A strong form of the quantitative Wulff inequality

Robin Neumayer

University of Texas at Austin

6th Symposium on Analysis and PDE
Purdue University
June 2, 2015
1 Previous stability results

2 The anisotropic case

3 Strong stability for the Wulff inequality
Isoperimetric inequality:

\[P(E) \geq P(B) \text{ when } |E| = |B|, \]

with equality iff \(E + x_0 = B \).
The isoperimetric inequality

- **Isoperimetric inequality:**
 \[P(E) \geq P(B) \quad \text{when} \quad |E| = |B|, \]
 with equality iff \(E + x_0 = B \).

- **Stability:** If \(E \) almost attains equality in the isoperimetric inequality, then how much does \(E \) “look like” \(B \)?
The isoperimetric inequality

- Isoperimetric inequality:

\[P(E) \geq P(B) \text{ when } |E| = |B|, \]

with equality iff \(E + x_0 = B \).

- Stability: If \(E \) almost attains equality in the isoperimetric inequality, then how much does \(E \) “look like” \(B \)?
The isoperimetric inequality

- **Isoperimetric inequality:**

 \[P(E) \geq P(B) \text{ when } |E| = |B|, \]

 with equality iff \(E + x_0 = B \).

- **Stability:** If \(E \) almost attains equality in the isoperimetric inequality, then how much does \(E \) “look like” \(B \)?
Deficit:

\[\delta(E) = P(E) - P(B) \geq 0. \]
Stability for the isoperimetric inequality

Deficit:
\[\delta(E) = P(E) - P(B) \geq 0. \]

Asymmetry:
\[A(E) = \inf_{y \in \mathbb{R}^n} |(E + y) \Delta B|. \]
Stability for the isoperimetric inequality

Deficit:
\[\delta(E) = P(E) - P(B) \geq 0. \]

Asymmetry:
\[A(E) = \inf_{y \in \mathbb{R}^n} |(E + y) \Delta B|. \]
Deficit:
\[\delta(E) = P(E) - P(B) \geq 0. \]

Asymmetry:
\[A(E) = \inf_{y \in \mathbb{R}^n} |(E + y) \Delta B|. \]
Stability for the isoperimetric inequality

Deficit:

\[\delta(E) = P(E) - P(B) \geq 0. \]

Asymmetry:

\[A(E) = \inf_{y \in \mathbb{R}^n} |(E + y) \Delta B|. \]
Stability for the isoperimetric inequality

Theorem (Fusco-Maggi-Pratelli ’08; Figalli-Maggi-Pratelli ’10; Cicalese-Leonardi ’12)

There exists a constant \(C = C(n) \) such that

\[
A(E) \leq C \delta(E)^{1/2}
\]

for all sets \(E \) of finite perimeter with \(0 < |E| < \infty \).

Recall: \(\delta(E) = P(E) - P(B) \), \(A(E) = |E \Delta B| \) up to translation.
Fuglede’s earlier, stronger stability result for perturbations

Definition

A set E is a **nearly spherical set** if $|E| = |B|$, $\text{bar}(E) = \text{bar}(B)$, and

$$\partial E = \{x + u(x)x : x \in \partial B\}$$

for $u : \partial B \to \mathbb{R}$ with $\|u\|_{C^1} < \epsilon$.

Robin Neumayer (UT Austin)
Quantitative Wulff inequality
June 2, 2015 6 / 25
Fuglede’s earlier, stronger stability result for perturbations

Definition

A set E is a **nearly spherical set** if $|E| = |B|$, $\text{bar}(E) = \text{bar}(B)$, and

$$\partial E = \{ x + u(x)x : x \in \partial B \}$$

for $u : \partial B \to \mathbb{R}$ with $\|u\|_{C^1} < \epsilon$.

![Diagram showing a nearly spherical set E with $|E| = |B|$, $\text{bar}(E) = \text{bar}(B)$, and $\partial E = \{ x + u(x)x : x \in \partial B \}$ for a function $u : \partial B \to \mathbb{R}$ with $\|u\|_{C^1} < \epsilon$.](image)
Definition

A set E is a nearly spherical set if $|E| = |B|$, $\text{bar}(E) = \text{bar}(B)$, and

$$\partial E = \{x + u(x)x : x \in \partial B\}$$

for $u : \partial B \to \mathbb{R}$ with $\|u\|_{C^1} < \epsilon$.
Fuglede’s earlier, stronger stability result for perturbations

Theorem (Fuglede ’89)

There exists a constant $C = C(n)$ such that if E is a nearly spherical set, then

$$\|u\|_{H^1} \leq C \delta(E)^{1/2}.$$

Robin Neumayer (UT Austin)
Fuglede’s earlier, stronger stability result for perturbations

For nearly spherical sets:

Fuglede: $\|u\|_{H^1} \leq C \delta(E)^{1/2}$,

Fusco-Maggi-Pratelli: $\|u\|_{L^1} \leq C \delta(E)^{1/2}$.
Proof idea:

- Taylor expansion + volume constraint:

\[\delta(E) = \int_{\partial B} |\nabla u|^2 - (n - 1)u^2 \, d\mathcal{H}^{n-1} + \epsilon O(\|u\|_{H^1}^2) , \]
Proof idea:

- Taylor expansion + volume constraint:

\[\delta(E) = \int_{\partial B} |\nabla u|^2 - (n-1)u^2 \, d\mathcal{H}^{n-1} + \epsilon O(\|u\|_{H^1}^2), \]

- Expand \(u = \sum_{i=0}^{\infty} a_i Y_i \) in basis of spherical harmonics:

\[\delta(E) = \sum_{i=0}^{\infty} \lambda_i a_i^2 - (n-1) \sum_{i=0}^{\infty} a_i^2 + \epsilon O(\|u\|_{H^1}^2), \]
Fuglede's earlier, stronger stability result for perturbations

Proof idea:

- Taylor expansion + volume constraint:

\[\delta(E) = \int_{\partial B} |\nabla u|^2 - (n - 1)u^2 d\mathcal{H}^{n-1} + \epsilon O(\|u\|_{H^1}^2), \]

- Expand \(u = \sum_{i=0}^{\infty} a_i Y_i \) in basis of spherical harmonics:

\[\delta(E) = \sum_{i=0}^{\infty} \lambda_i a_i^2 - (n - 1) \sum_{i=0}^{\infty} a_i^2 + \epsilon O(\|u\|_{H^1}^2), \]

- \(|E| = |B| \implies u \) orthogonal to dilations,
Fuglede’s earlier, stronger stability result for perturbations

Proof idea:

- **Taylor expansion + volume constraint:**

 \[\delta(E) = \int_{\partial B} |\nabla u|^2 - (n - 1)u^2 \, d\mathcal{H}^{n-1} + \epsilon O(\|u\|_{H^1}^2), \]

- **Expand** \(u = \sum_{i=0}^{\infty} a_i Y_i \) in basis of spherical harmonics:

 \[\delta(E) = \sum_{i=0}^{\infty} \lambda_i a_i^2 - (n - 1)\sum_{i=0}^{\infty} a_i^2 + \epsilon O(\|u\|_{H^1}^2), \]

- \(|E| = |B| \implies u \text{ orthogonal to dilations,} \)
- \(\text{bar}(E) = \text{bar}(B) \implies u \text{ orthogonal to translations,} \)
Fuglede’s earlier, stronger stability result for perturbations

Proof idea:

- Taylor expansion + volume constraint:

\[
\delta(E) = \int_{\partial B} |\nabla u|^2 - (n-1)u^2 \, d\mathcal{H}^{n-1} + \epsilon \, O(\|u\|_{H^1}^2),
\]

- Expand \(u = \sum_{i=0}^{\infty} a_i Y_i \) in basis of spherical harmonics:

\[
\delta(E) = \sum_{i=0}^{\infty} \lambda_i a_i^2 - (n-1) \sum_{i=0}^{\infty} a_i^2 + \epsilon \, O(\|u\|_{H^1}^2),
\]

- \(|E| = |B| \implies u \) orthogonal to dilations,
- \(\text{bar}(E) = \text{bar}(B) \implies u \) orthogonal to translations,
- Spectral gap: \(\lambda_2 > (n-1) \).
The question of Fusco and Julin:

Can the deficit control a stronger H^1-type quantity for sets that are not nearly spherical?
Fusco and Julin defined

\[
\beta(E) = \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} |\nu_{E+y}(x) - \nu_B(x)\|_2^2 \, d\mathcal{H}^{n-1} \right)^{1/2}
\]
Fusco and Julin defined

$$\beta(E) = \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} \left| \nu_{E+y}(x) - \nu_B \left(\frac{x}{|x|} \right) \right|^2 d\mathcal{H}^{n-1} \right)^{1/2}$$

$$= \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} 1 - \nu_{E+y}(x) \cdot \frac{x}{|x|} d\mathcal{H}^{n-1} \right)^{1/2}$$
Fusco and Julin defined

\[\beta(E) = \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} |\nu_{E+y} (x) - \nu_B (\frac{x}{|x|})|^2 d\mathcal{H}^{n-1} \right)^{1/2} \]

\[= \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} 1 - \nu_{E+y} (x) \cdot \frac{x}{|x|} d\mathcal{H}^{n-1} \right)^{1/2} \]
Fusco and Julin defined

$$\beta(E) = \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} |\nu_{E+y}(x) - \nu_B(\frac{x}{|x|})|^2 \, d\mathcal{H}^{n-1} \right)^{1/2}$$

$$= \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} 1 - \nu_{E+y}(x) \cdot \frac{x}{|x|} \, d\mathcal{H}^{n-1} \right)^{1/2}$$
Fusco and Julin defined

\[
\beta(E) = \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} |\nu_{E+y}(x) - \nu_{B}(\frac{x}{|x|})|^2 d\mathcal{H}^{n-1} \right)^{1/2}
\]

\[
= \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} 1 - \nu_{E+y}(x) \cdot \frac{x}{|x|} d\mathcal{H}^{n-1} \right)^{1/2}
\]
Using Fuglede to improve Fusco-Maggi-Pratelli

Theorem (Fusco-Julin ’14)

There exists $C = C(n)$ such that

$$\beta(E) \leq C\delta(E)^{1/2}$$

for all sets E of finite perimeter such that $0 < |E| < \infty$.

Recall: $\delta(E) = P(E) - P(B)$, $\beta(E) = H^1$-type quantity.
Fix a bounded convex set $K \ni 0$ (Wulff shape).
The anisotropic perimeter

- Fix a bounded convex set $K \ni 0$ (Wulff shape).
- $f(\nu) = \sup\{x \cdot \nu : x \in K\}$

$$f^*(x) = \inf\{\lambda \in \mathbb{R} : x \lambda \in K\}$$

$$K = \{f^*(x) < 1\}.$$
The anisotropic perimeter

- Fix a bounded convex set $K \ni 0$ (Wulff shape).
- $f(\nu) = \sup \{ x \cdot \nu : x \in K \}$
The anisotropic perimeter

- Fix a bounded convex set $K \ni 0$ (Wulff shape).
- $f(\nu) = \sup\{x \cdot \nu : x \in K\}$
The anisotropic perimeter

- Fix a bounded convex set $K \ni 0$ (Wulff shape).
- $f(\nu) = \sup \{ x \cdot \nu : x \in K \}$
Fix a bounded convex set $K \ni 0$ (Wulff shape).

- $f(\nu) = \sup\{x \cdot \nu : x \in K\}$
- $f^*(x) = \inf\{\lambda \in \mathbb{R} : \frac{x}{\lambda} \in K\}$
The anisotropic perimeter

- Fix a bounded convex set $K \ni 0$ (Wulff shape).
- $f(\nu) = \sup\{x \cdot \nu : x \in K\}$
- $f_*(x) = \inf\{\lambda \in \mathbb{R} : \frac{x}{\lambda} \in K\}$
- $K = \{f_*(x) < 1\}$.

Diagram:

- A convex set K.
- A vector ν.
- A point x.
- The anisotropic perimeter $f_*(x)$.
- The Wulff shape K.

Robin Neumayer (UT Austin)

Quantitative Wulff inequality

June 2, 2015 13 / 25
Fix a bounded convex set $K \ni 0$ (Wulff shape).

- $f(\nu) = \sup\{x \cdot \nu : x \in K\}$
- $f_*(x) = \inf\{\lambda \in \mathbb{R} : \frac{x}{\lambda} \in K\}$
- $K = \{f_*(x) < 1\}$.
- $x \cdot \nu \leq f_*(x)f(\nu)$
The anisotropic perimeter

- Fix a bounded convex set $K \ni 0$ (Wulff shape).

- $f(\nu) = \sup\{x \cdot \nu : x \in K\}$

- $f_*(x) = \inf\{\lambda \in \mathbb{R} : \frac{x}{\lambda} \in K\}$

- $K = \{f_*(x) < 1\}$.

- $x \cdot \nu \leq f_*(x)f(\nu)$
Anisotropic perimeter:

\[P_K(E) = \int_{\partial E} f(\nu_E) \, d\mathcal{H}^{n-1}, \]

with \(f(\nu) = \sup \{ x \cdot \nu : x \in K \} \).
The Wulff inequality

Anisotropic perimeter:

\[P_K(E) = \int_{\partial E} f(\nu_E) \, d\mathcal{H}^{n-1}, \]

with \(f(\nu) = \sup\{x \cdot \nu : x \in K\} \).

Wulff inequality:

\[P_K(E) \geq P_K(K) \text{ when } |E| = |K|, \]

with equality iff \(E + x_0 = K \).
The Wulff inequality

Anisotropic perimeter:

\[P_K(E) = \int_{\partial E} f(\nu_E) \, d\mathcal{H}^{n-1}, \]

with \(f(\nu) = \sup \{ x \cdot \nu : x \in K \} \).

Wulff inequality:

\[P_K(E) \geq P_K(K) \text{ when } |E| = |K|, \]

with equality iff \(E + x_0 = K \).

Stability: (Figalli-Maggi-Pratelli)

\[A(E) \leq C \, \delta(E)^{1/2} \]

where now \(\delta(E) = P_K(E) - P_K(K) \), \(A(E) = \inf_{y \in \mathbb{R}^n} |(E + y) \Delta K| \).
Can we obtain an analog of the Fuglede result in the case of the Wulff inequality? Should it depend on regularity or convexity properties of K?
Can we obtain an **analog of the Fuglede result** in the case of the Wulff inequality? Should it depend on regularity or convexity properties of K?

Can we obtain an **analog of the Fusco-Julin result** in this case? What form should such a result take?
Question 1: Can we obtain an analog of the Fuglede result in the case of the Wulff inequality?

Definition

Suppose K is C^2. A set E is a **nearly-K set** if $|E| = |K|$, $\overline{E} = \overline{K}$, and

$$\partial E = \{x + u(x)\nu_K(x) : x \in \partial K\}$$

where $u : \partial K \to \mathbb{R}$ has $\|u\|_{C^1(\partial K)} < \epsilon$.
Question 1: Can we obtain an analog of the Fuglede result in the case of the Wulff inequality?

Definition

Suppose K is C^2. A set E is a nearly-K set if $|E| = |K|$, $\text{bar}(E) = \text{bar}(K)$, and

$$\partial E = \{ x + u(x)\nu_K(x) : x \in \partial K \}$$

where $u : \partial K \to \mathbb{R}$ has $\|u\|_{C^1(\partial K)} < \epsilon$.

Question 1: Can we obtain an analog of the Fuglede result in the case of the Wulff inequality?

Definition

Suppose K is C^2. A set E is a nearly-K set if $|E| = |K|$, $\mathrm{bar}(E) = \mathrm{bar}(K)$, and

$$
\partial E = \{ x + u(x)\nu_K(x) : x \in \partial K \}
$$

where $u : \partial K \to \mathbb{R}$ has $\|u\|_{C^1(\partial K)} < \epsilon$.

Robin Neumayer (UT Austin)
Quantitative Wulff inequality
June 2, 2015 16 / 25
Question 1: Can we obtain an analog of the Fuglede result in the case of the Wulff inequality?

Definition

Suppose K is C^2. A set E is a nearly-K set if $|E| = |K|$, $\text{bar}(E) = \text{bar}(K)$, and

$$\partial E = \{ x + u(x)\nu_K(x) : x \in \partial K \}$$

where $u : \partial K \to \mathbb{R}$ has $\|u\|_{C^1(\partial K)} < \epsilon$.
Question 1: Can we obtain an analog of the Fuglede result in the case of the Wulff inequality?

Theorem (N., 2015)

Suppose K is C^2 and uniformly convex. Then there exists $C = C(n, K)$ such that if E is a nearly-K set, then

$$\|u\|_{H^1} \leq C \delta(E)^{1/2}.$$
Question 1: Can we obtain an analog of the Fuglede result in the case of the Wulff inequality?

Proof Idea:

- Taylor expansion + volume constraint:

\[
\delta(E) = \int_{\partial K} (\nabla u)^T \nabla^2 f(\nu_K) \nabla u \, d\mathcal{H}^{n-1} \\
- \int_{\partial K} H_K u^2 \, d\mathcal{H}^{n-1} + \epsilon O(\|u\|_{H^1(\partial K)}).
\]
Question 1: Can we obtain an analog of the Fuglede result in the case of the Wulff inequality?

Proof Idea:
- Taylor expansion + volume constraint:
 \[
 \delta(E) = \int_{\partial K} (\nabla u)^T \nabla^2 f(\nu_K) \nabla u \, d\mathcal{H}^{n-1} - \int_{\partial K} H_K u^2 \, d\mathcal{H}^{n-1} + \epsilon O(\|u\|_{H^1(\partial K)}).
 \]

- Biggest challenge: No explicit information about spectrum.
Question 1: Can we obtain an analog of the Fuglede result in the case of the Wulff inequality?

- We cannot expect to understand the spectrum of

\[\mathcal{L}u = -\text{div}(\nabla^2 f(\nu_K) \nabla u) \]

explicitly.
Question 1: Can we obtain an analog of the Fuglede result in the case of the Wulff inequality?

- We cannot expect to understand the spectrum of
 \[\mathcal{L}u = -\text{div}(\nabla^2 f(\nu_K) \nabla u) \]
 explicitly.

- However, Figalli-Maggi-Pratelli \(\implies \) a spectral gap exists:
 \[
 \delta(E) = \int_{\partial K} (\nabla u)^T \nabla^2 f(\nu_K) \nabla u \, d\mathcal{H}^{n-1} - \int_{\partial K} H_K u^2 \, d\mathcal{H}^{n-1} \\
 \geq c \left(\int_{\partial K} |u| \, d\mathcal{H}^{n-1} \right)^2.
 \]
Question 2: Can we obtain an analog of the Fusco-Julin result in this case?

How to define the anisotropic oscillation index β?

$$\beta(E) = \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} f(\nu_E) - \nu_E(x) \cdot \frac{x}{f_*(x)} d\mathcal{H}^{n-1} \right)^{1/2}$$
Question 2: Can we obtain an analog of the Fusco-Julin result in this case?

How to define the anisotropic oscillation index β?

$$\beta(E) = \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} f(\nu_E) - \nu_E(x) \cdot \frac{x}{f_*(x)} d\mathcal{H}^{n-1} \right)^{1/2}$$

Recall $f(\nu) = \sup \{ x \cdot \nu : x \in K \}, \quad \frac{x}{f_*(x)} \cdot \nu \leq f(\nu)$, with equality iff $\nu = \nu_K(\frac{x}{f_*(x)})$.
Question 2: Can we obtain an analog of the Fusco-Julin result in this case?

How to define the anisotropic oscillation index β?

$$\beta(E) = \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} f(\nu_E) - \nu_E(x) \cdot \frac{x}{f_*(x)} d\mathcal{H}^{n-1} \right)^{1/2}$$

Recall $f(\nu) = \sup \{ x \cdot \nu : x \in K \}$, $\frac{x}{f_*(x)} \cdot \nu \leq f(\nu)$, with equality iff $\nu = \nu_K(\frac{x}{f_*(x)})$.

Robin Neumayer (UT Austin)
Question 2: Can we obtain an analog of the Fusco-Julin result in this case?

How to define the anisotropic oscillation index β?

$$\beta(E) = \inf_{y \in \mathbb{R}^n} \left(\int_{\partial E} f(\nu_E) - \nu_E(x) \cdot \frac{x}{f^*(x)} \, d\mathcal{H}^{n-1} \right)^{1/2}$$

Recall $f(\nu) = \sup \{ x \cdot \nu : x \in K \}$, $\frac{x}{f^*(x)} \cdot \nu \leq f(\nu)$, with equality iff $\nu = \nu_K(\frac{x}{f^*(x)})$.

![Diagram of E, K, and ν_E(y), ν_E(x), f*(x), y]
Question 2: Can we obtain an analog of the Fusco-Julin result in this case?

Theorem (N., 2015)

Suppose K is a uniformly convex, C^2 Wulff shape. Then there exists $C = C(n, K)$ such that

$$\beta(E) \leq C \delta(E)^{1/2}$$

for any set of finite perimeter E with $0 < |E| < \infty$.

Recall: $\delta(E) = P_K(E) - P_K(K)$, $\beta(E) =$ anisotropic H^1-type quantity.
Strong Stability in the Smooth Case

Proof idea:

- Selection Principle in the spirit of Cicalese-Leonardi and Fusco-Julin to reduce to the case of almost-minimizers of K-perimeter.
Proof idea:

- **Selection Principle** in the spirit of Cicallese-Leonardi and Fusco-Julin to reduce to the case of almost-minimizers of K-perimeter.

- **Regularity theory** for almost-minimizers plus L^1 closeness to $K \in C^2$ allows us to reduce to sets that are small normal C^1 perturbations of K.
Strong Stability in the Smooth Case

Proof idea:

- Selection Principle in the spirit of Cicalese-Leonardi and Fusco-Julin to reduce to the case of almost-minimizers of K-perimeter.

- Regularity theory for almost-minimizers plus L^1 closeness to $K \in C^2$ allows us to reduce to sets that are small normal C^1 perturbations of K.

- Apply the Fuglede-type theorem.
Theorem (N., 2015)

There exists a constant \(C = C(n) \) such that

\[
\beta(E) \leq C \delta(E)^{\gamma}
\]

\[\gamma = 1/(4 + 4n), \text{ for all sets of finite perimeter } E \text{ such that } 0 < |E| < \infty.\]
Strong stability results

Theorem (N., 2015)

There exists a constant $C = C(n)$ such that

$$\beta(E) \leq C \delta(E)^\gamma$$

$$\gamma = 1/(4 + 4n), \text{ for all sets of finite perimeter } E \text{ such that } 0 < |E| < \infty.$$

Theorem (N., 2015)

Let K be a convex polygon in \mathbb{R}^2. There exists a constant $C = C(K)$ such that

$$\beta(E) \leq C \delta(E)^{1/2}$$
Proof idea:

- Again, we use a Selection Principle as in Cicalese-Leonardi and Fusco-Julin to reduce to the case of almost-minimizers of K-perimeter.
Proof idea:

- Again, we use a Selection Principle as in Cicalese-Leonardi and Fusco-Julin to reduce to the case of almost-minimizers of K-perimeter.
- With no assumptions on K, we only get **very weak regularity properties**.
Proof idea:

- Again, we use a Selection Principle as in Cicalese-Leonardi and Fusco-Julin to reduce to the case of almost-minimizers of K-perimeter.
- With no assumptions on K, we only get very weak regularity properties.
- For 2-d polygonal case, Figalli-Maggi rigidity result \implies Coarea formula, explicit computation.
Thank you for your attention!