + c \varepsilon^2 a^{p-2} b^2 - C \varepsilon^p b^p,$$
A Taylor expansion of $\delta(u)$ cannot work, as we can never absorb the higher order terms.

Two inequalities for numbers/vectors:

$$|a + \varepsilon b|^p \geq a^p + \varepsilon p a^{p-1} b + c\varepsilon^2 a^{p-2} b^2 - C\varepsilon^p b^p,$$

$$|a + \varepsilon b|^p \geq a^p + \varepsilon p a^{p-1} b - C\varepsilon^2 a^{p-2} b^2 + c\varepsilon^p b^p.$$
Two inequalities

Apply these for $a = \nabla \nu$, $\varepsilon b = \varepsilon \nabla \varphi = \nabla (u - \nu)$, recalling the fact that second variation controls $d(u, \mathcal{M})^2$.

$$
\delta(u) \geq c d(u, \mathcal{M})^2 - C \varepsilon^p,
$$

$$
\delta(u) \geq -C d(u, \mathcal{M})^2 + c \varepsilon^p.
$$

Recall: $d(u, \mathcal{M})^2 = \int |\nabla (u - \nu)|^2 |\nabla \nu|^{p-2}$, $\varepsilon^p = \int |\nabla (u - \nu)|^p$.
Case 1: L^p norm dominates

If we are in the case

$$\varepsilon^p \gg d(u, M)^2,$$

Recall:

$$d(u, M)^2 = \int |\nabla (u - v)|^2 - 2 \varepsilon^p = \int |\nabla (u - v)|^p.$$
Case 1: L^p norm dominates

If we are in the case

$$\varepsilon^p \gg d(u, \mathcal{M})^2,$$

then $\delta(u) \geq -Cd(u, \mathcal{M})^2 + c\varepsilon^p$ gives

$$\delta(u) \geq c \int |\nabla(u - v)|^p.$$

Recall: $d(u, \mathcal{M})^2 = \int |\nabla(u - v)|^2|\nabla v|^{p-2}$, $\varepsilon^p = \int |\nabla(u - v)|^p$.
Case 2: L^2 norm dominates

On the other hand, if we are in the case

$$\varepsilon^p \ll d(u, \mathcal{M})^2,$$

then

$$\delta(u) \geq c d(u, \mathcal{M})^2 - C \varepsilon^p$$

implies that then

$$\delta(u) \geq c d(u, \mathcal{M})^2.$$

Then from

$$\delta(u) \geq -C d(u, \mathcal{M})^2 + c \varepsilon^p,$$

we have

$$C d(u, \mathcal{M})^2 + \delta(u) \geq c \varepsilon^p,$$

and so

$$\delta(u) \geq c \varepsilon^p = c \int |\nabla (u - v)|^p.$$

Recall:

$$d(u, \mathcal{M})^2 = \int |\nabla (u - v)|^2 |\nabla v|^p - 2,$$

$$\varepsilon^p = \int |\nabla (u - v)|^p.$$
Case 2: L^2 norm dominates

On the other hand, if we are in the case

$$\varepsilon^p \ll d(u, M)^2,$$

then $\delta(u) \geq c d(u, M)^2 - C \varepsilon^p$ implies that then

$$\delta(u) \geq c d(u, M)^2.$$
Case 2: L^2 norm dominates

On the other hand, if we are in the case

$$\varepsilon^p \ll d(u, M)^2,$$

then $\delta(u) \geq cd(u, M)^2 - C\varepsilon^p$ implies that then

$$\delta(u) \geq cd(u, M)^2.$$

Then from $\delta(u) \geq -Cd(u, M)^2 + c\varepsilon^p$, we have $Cd(u, M)^2 + \delta(u) \geq c\varepsilon^p$,\n
Recall: $d(u, M)^2 = \int |\nabla (u - v)|^p |\nabla v|^p - 2$, $\varepsilon^p = \int |\nabla (u - v)|^p$.
Case 2: L^2 norm dominates

On the other hand, if we are in the case

$$\varepsilon^p \ll d(u, M)^2,$$

then $\delta(u) \geq cd(u, M)^2 - C\varepsilon^p$ implies that then

$$\delta(u) \geq cd(u, M)^2.$$

Then from $\delta(u) \geq -Cd(u, M)^2 + c\varepsilon^p$, we have $Cd(u, M)^2 + \delta(u) \geq c\varepsilon^p$, and so

$$\delta(u) \geq c\varepsilon^p = c \int |\nabla(u - v)|^p.$$

Recall: $d(u, M)^2 = \int |\nabla(u - v)|^2|\nabla v|^{p-2}$, $\varepsilon^p = \int |\nabla(u - v)|^p$.

Robin Neumayer (UT Austin)

Quantitative Sobolev inequality

September 26, 2015

13 / 19
Stability is shown in two cases.

To summarize, if
\[\int |\nabla (u - v)|^p \leq c_0 \int |\nabla (u - v)|^2 |\nabla v|^{p-2} \]
or\[\int |\nabla (u - v)|^p \geq C_0 \int |\nabla (u - v)|^2 |\nabla v|^{p-2} \]
then
\[\delta(u) \geq c \int |\nabla (u - v)|^p. \]
In other words, if $R(u) = \frac{\int |\nabla (u-v)^2| |\nabla v|^{p-2}}{\int |\nabla (u-v)|^p}$ is the ratio,
Interpolation

In other words, if \(R(u) = \frac{\int |\nabla (u-v)^2|\nabla v|^{p-2}}{\int |\nabla (u-v)|^p} \) is the ratio, then the result is shown if

\[
R(u) \geq C_0 \quad \text{or} \quad R(u) \leq c_0.
\]

To handle the regime \(c_0 < R(u) < C_0 \), we consider the following linear interpolation:

\[
u_t = tu + (1-t)v.
\]
Interpolation

In other words, if $R(u) = \frac{\int |\nabla (u-v)^2| |\nabla v|^p}{\int |\nabla (u-v)|^p}$ is the ratio, then the result is shown if

$$R(u) \geq C_0 \quad \text{or} \quad R(u) \leq c_0.$$

To handle the regime

$$c_0 < R(u) < C_0,$$

we consider the following linear interpolation:

$$u_t = tu + (1 - t)v.$$
Then, since

\[u_t - v = t(u - v), \]

we easily see that

\[R(u_t) = \frac{1}{2} \int |\nabla(u - v)|^2 |\nabla v|^p - \frac{2}{p} \int |\nabla(u - v)|^p = t^2 - \frac{2}{p} R(u). \]

Therefore, if \(c_0 < R(u) < C_0 \),

\[R(u_t) = t^2 - \frac{2}{p} R(u) \geq t^2 - \frac{2}{p} c_0 > C_0 \]

for \(t \) small enough.
Then, since
\[u_t - v = t(u - v), \]
we easily see that
\[R(u_t) = \int \frac{|t \nabla (u - v)|^2 |\nabla v|^{p-2}}{\int |t \nabla (u - v)|^p} = t^{2-p} R(u). \]
Then, since
\[u_t - v = t(u - v), \]
we easily see that
\[R(u_t) = \frac{\int |t\nabla(u - v)|^2 |\nabla v|^{p-2}}{\int |t\nabla(u - v)|^p} = t^{2-p} R(u). \]

Therefore, if \(c_0 < R(u) < C_0 \),
Then, since

\[u_t - v = t(u - v), \]

we easily see that

\[
R(u_t) = \frac{\int |t \nabla (u - v)|^2 |\nabla v|^{p-2}}{\int |t \nabla (u - v)|^p} = t^{2-p} R(u).
\]

Therefore, if \(c_0 < R(u) < C_0 \),

\[
R(u_t) = t^{2-p} R(u) \geq t^{2-p} c_0
\]
Then, since

\[u_t - v = t(u - v), \]

we easily see that

\[R(u_t) = \frac{\int |t\nabla(u - v)|^2|\nabla v|^{p-2}}{\int |t\nabla(u - v)|^p} = t^{2-p}R(u). \]

Therefore, if \(c_0 < R(u) < C_0 \),

\[R(u_t) = t^{2-p}R(u) \geq t^{2-p}c_0 > C_0 \]

for \(t \) small enough.
Recovering information about u

Therefore

$$\delta(u_t) \geq c \int |\nabla (u_t - v)|^p$$
We would like to show something like

\[C \delta(u) \geq \delta(u_t) \geq c \int |\nabla (u_t - v)|^p \geq c \int |\nabla (u - v)|^p. \]
We would like to show something like

\[C \delta(u) \geq \delta(u_t) \geq c \int |\nabla (u_t - v)|^p \geq c \int |\nabla (u - v)|^p. \]

It's easy to recover information about the distance:

\[\int |\nabla (u_t - v)|^p = t^p \int |\nabla (u - v)|^p. \]
We would like to show something like

$$C \delta(u) \overset{?}{\geq} \delta(u_t) \geq c \int |\nabla (u_t - v)|^p \overset{\check{\cdot}}{\geq} c \int |\nabla (u - v)|^p.$$

It's easy to recover information about the distance:

$$\int |\nabla (u_t - v)|^p = t^p \int |\nabla (u - v)|^p.$$
We would like to show something like

\[C \delta(u) \geq \delta(u_t) \geq c \int |\nabla(u_t - v)|^p \geq c \int |\nabla(u - v)|^p. \]

For the deficit, it’s not clear that an estimate of the form

\[C \delta(u) \geq \delta(u_t) \]

should hold,
Recovering information about \(u \)

We would like to show something like

\[
C \delta(u) \geq \delta(u_t) \geq c \int |\nabla(u_t - v)|^p \geq c \int |\nabla(u - v)|^p.
\]

For the deficit, it’s not clear that an estimate of the form

\[
\delta(u_t) \leq C \delta(u)
\]

should hold, but we can show

\[
\delta(u_t) \leq C \delta(u) + C \|u - v\|_{L^p*}.
\]
Recovering information about u

So we have

$$C\|u - v\|_{L^p} + C\delta(u) \geq \delta(u_t) \geq c \int |\nabla (u_t - v)|^p \geq c \int |\nabla (u - v)|^p.$$

For the deficit, it’s not clear that an estimate of the form

$$\delta(u_t) \leq C\delta(u)$$

should hold, but we can show

$$\delta(u_t) \leq C\delta(u) + C\|u - v\|_{L^p}.$$
Recovering information about u

Thus we have

$$C\|u - v\|_{L^{p^*}} + C\delta(u) \geq \int |\nabla (u - v)|^p.$$

Pairing this with the result of Cianchi, Fusco, Maggi and Pratelli, we have

$$\|\nabla (u - v)\|_{L^p} \leq C\delta(u)^\alpha$$

concluding the proof.
Thank you for your attention!