NONLOCAL PROBLEMS
WITH NEUMANN BOUNDARY CONDITIONS

SERENA DIPIERRO, XAVIER ROS-OTON, AND ENRICO VALDINOCI

Abstract. We introduce a new Neumann problem for the fractional Laplacian arising
from a simple probabilistic consideration, and we discuss the basic properties of this
model. We can consider both elliptic and parabolic equations in any domain. In addition,
we formulate problems with nonhomogeneous Neumann conditions, and also with mixed
Dirichlet and Neumann conditions, all of them having a clear probabilistic interpretation.

We prove that solutions to the fractional heat equation with homogeneous Neumann
conditions have the following natural properties: conservation of mass inside Ω, decreas-
ing energy, and convergence to a constant as $t \to \infty$. Moreover, for the elliptic case we
give the variational formulation of the problem, and establish existence of solutions.

We also study the limit properties and the boundary behavior induced by this nonlocal
Neumann condition.

For concreteness, one may think that our nonlocal analogue of the classical Neumann
condition $\partial_{\nu}u = 0$ on $\partial \Omega$ consists in the nonlocal prescription
\[\int_{\Omega} \frac{u(x) - u(y)}{|x-y|^{n+2s}} \, dy = 0 \quad \text{for } x \in \mathbb{R}^n \setminus \overline{\Omega}. \]

1. Introduction and results

The aim of this paper is to introduce the following Neumann problem for the fractional
Laplacian
\[
\begin{cases}
(-\Delta)^s u = f & \text{in } \Omega \\
N_s u = 0 & \text{in } \mathbb{R}^n \setminus \overline{\Omega}.
\end{cases}
\] (1.1)

Here, N_s is a new “nonlocal normal derivative”, given by
\[N_s u(x) := c_{n,s} \int_{\Omega} \frac{u(x) - u(y)}{|x-y|^{n+2s}} \, dy, \quad x \in \mathbb{R}^n \setminus \overline{\Omega}. \] (1.2)

The normalization constant $c_{n,s}$ is the one appearing in the definition the fractional Lapla-
cian
\[(-\Delta)^s u(x) = c_{n,s} \text{PV} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x-y|^{n+2s}} \, dy. \] (1.3)

See [12] [20] for the basic properties of this operator (and for further details on the nor-
malization constant $c_{n,s}$, whose explicit value only plays a minor role in this paper).

2010 Mathematics Subject Classification. 35R11, 60G22.

Key words and phrases. Nonlocal operators, fractional Laplacian, Neumann problem.

The first author was supported by grant EPSRC EP/K024566/1 (Scotland). The second author was
supported by grants MTM2011-27739-C04-01 (Spain) and 2009SGR345 (Catalunya). The third author
was supported by grants ERC-277749 (Europe) and PRIN-201274FYK7 (Italy). We thank Gerd Grubb
for her very interesting comments on a previous version of this manuscript.
As we will see below, the corresponding heat equation with homogeneous Neumann conditions

\[
\begin{aligned}
 u_t + (-\Delta)^s u & = 0 \quad \text{in } \Omega, \quad t > 0 \\
 \mathcal{N}_s u & = 0 \quad \text{in } \mathbb{R}^n \setminus \overline{\Omega}, \quad t > 0 \\
 u(x,0) & = u_0(x) \quad \text{in } \Omega, \quad t = 0
\end{aligned}
\]

(1.4)

possesses natural properties like conservation of mass inside \(\Omega \) or convergence to a constant as \(t \to +\infty \) (see Section 4).

The probabilistic interpretation of the Neumann problem (1.4) may be summarized as follows:

1. \(u(x,t) \) is the probability distribution of the position of a particle moving randomly inside \(\Omega \).
2. When the particle exits \(\Omega \), it immediately comes back into \(\Omega \).
3. The way in which it comes back inside \(\Omega \) is the following: If the particle has gone to \(x \in \mathbb{R}^n \setminus \overline{\Omega} \), it may come back to any point \(y \in \Omega \), the probability of jumping from \(x \) to \(y \) being proportional to \(|x-y|^{-n-2s}| \).

These three properties lead to the equation (1.4), being \(u_0 \) the initial probability distribution of the position of the particle.

A variation of formula (1.2) consists in renormalizing \(\mathcal{N}_s u \) according to the underlying probability law induced by the Lévy process. This leads to the definition

\[
\tilde{\mathcal{N}}_s u(x) := \frac{\mathcal{N}_s u(x)}{c_{n,s} \int_\Omega \frac{dy}{|x-y|^{n+2s}}}. \tag{1.5}
\]

Other Neumann problems for the fractional Laplacian (or other nonlocal operators) were introduced in [4, 8], [1, 3], [9, 10, 11], and [15]. All these different Neumann problems for nonlocal operators recover the classical Neumann problem as a limit case, and most of them has clear probabilistic interpretations as well. We postpone to Section 7 a comparison between these different models and ours.

An advantage of our approach is that the problem has a variational structure. In particular, we show that the classical integration by parts formulae

\[
\int_\Omega \Delta u = \int_{\partial \Omega} \partial_\nu u
\]

and

\[
\int_\Omega \nabla u \cdot \nabla v = \int_\Omega v (-\Delta) u + \int_{\partial \Omega} v \partial_\nu u
\]

are replaced in our setting by

\[
\int_\Omega (-\Delta)^s u \, dx = - \int_{\mathbb{R}^n \setminus \Omega} \mathcal{N}_s u \, dx
\]

and

\[
\frac{c_{n,s}}{2} \int_{\mathbb{R}^{2n} \setminus (\Omega)^2} \frac{(u(x) - u(y))(v(x) - v(y))}{|x-y|^{n+2s}} \, dx \, dy = \int_\Omega v (-\Delta)^s u + \int_{\mathbb{R}^n \setminus \Omega} v \mathcal{N}_s u.
\]

Also, the classical Neumann problem

\[
\begin{aligned}
 -\Delta u & = f \quad \text{in } \Omega \\
 \partial_\nu u & = g \quad \text{on } \partial \Omega
\end{aligned}
\]

(1.6)
comes from critical points of the energy functional
\[
\frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} f u - \int_{\partial \Omega} g u,
\]
without trace conditions. In analogy with this, we show that our nonlocal Neumann condition
\[
\begin{cases}
(-\Delta)^s u &= f \quad \text{in } \Omega \\
N_s u &= g \quad \text{in } \mathbb{R}^n \setminus \Omega
\end{cases}
\tag{1.7}
\]
follows from free critical points of the energy functional
\[
\frac{c_{n,s}}{4} \int_{\mathbb{R}^{2n}(C\Omega)^2} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy - \int_{\Omega} f u - \int_{\mathbb{R}^n \setminus \Omega} g u,
\]
see Proposition 3.7. Moreover, as well known, the theory of existence and uniqueness of solutions for the classical Neumann problem (1.6) relies on the compatibility condition
\[
\int_{\Omega} f = - \int_{\partial \Omega} g.
\]
We provide the analogue of this compatibility condition in our framework, that is
\[
\int_{\Omega} f = - \int_{\mathbb{R}^n \setminus \Omega} g,
\]
see Theorem 3.9. Also, we give a description of the spectral properties of our nonlocal problem, which are in analogy with the classical case.

The paper is organized in this way. In Section 2 we give a probabilistic interpretation of our Neumann condition, as a random reflection of a particle inside the domain, according to a Lévy flight. This also allows us to consider mixed Dirichlet and Neumann conditions and to get a suitable heat equation from the stochastic process.

In Section 3 we consider the variational structure of the associated nonlocal elliptic problem, we show an existence and uniqueness result (namely Theorem 3.9), as follows:

Let \(\Omega \subset \mathbb{R}^n \) be a bounded Lipschitz domain, \(f \in L^2(\Omega) \), and \(g \in L^1(\mathbb{R}^n \setminus \Omega) \). Suppose that there exists a \(C^2 \) function \(\psi \) such that \(N_s \psi = g \) in \(\mathbb{R}^n \setminus \Omega \).

Then, problem (1.7) admits a weak solution if and only if
\[
\int_{\Omega} f = - \int_{\mathbb{R}^n \setminus \Omega} g.
\]
Moreover, if such a compatibility condition holds, the solution is unique up to an additive constant.

Also, we give a description of a sort of generalized eigenvalues of \((-\Delta)^s\) with zero Neumann boundary conditions (see Theorem 3.11):

Let \(\Omega \subset \mathbb{R}^n \) be a bounded Lipschitz domain. Then, there exist a sequence of nonnegative values \(0 = \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \), and a sequence of functions \(u_i : \mathbb{R}^n \rightarrow \mathbb{R} \) such that
\[
\begin{cases}
(-\Delta)^s u_i(x) &= \lambda_i u_i(x) \quad \text{for any } x \in \Omega \\
N_s u_i(x) &= 0 \quad \text{for any } x \in \mathbb{R}^n \setminus \Omega.
\end{cases}
\]
Also, the functions u_i (when restricted to Ω) provide a complete orthogonal system in $L^2(\Omega)$.

By similarity with the classical case, we are tempted to consider the above λ_i and u_i as generalized eigenvalues and eigenfunctions. Though the word “generalized” will be omitted from now on for the sake of shortness, we remark that this spectral notion is not completely standard, since our eigenfunctions u_i are defined in the whole of \mathbb{R}^n but satisfy the equation $(-\Delta)^s u_i = \lambda_i u_i$ only in the domain Ω (indeed, outside Ω they verify our nonlocal Neumann condition). Moreover, the orthogonality and density properties of u_i also refer to their restriction in Ω.

In Section 4 we discuss the associated heat equation. As it happens in the classical case, we show that such equation preserves the mass, it has decreasing energy, and the solutions approach a constant as $t \to +\infty$. In particular, by the results in Propositions 4.1, 4.2 and 4.3 we have:

Assume that $u(x,t)$ is a classical solution to

$$\begin{cases} u_t + (-\Delta)^s u = 0 & \text{in } \Omega, \quad t > 0 \\ N_s u = 0 & \text{in } \mathbb{R}^n \setminus \overline{\Omega}, \quad t > 0 \\ u(x,0) = u_0(x) & \text{in } \Omega, \quad t = 0. \end{cases}$$

Then the total mass is conserved, i.e. for all $t > 0$

$$\int_{\Omega} u(x,t) \, dx = \int_{\Omega} u_0(x) \, dx.$$

Moreover, the energy

$$E(t) = \int_{\mathbb{R}^n \setminus \{\Omega\}^2} \frac{|u(x,t) - u(y,t)|^2}{|x - y|^{n+2s}} \, dx \, dy$$

is decreasing in time $t > 0$.

Finally, the solution approaches a constant for large times: more precisely

$$u \to \frac{1}{|\Omega|} \int_{\Omega} u_0 \quad \text{in } L^2(\Omega)$$

as $t \to +\infty$.

In Section 5 we compute some limits when $s \to 1$, showing that we can recover the classical case. In particular, we show in Proposition 5.1 that:

Let $\Omega \subset \mathbb{R}^n$ be any bounded Lipschitz domain. Let u and v be $C^2_0(\mathbb{R}^n)$ functions. Then,

$$\lim_{s \to 1} \int_{\mathbb{R}^n \setminus \Omega} N_s u \, v = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} \, v.$$

Also, we prove that nice functions can be extended continuously outside $\overline{\Omega}$ in order to satisfy a homogeneous nonlocal Neumann condition, and we characterize the boundary behavior of the nonlocal Neumann function. More precisely, in Proposition 5.2 we show that:
Let $\Omega \subset \mathbb{R}^n$ be a domain with C^1 boundary. Let u be continuous in Ω, with $N_su = 0$ in $\mathbb{R}^n \setminus \Omega$. Then u is continuous in the whole of \mathbb{R}^n.

The boundary behavior of the nonlocal Neumann condition is also addressed in Proposition 5.4:

Let $\Omega \subset \mathbb{R}^n$ be a C^1 domain, and $u \in C(\mathbb{R}^n)$. Then, for all $s \in (0, 1)$,
\[
\lim_{x \to \partial \Omega} \tilde{N}_s u(x) = 0,
\]
where \tilde{N} is defined by (1.5).

Also, if $s > \frac{1}{2}$ and $u \in C^1,\alpha(\mathbb{R}^n)$ for some $\alpha > 0$, then
\[
\partial_\nu \tilde{N}_s u(x) := \lim_{\epsilon \to 0^+} \frac{\tilde{N}_s u(x + \epsilon \nu)}{\epsilon} = \kappa \partial_\nu u
\]
for any $x \in \partial \Omega$, for some constant $\kappa > 0$.

Later on, in Section 6 we deal with an overdetermined problem and we show that it is not possible to prescribe both nonlocal Neumann and Dirichlet conditions for a continuous function.

Finally, in Section 7 we recall the various nonlocal Neumann conditions already appeared in the literature, and we compare them with our model.

All the arguments presented are of elementary nature. Moreover, all our considerations work for any general Lévy measure ν satisfying
\[
\int_{\mathbb{R}^n} \min(1, |y|^2) d\nu(y) < +\infty.
\]
However, for sake of clarity of presentation, we have done everything for the most canonical case of the fractional Laplacian.

2. Heuristic probabilistic interpretation

Let us consider the Lévy process in \mathbb{R}^n whose infinitesimal generator is the fractional Laplacian $(-\Delta)^s$. Heuristically, we may think that this process represents the (random) movement of a particle along time $t > 0$. As it is well known, the probability density $u(x, t)$ of the position of the particle solves the fractional heat equation $u_t + (-\Delta)^s u = 0$ in \mathbb{R}^n; see [21] for a simple illustration of this fact.

Recall that when the particle is situated at $x \in \mathbb{R}^n$, it may jump to any other point $y \in \mathbb{R}^n$, the probability of jumping to y being proportional to $|x - y|^{-n-2s}$.

Similarly, one may consider the random movement of a particle inside a bounded domain $\Omega \subset \mathbb{R}^n$, but in this case one has to decide what happens when the particle leaves Ω.

In the classical case $s = 1$ (when the Lévy process is the Brownian motion), we have the following:

1To keep the notation as simple as possible, given functions f and g and an operator T, we will often write identities like “$f = g$ in Ω” or “$Tf = g$ in Ω” to mean “$f(x) = g(x)$ for every $x \in \Omega$” or “$Tf = g$ for every $x \in \Omega$”, respectively. Also, if $u : \mathbb{R}^n \to \mathbb{R}$, we often denote the restriction of u to Ω again by u. We hope that this slight abuse of notation creates no problem to the reader, but for the sake of clarity we also include an appendix at the end of the paper in which Theorems 3.9 and 3.11 are proved using a functional analysis notation that distinguishes between a function and its restriction.
(1) If the particle is killed when it reaches the boundary $\partial \Omega$, then the probability distribution solves the heat equation with homogeneous Dirichlet conditions.

(2) If, instead, when the particle reaches the boundary $\partial \Omega$ it immediately comes back into Ω (i.e., it bounces on $\partial \Omega$), then the probability distribution solves the heat equation with homogeneous Neumann conditions.

In the nonlocal case $s \in (0, 1)$, in which the process has jumps, case (1) corresponds to the following: The particle is killed when it exits Ω. In this case, the probability distribution u of the process solves the heat equation with homogeneous Dirichlet conditions $u = 0$ in $\mathbb{R}^n \setminus \Omega$, and solutions to this problem are well understood; see for example [18, 14, 13, 2].

The analogue of case (2) is the following: When the particle exits Ω, it immediately comes back into Ω. Of course, one has to decide how the particle comes back into the domain.

In [1, 3] the idea was to find a deterministic “reflection” or “projection” which describes the way in which the particle comes back into Ω.

The alternative that we propose here is the following: If the particle has gone to $x \in \mathbb{R}^n \setminus \overline{\Omega}$, then it may come back to any point $y \in \Omega$, the probability of jumping from x to y being proportional to $|x - y|^{-n-2s}$.

Notice that this is exactly the (random) way as the particle is moving all the time, here we just add the restriction that it has to immediately come back into Ω every time it goes outside.

Let us finally illustrate how this random process leads to problems (1.1) or (1.4). In fact, to make the exposition easier, we will explain the case of mixed Neumann and Dirichlet conditions, which, we think, is very natural.

2.1. Mixed Dirichlet and Neumann conditions. Assume that we have some domain $\Omega \subset \mathbb{R}^n$, and that its complement $\mathbb{R}^n \setminus \overline{\Omega}$ is splitted into two parts: N (with Neumann conditions), and D (with Dirichlet conditions).

Consider a particle moving randomly, starting inside Ω. When the particle reaches D, it obtains a payoff $\phi(x)$, which depends on the point $x \in D$ where the particle arrived. Instead, when the particle reaches N it immediately comes back to Ω as described before.

If we denote $u(x)$ the expected payoff, then we clearly have
\[(-\Delta)^s u = 0 \quad \text{in } \Omega \]
and
\[u = \phi \quad \text{in } D, \]
where $\phi : D \to \mathbb{R}$ is a given function.

Moreover, recall that when the particle is in $x \in N$ then it goes back to some point $y \in \Omega$, with probability proportional to $|x - y|^{-n-2s}$. Hence, we have that
\[u(x) = \kappa \int_{\Omega} \frac{u(y)}{|x - y|^{n+2s}} dy \quad \text{for } x \in N, \]
for some constant κ, possibly depending on the point $x \in N$, that has been fixed. In order to normalize the probability measure, the value of the constant κ is so that
\[\kappa \int_{\Omega} \frac{dy}{|x - y|^{n+2s}} = 1. \]
Finally, the previous identity can be written as
\[N_s u(x) = c_{n,s} \int_{\Omega} \frac{u(x) - u(y)}{|x-y|^{n+2s}} \, dy = 0 \quad \text{for } x \in N, \]
and therefore \(u \) solves
\[
\begin{cases}
 (-\Delta)^s u &= 0 \quad \text{in } \Omega \\
 N_s u &= 0 \quad \text{in } N \\
 u &= \phi \quad \text{in } D,
\end{cases}
\]
which is a nonlocal problem with mixed Neumann and Dirichlet conditions.

Note that the previous problem is the nonlocal analogue of
\[
\begin{cases}
 -\Delta u &= 0 \quad \text{in } \Omega \\
 \partial_{\nu} u &= 0 \quad \text{in } \Gamma_N \\
 u &= \phi \quad \text{in } \Gamma_D,
\end{cases}
\]
being \(\Gamma_D \) and \(\Gamma_N \) two disjoint subsets of \(\partial \Omega \), in which classical Dirichlet and Neumann boundary conditions are prescribed.

More generally, the classical Robin condition \(a \partial_{\nu} u + bu = c \) on some \(\Gamma_R \subseteq \partial \Omega \) may be replaced in our nonlocal framework by \(a N_s u + bu = c \) on some \(R \subseteq \mathbb{R}^n \setminus \overline{\Omega} \). Nonlinear boundary conditions may be considered in a similar way.

2.2. Fractional heat equation, nonhomogeneous Neumann conditions. Let us consider now the random movement of the particle inside \(\Omega \), with our new Neumann conditions in \(\mathbb{R}^n \setminus \overline{\Omega} \).

Denoting \(u(x,t) \) the probability density of the position of the particle at time \(t > 0 \), with a similar discretization argument as in [21], one can see that \(u \) solves the fractional heat equation
\[u_t + (-\Delta)^s u = 0 \quad \text{in } \Omega \quad \text{for } t > 0, \]
with
\[N_s u = 0 \quad \text{in } \mathbb{R}^n \setminus \overline{\Omega} \quad \text{for } t > 0. \]
Thus, if \(u_0 \) is the initial probability density, then \(u \) solves problem (1.4).

Of course, one can now see that with this probabilistic interpretation there is no problem in considering a right hand side \(f \) or nonhomogeneous Neumann conditions
\[
\begin{cases}
 u_t + (-\Delta)^s u &= f(x,t,u) \quad \text{in } \Omega \\
 N_s u &= g(x,t) \quad \text{in } \mathbb{R}^n \setminus \overline{\Omega}.
\end{cases}
\]
In this case, \(g \) represents a "nonlocal flux" of new particles coming from outside \(\Omega \), and \(f \) would represent a reaction term.

3. The elliptic problem

Given \(g \in L^1(\mathbb{R}^n \setminus \Omega) \) and measurable functions \(u, v : \mathbb{R}^n \to \mathbb{R} \), we set
\[
\|u\|_{H^s_{\Omega}} := \sqrt{\|u\|^2_{L^2(\Omega)} + \|g|^{1/2}u\|^2_{L^2(\mathbb{R}^n \setminus \Omega)} + \int_{\mathbb{R}^n \setminus (C \Omega)^2} \frac{|u(x) - u(y)|^2}{|x-y|^{n+2s}} \, dx \, dy} \quad (3.1)
\]
and
\[
(u, v)_{H^s_\Omega} := \int_\Omega u v \, dx + \int_{\mathbb{R}^n\setminus\Omega} |g_\| u v \, dx \\
+ \int_{\mathbb{R}^{2n}\setminus(C\Omega)^2} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy.
\] (3.2)

Then, we define the space
\[H^s_\Omega := \{ u : \mathbb{R}^n \to \mathbb{R} \text{ measurable} : \| u \|_{H^s_\Omega} < +\infty \} . \]

Notice that \(H^s_\Omega \) and its norm depend on \(g \), but we omit this dependence in the notation for the sake of simplicity.

Proposition 3.1. \(H^s_\Omega \) is a Hilbert space with the scalar product defined in (3.2).

Proof. We point out that (3.2) is a bilinear form and \(\| u \|_{H^s_\Omega} = \sqrt{(u, u)_{H^s_\Omega}} \). Also, if \(\| u \|_{H^s_\Omega} = 0 \), it follows that \(\| u \|_{L^2(\Omega)} = 0 \), hence \(u = 0 \) a.e. in \(\Omega \), and that
\[
\int_{\mathbb{R}^{2n}\setminus(C\Omega)^2} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = 0,
\]
which in turn implies that \(|u(x) - u(y)| = 0\) for any \((x, y) \in \mathbb{R}^{2n}\setminus(C\Omega)^2\). In particular, a.e. \(x \in C\Omega \) and \(y \in \Omega \) we have that
\[u(x) = u(x) - u(y) = 0. \]
This shows that \(u = 0 \) a.e. in \(\mathbb{R}^n \), so it remains to prove that \(H^s_\Omega \) is complete. For this, we take a Cauchy sequence \(u_k \) with respect to the norm in (3.1).

In particular, \(u_k \) is a Cauchy sequence in \(L^2(\Omega) \) and therefore, up to a subsequence, we suppose that \(u_k \) converges to some \(u \) in \(L^2(\Omega) \) and a.e. in \(\Omega \). More explicitly, there exists \(Z_1 \subset \mathbb{R}^n \) such that
\[|Z_1| = 0 \text{ and } u_k(x) \to u(x) \text{ for every } x \in \Omega \setminus Z_1. \] (3.3)

Also, given any \(U : \mathbb{R}^n \to \mathbb{R} \), for any \((x, y) \in \mathbb{R}^{2n}\) we define
\[
E_U(x, y) := \frac{(U(x) - U(y)) \chi_{\mathbb{R}^{2n}\setminus(C\Omega)^2}(x, y)}{|x - y|^{\frac{n+2s}{2}}}.
\] (3.4)

Notice that
\[
E_{u_k}(x, y) - E_{u_h}(x, y) = \frac{(u_k(x) - u_k(x) - u_k(y) + u_h(y)) \chi_{\mathbb{R}^{2n}\setminus(C\Omega)^2}(x, y)}{|x - y|^{\frac{n+2s}{2}}}. \]

Accordingly, since \(u_k \) is a Cauchy sequence in \(H^s_\Omega \), for any \(\epsilon > 0 \) there exists \(N_\epsilon \in \mathbb{N} \) such that if \(h, k \geq N_\epsilon \) then
\[
\epsilon^2 \geq \int_{\mathbb{R}^{2n}\setminus(C\Omega)^2} \frac{|(u_k - u_h)(x) - (u_k - u_h)(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = \| E_{u_k} - E_{u_h} \|_{L^2(\mathbb{R}^{2n})}^2.
\]
That is, E_{u_k} is a Cauchy sequence in $L^2(\mathbb{R}^{2n})$ and thus, up to a subsequence, we assume that E_{u_k} converges to some E in $L^2(\mathbb{R}^{2n})$ and a.e. in \mathbb{R}^{2n}. More explicitly, there exists $Z_2 \subset \mathbb{R}^{2n}$ such that

$$|Z_2| = 0$$

and $E_{u_k}(x,y) \to E(x,y)$ for every $(x,y) \in \mathbb{R}^{2n} \setminus Z_2$. (3.5)

Now, for any $x \in \Omega$, we set

$$S_x := \{ y \in \mathbb{R}^n : (x,y) \in \mathbb{R}^{2n} \setminus Z_2 \},$$

$$W := \{(x,y) \in \mathbb{R}^{2n} : x \in \Omega \text{ and } y \in \mathbb{R}^n \setminus S_x \}$$

and

$$V := \{ x \in \Omega : |\mathbb{R}^n \setminus S_x| = 0 \}.$$

We remark that $W \subseteq Z_2$. (3.6)

Indeed, if $(x,y) \in W$ we have that $y \in \mathbb{R}^n \setminus S_x$, that is $(x,y) \notin \mathbb{R}^{2n} \setminus Z_2$, and so $(x,y) \in Z_2$, which gives (3.6).

Using (3.5) and (3.6), we obtain that $|W| = 0$, hence by the Fubini’s Theorem we have that

$$0 = |W| = \int_\Omega |\mathbb{R}^n \setminus S_x| \, dx,$$

which implies that $|\mathbb{R}^n \setminus S_x| = 0$ for a.e. $x \in \Omega$.

As a consequence, we conclude that $|\Omega \setminus V| = 0$. This and (3.3) imply that

$$|\Omega \setminus (V \setminus Z_1)| = |(\Omega \setminus V) \cup Z_1| \leq |\Omega \setminus V| + |Z_1| = 0.$$

In particular, we have that $V \setminus Z_1 \neq \emptyset$, so we can fix $x_0 \in V \setminus Z_1$.

Since $x_0 \in \Omega \setminus Z_1$, we know from (3.3) that

$$\lim_{k \to +\infty} u_k(x_0) = u(x_0).$$

Furthermore, since $x_0 \in V$ we have that $|\mathbb{R}^n \setminus S_{x_0}| = 0$. That is, a.e. $y \in \mathbb{R}^n$ (namely, for every $y \in S_{x_0}$), we have that $(x_0,y) \in \mathbb{R}^{2n} \setminus Z_2$ and so

$$\lim_{k \to +\infty} E_{u_k}(x_0,y) = E(x_0,y),$$

thanks to (3.5). Notice also that $\Omega \times (C\Omega) \subseteq \mathbb{R}^{2n} \setminus (C\Omega)^2$ and so, recalling (3.4), we have that

$$E_{u_k}(x_0,y) := \frac{u_k(x_0) - u_k(y)}{|x_0 - y|^\frac{n+2s}{2}},$$

for a.e. $y \in C\Omega$. Thus, we obtain

$$\lim_{k \to +\infty} u_k(y) = \lim_{k \to +\infty} \left\{ u_k(x_0) - |x_0 - y|^\frac{n+2s}{2}E_{u_k}(x_0,y) \right\}$$

$$= u(x_0) - |x_0 - y|^\frac{n+2s}{2}E(x_0,y),$$

a.e. $y \in C\Omega$.

This and (3.3) say that u_k converges a.e. in \mathbb{R}^n. Up to a change of notation, we will say that u_k converges a.e. in \mathbb{R}^n to some u. So, using that u_k is a Cauchy sequence in H_0^s.

fixed any \(\epsilon > 0 \) there exists \(N_\epsilon \in \mathbb{N} \) such that, for any \(h \geq N_\epsilon \),

\[
\epsilon^2 \geq \lim_{k \to +\infty} \left\| u_h - u_k \right\|^2_{H^s_\Omega}
\geq \lim_{k \to +\infty} \int_{\Omega} (u_h - u_k)^2 + \lim_{k \to +\infty} \int_{\Omega} |g|(u_h - u_k)^2 \\
+ \lim_{k \to +\infty} \int_{\mathbb{R}^{2n} \setminus (\Omega)^2} \frac{|(u_h - u_k)(x) - (u_h - u_k)(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\geq \int_{\Omega} (u_h - u)^2 + \int_{\Omega} |g|(u_h - u)^2 + \int_{\mathbb{R}^{2n} \setminus (\Omega)^2} \frac{|(u_h - u)(x) - (u_h - u)(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
= \|u_h - u\|^2_{H^s_\Omega},
\]

where Fatou’s Lemma was used. This says that \(u_h \) converges to \(u \) in \(H^s_\Omega \), showing that \(H^s_\Omega \) is complete.

3.1. Some integration by parts formulas

The following is a nonlocal analogue of the divergence theorem.

Lemma 3.2. Let \(u \) be any bounded \(C^2 \) function in \(\mathbb{R}^n \). Then,

\[
\int_{\Omega} (-\Delta)^s u = - \int_{\mathbb{R}^n \setminus \Omega} \mathcal{N}_s u.
\]

Proof. Note that

\[
\int_{\Omega} \int_{\Omega} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dx \, dy = \int_{\Omega} \int_{\Omega} \frac{u(y) - u(x)}{|x - y|^{n+2s}} \, dx \, dy = 0,
\]

since the role of \(x \) and \(y \) in the integrals above is symmetric. Hence, we have that

\[
\int_{\Omega} (-\Delta)^s u \, dx = c_{n,s} \int_{\Omega} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dy \, dx = c_{n,s} \int_{\Omega} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dy \, dx
\]

\[
= c_{n,s} \int_{\mathbb{R}^n \setminus \Omega} \int_{\Omega} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dx \, dy = - \int_{\mathbb{R}^n \setminus \Omega} \mathcal{N}_s u(y) \, dy,
\]
as desired. \(\square \)

More generally, we have the following integration by parts formula.

Lemma 3.3. Let \(u \) and \(v \) be bounded \(C^2 \) functions in \(\mathbb{R}^n \). Then,

\[
\frac{c_{n,s}}{2} \int_{\mathbb{R}^{2n} \setminus (\Omega)^2} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy = \int_{\Omega} v (-\Delta)^s u + \int_{\mathbb{R}^n \setminus \Omega} v \mathcal{N}_s u,
\]

where \(c_{n,s} \) is the constant in (1.3).

Proof. Notice that

\[
\frac{1}{2} \int_{\mathbb{R}^{2n} \setminus (\Omega)^2} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy
\]

\[
= \int_{\Omega} \int_{\mathbb{R}^n} v(x) \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dy \, dx + \int_{\mathbb{R}^n \setminus \Omega} \int_{\Omega} v(x) \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dy \, dx.
\]

Thus, using (1.3) and (1.2), the identity follows. \(\square \)
Remark 3.4. We recall that if one takes $\partial_\nu u = 1$, then one can obtain the perimeter of Ω by integrating this Neumann condition over $\partial\Omega$. Indeed,

$$|\partial\Omega| = \int_{\partial\Omega} dx = \int_{\partial\Omega} \partial_\nu u \, dx. \quad (3.7)$$

Analogously, we can define $\tilde{N}_s u$, by renormalizing $N_s u$ by a factor

$$w_{s,\Omega}(x) := c_{n,s} \int_{\Omega} \frac{dy}{|x-y|^{n+2s}},$$

that is

$$\tilde{N}_s u(x) := \frac{N_s u(x)}{w_{s,\Omega}(x)} \quad \text{for} \quad x \in \mathbb{R}^n \setminus \overline{\Omega}. \quad (3.8)$$

Now, we observe that if $\tilde{N}_s u(x) = 1$ for any $x \in \mathbb{R}^n \setminus \overline{\Omega}$, then we find the fractional perimeter (see [6] where this object was introduced) by integrating such nonlocal Neumann condition over $\mathbb{R}^n \setminus \Omega$, that is:

$$\text{Per}_s(\Omega) := c_{n,s} \int_{\Omega} \int_{\mathbb{R}^n \setminus \Omega} \frac{dx \, dy}{|x-y|^{n+2s}} = \int_{\mathbb{R}^n \setminus \Omega} w_{s,\Omega}(x) \, dx = \int_{\mathbb{R}^n \setminus \Omega} w_{s,\Omega}(x) \tilde{N}_s u(x) \, dx = \int_{\mathbb{R}^n \setminus \Omega} N_s u(x) \, dx,$$

that can be seen as the nonlocal counterpart of (3.7).

Remark 3.5. The renormalized Neumann condition in (3.8) can also be framed into the probabilistic interpretation of Section 2.

Indeed suppose that $C\Omega$ is partitioned into a Dirichlet part D and a Neumann part N and that:

- our Lévy process receives a final payoff $\phi(x)$ when it leaves the domain Ω by landing at the point x in D,
- if the Lévy process leaves Ω by landing at the point x in N, then it receives an additional payoff $\psi(x)$ and is forced to come back to Ω and keep running by following the same probability law (the case discussed in Section 2 is the model situation in which $\psi \equiv 0$).

In this setting, the expected payoff $u(x)$ obtained by starting the process at the point $x \in \Omega$ satisfies $(-\Delta)^s u = 0$ in Ω and $u = \phi$ in D. Also, for any $x \in N$, the expected payoff landing at x must be equal to the additional payoff $\psi(x)$ plus the average payoff $u(y)$ obtained by jumping from x to $y \in \Omega$, that is:

$$\text{for any} \ x \in N, \quad u(x) = \psi(x) + \int_{\Omega} \frac{u(y)}{|x-y|^{n+2s}} \, dy \int_{\Omega} \frac{dy}{|x-y|^{n+2s}},$$

which corresponds to $\tilde{N}_s u(x) = \psi(x)$.

3.2. Weak solutions with Neumann conditions. The integration by parts formula from Lemma 3.3 leads to the following:

Definition 3.6. Let \(f \in L^2(\Omega) \) and \(g \in L^1(\mathbb{R}^n \setminus \Omega) \). Let \(u \in H^s_\Omega \). We say that \(u \) is a weak solution of

\[
\begin{align*}
(-\Delta)^s u &= f \quad \text{in } \Omega \\
\mathcal{N}_s u &= g \quad \text{in } \mathbb{R}^n \setminus \Omega
\end{align*}
\]

(3.9)

whenever

\[
\frac{c_{n,s}}{2} \int_{\mathbb{R}^{2n} \setminus (C\Omega)^2} \frac{(u(x) - u(y))(v(x) - v(y))}{|x-y|^{n+2s}} \, dx \, dy = \int_\Omega f \, v + \int_{\mathbb{R}^n \setminus \Omega} g \, v
\]

(3.10)

for all test functions \(v \in H^s_\Omega \).

With this definition, we can prove the following.

Proposition 3.7. Let \(f \in L^2(\Omega) \) and \(g \in L^1(\mathbb{R}^n \setminus \Omega) \). Let \(I : H^s_\Omega \to \mathbb{R} \) be the functional defined as

\[
I[u] := \frac{c_{n,s}}{4} \int_{\mathbb{R}^{2n} \setminus (C\Omega)^2} \frac{|u(x) - u(y)|^2}{|x-y|^{n+2s}} \, dx \, dy - \int_\Omega f \, u - \int_{\mathbb{R}^n \setminus \Omega} g \, u
\]

for every \(u \in H^s_\Omega \).

Then any critical point of \(I \) is a weak solution of \((3.9) \).

Proof. First of all, we observe that the functional \(I \) is well defined on \(H^s_\Omega \). Indeed, if \(u \in H^s_\Omega \) then

\[
\left| \int_\Omega f \, u \right| \leq \|f\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)} \leq C \|u\|_{H^s_\Omega},
\]

and

\[
\left| \int_{\mathbb{R}^n \setminus \Omega} g \, u \right| \leq \int_{\mathbb{R}^n \setminus \Omega} |g|^{1/2} |u| \leq \|g\|_{L^1(\mathbb{R}^n \setminus \Omega)} \|u\|_{L^2(\mathbb{R}^n \setminus \Omega)} \leq C \|u\|_{H^s_\Omega}.
\]

Therefore, if \(u \in H^s_\Omega \) we have that

\[
|I[u]| \leq C \|u\|_{H^s_\Omega} < +\infty.
\]

Now, we compute the first variation of \(I \). For this, we take \(\epsilon < 1 \) and \(v \in H^s_\Omega \). Then the function \(u + \epsilon v \in H^s_\Omega \), and so we can compute

\[
I[u + \epsilon v] = \frac{c_{n,s}}{4} \int_{\mathbb{R}^{2n} \setminus (C\Omega)^2} \frac{|(u + \epsilon v)(x) - (u + \epsilon v)(y)|^2}{|x-y|^{n+2s}} \, dx \, dy
\]

\[
- \int_\Omega f(u + \epsilon v) - \int_{\mathbb{R}^n \setminus \Omega} g(u + \epsilon v)
\]

\[
= I(u) + \epsilon \left(\frac{c_{n,s}}{2} \int_{\mathbb{R}^{2n} \setminus (C\Omega)^2} \frac{(u(x) - u(y))(v(x) - v(y))}{|x-y|^{n+2s}} \, dx \, dy - \int_\Omega f \, v - \int_{\mathbb{R}^n \setminus \Omega} g \, v \right)
\]

\[
+ \frac{c_{n,s}}{4} \epsilon^2 \int_{\mathbb{R}^{2n} \setminus (C\Omega)^2} \frac{|v(x) - v(y)|^2}{|x-y|^{n+2s}} \, dx \, dy.
\]

Hence,

\[\lim_{\epsilon \to 0} \frac{I[u + \epsilon v] - I[u]}{\epsilon} = c_{n,s} \frac{1}{2} \int_{\mathbb{R}^{2n} \setminus (C\Omega)^2} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy - \int_{\Omega} f \, v - \int_{\mathbb{R}^n \setminus \Omega} g \, v, \]

which means that

\[I'[u](v) = c_{n,s} \frac{1}{2} \int_{\mathbb{R}^{2n} \setminus (C\Omega)^2} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy - \int_{\Omega} f \, v - \int_{\mathbb{R}^n \setminus \Omega} g \, v. \]

Therefore, if \(u \) is a critical point of \(I \), then \(u \) is a weak solution to (3.9), according to Definition 3.6.

\[\square \]

Next result is a sort of maximum principle and it is auxiliary towards the existence and uniqueness theory provided in the subsequent Theorem 3.9.

Lemma 3.8. Let \(f \in L^2(\Omega) \) and \(g \in L^1(\mathbb{R}^n \setminus \Omega) \). Let \(u \) be any \(H^s_\Omega \) function satisfying in the weak sense

\[\begin{cases} (-\Delta)^s u = f & \text{in } \Omega \\ \mathcal{N}_s u = g & \text{in } \mathbb{R}^n \setminus \Omega, \end{cases} \]

with \(f \geq 0 \) and \(g \geq 0 \).

Then, \(u \) is constant.

Proof. First, we observe that the function \(v \equiv 1 \) belongs to \(H^s_\Omega \), and therefore we can use it as a test function in (3.10), obtaining that

\[0 \leq \int_{\Omega} f = - \int_{\mathbb{R}^n \setminus \Omega} g \leq 0. \]

This implies that

\[f = 0 \quad \text{a.e. in } \Omega \quad \text{and} \quad g = 0 \quad \text{a.e. in } \mathbb{R}^n \setminus \Omega. \]

Therefore, taking \(v = u \) as a test function in (3.10), we deduce that

\[\int_{\mathbb{R}^{2n} \setminus (C\Omega)^2} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = 0, \]

and hence \(u \) must be constant.

\[\square \]

We can now give the following existence and uniqueness result (we observe that its statement is in complete analogy with the classical case, see e.g. page 294 in [16]).

Theorem 3.9. Let \(\Omega \subset \mathbb{R}^n \) be a bounded Lipschitz domain, \(f \in L^2(\Omega) \), and \(g \in L^1(\mathbb{R}^n \setminus \Omega) \). Suppose that there exists a \(C^2 \) function \(\psi \) such that \(\mathcal{N}_s \psi = g \) in \(\mathbb{R}^n \setminus \Omega \).

Then, problem (3.9) admits a solution in \(H^s_\Omega \) if and only if

\[\int_{\Omega} f = - \int_{\mathbb{R}^n \setminus \Omega} g. \tag{3.11} \]

Moreover, in case that (3.11) holds, the solution is unique up to an additive constant.

\[^2 \text{The only difference with the classical case is that in Theorems 3.9 it is not necessary to suppose that the domain is connected in order to obtain the uniqueness result.} \]
Proof. Case 1. We do first the case \(g \equiv 0 \), i.e., with homogeneous nonlocal Neumann conditions. We also assume that \(f \neq 0 \), otherwise there is nothing to prove.

Given \(h \in L^2(\Omega) \), we look for a solution \(v \in H^s_\Omega \) of the problem

\[
\int_{\Omega} v \phi + \int_{\mathbb{R}^{2n} \setminus (\Omega^2)} \frac{(v(x) - v(y))(\phi(x) - \phi(y))}{|x-y|^{n+2s}} \, dx \, dy = \int_{\Omega} h \phi, \tag{3.12}
\]

for any \(\phi \in H^s_\Omega \), with homogeneous Neumann conditions \(\mathcal{N}_x v = 0 \) in \(\mathbb{R}^n \setminus \overline{\Omega} \).

We consider the functional \(F : H^s_\Omega \to \mathbb{R} \) defined as

\[
F(\phi) := \int_{\Omega} h \phi \quad \text{for any} \, \phi \in H^s_\Omega.
\]

It is easy to see that \(F \) is linear. Moreover, it is continuous on \(H^s_\Omega \):

\[
|F(\phi)| \leq \int_{\Omega} \|h\| \|\phi\| \leq \|h\|_{L^2(\Omega)} \|\phi\|_{L^2(\Omega)} \leq \|h\|_{L^2(\Omega)} \|\phi\|_{H^s_\Omega}.
\]

Therefore, from the Riesz representation theorem it follows that problem (3.12) admits a unique solution \(v \in H^s_\Omega \) for any given \(h \in L^2(\Omega) \).

Furthermore, taking \(\phi := v \) in (3.12), one obtain that

\[
\|v\|_{H^s(\Omega)} \leq C \|h\|_{L^2(\Omega)}. \tag{3.13}
\]

Now, we define the operator \(T_o : L^2(\Omega) \to H^s_\Omega \) as \(T_o h = v \). We also define by \(T \) the restriction operator in \(\Omega \), that is

\[
T h = T_o h|_{\Omega}.
\]

That is, the function \(T_o h \) is defined in the whole of \(\mathbb{R}^n \), then we take \(T h \) to be its restriction in \(\Omega \). In this way, we see that \(T : L^2(\Omega) \to L^2(\Omega) \).

We have that \(T \) is compact. Indeed, we take a sequence \(\{h_k\}_{k \in \mathbb{N}} \) bounded in \(L^2(\Omega) \). Hence, from (3.13) we deduce that the sequence of \(T h_k \) is bounded in \(H^s(\Omega) \), which is compactly embedded in \(L^2(\Omega) \) (see e.g. [12]). Therefore, there exists a subsequence that converges in \(L^2(\Omega) \).

Now, we show that \(T \) is self-adjoint. For this, we take \(h_1, h_2 \in C^0_\infty(\Omega) \) and we use the weak formulation in (3.12) to say that, for every \(\varphi, \phi \in H^s_\Omega \), we have

\[
\int_{\Omega} T_o h_1 \varphi + \int_{\mathbb{R}^{2n} \setminus (\Omega^2)} \frac{(T_o h_1(x) - T_o h_1(y))(\varphi(x) - \varphi(y))}{|x-y|^{n+2s}} \, dx \, dy = \int_{\Omega} h_1 \varphi, \tag{3.14}
\]

and

\[
\int_{\Omega} T_o h_2 \phi + \int_{\mathbb{R}^{2n} \setminus (\Omega^2)} \frac{(T_o h_2(x) - T_o h_2(y))(\phi(x) - \phi(y))}{|x-y|^{n+2s}} \, dx \, dy = \int_{\Omega} h_2 \phi. \tag{3.15}
\]

Now we take \(\varphi := T_o h_2 \) and \(\phi := T_o h_1 \) in (3.14) and (3.15) respectively and we obtain that

\[
\int_{\Omega} h_1 T_o h_2 = \int_{\Omega} T_o h_1 h_2
\]

for any \(h_1, h_2 \in C^0_\infty(\Omega) \). Accordingly, since \(T_o h_1 = Th_1 \) and \(T_o h_2 = Th_2 \) in \(\Omega \), we conclude that

\[
\int_{\Omega} h_1 T h_2 = \int_{\Omega} T h_1 h_2. \tag{3.16}
\]
for any \(h_1, h_2 \in C_0^\infty(\Omega) \). If \(h_1, h_2 \in L^2(\Omega) \), there exist sequences of functions in \(C_0^\infty(\Omega) \), say \(h_{1,k} \) and \(h_{2,k} \), such that \(h_{1,k} \to h_1 \) and \(h_{2,k} \to h_2 \) in \(L^2(\Omega) \) as \(k \to +\infty \). From (3.16) we have that
\[
\int_{\Omega} h_{1,k} T h_{2,k} = \int_{\Omega} T h_{1,k} h_{2,k}.
\] (3.17)
Moreover, from (3.13) we deduce that \(T h_{1,k} \to T h_1 \) and \(T h_{2,k} \to T h_2 \) in \(H^s(\Omega) \) as \(k \to +\infty \). From (3.16) we have that
\[
\int_{\Omega} h_{1,k} T h_{2,k} = \int_{\Omega} T h_{1,k} h_{2,k}.
\]
and
\[
\int_{\Omega} T h_{1,k} h_{2,k} \to \int_{\Omega} T h_1 h_2 \text{ as } k \to +\infty.
\]
The last two formulas and (3.17) imply that
\[
\int_{\Omega} h_1 T h_2 = \int_{\Omega} T h_1 h_2 \text{ for any } h_1, h_2 \in L^2(\Omega),
\]
which says that \(T \) is self-adjoint.

Now we prove that
\[
\text{Ker}(Id - T) \text{ consists of constant functions.} \quad (3.18)
\]
First of all, we check that the constants are in \(\text{Ker}(Id - T) \). We take a function constantly equal to \(c \) and we observe that \((-\Delta)^s c = 0\) in \(\Omega \) (hence \((-\Delta)^s c + c = c\) and \(N_s c = 0\) in \(\mathbb{R}^n \setminus \Omega \). This shows that \(T_0 c = c \) in \(\mathbb{R}^n \), and so \(T c = c \) in \(\Omega \), which implies that \(c \in \text{Ker}(Id - T) \). Viceversa, now we show that if \(v \in \text{Ker}(Id - T) \subseteq L^2(\Omega) \), then \(v \) is constant.

For this, we consider \(T_0 v \in H^s_\Omega \). By construction
\[
(-\Delta)^s(T_0 v) + (T_0 v) = v \text{ in } \Omega,
\]
in the weak sense, and
\[
N_s(T_0 v) = 0 \text{ in } \mathbb{R}^n \setminus \Omega. \quad (3.20)
\]
On the other hand, since \(v \in \text{Ker}(Id - T) \), we have that
\[
v = T v = T_0 v \text{ in } \Omega. \quad (3.21)
\]
Hence, by (3.19), we have that
\[
(-\Delta)^s(T_0 v) = 0 \text{ in } \Omega.
\]
Using this, (3.20) and Lemma 3.8 we obtain that \(T_0 v \) is constant. Thus, by (3.21), we obtain that \(v \) is constant in \(\Omega \) and this completes the proof of (3.18).

From (3.18) and the Fredholm Alternative, we conclude that
\[
\text{Im}(Id - T) = \text{Ker}(Id - T) \perp = \{\text{constant functions}\} \perp,
\]
where the orthogonality notion is in \(L^2(\Omega) \). More explicitly,
\[
\text{Im}(Id - T) = \left\{ f \in L^2(\Omega) \text{ s.t. } \int_{\Omega} f = 0 \right\}. \quad (3.22)
\]
Now, let us take \(f \) such that \(\int_{\Omega} f = 0 \). By (3.22), we know that there exists \(w \in L^2(\Omega) \) such that \(f = w - T w \). Let us define \(u := T_0 w \). By construction, we have that \(N_s u = 0 \) in \(\mathbb{R}^n \setminus \Omega \), and that
\[
(-\Delta)^s(T_0 w) + (T_0 w) = w \text{ in } \Omega.
\]
Consequently, in Ω,
\[f = w - Tw = w - T_\omega w = (-\Delta)^s(T_\omega w) = (-\Delta)^s u, \]
and we found the desired solution in this case.

Viceversa, if we have a solution $u \in H^s_\Omega$ of $(-\Delta)^s u = f$ in Ω with $N_s u = 0$ in $\mathbb{R}^n \setminus \Omega$, we set $w := f + u$ and we observe that
\[(-\Delta)^s u + u = f + u = w \text{ in } \Omega. \]
Accordingly, we have that $u = T_\omega w$ in \mathbb{R}^n, hence $u = Tw$ in Ω. This says that $ \left(\text{Id} - T \right) w = w - u = f$ in Ω and so $f \in \text{Im}(\text{Id} - T)$. Thus, by (3.22), we obtain that $\int_\Omega f = 0$.

This establishes the validity of Theorem 3.9 when $g \equiv 0$.

Case 2. Let us now consider the nonhomogeneous case (3.9). By the hypotheses, there exists a C^2 function ψ satisfying $N_s \psi = g$ in $\mathbb{R}^n \setminus \overline{\Omega}$.

Let $\bar{u} = u - \psi$. Then, \bar{u} solves
\[
\begin{cases}
(-\Delta)^s \bar{u} &= \bar{f} \text{ in } \Omega \\
N_s \bar{u} &= 0 \text{ in } \mathbb{R}^n \setminus \overline{\Omega},
\end{cases}
\]
with $\bar{f} = f - (-\Delta)^s \psi$.

Then, as we already proved, this problem admits a solution if and only if $\int_\Omega \bar{f} = 0$, i.e., if
\[
0 = \int_\Omega \bar{f} = \int_\Omega f - \int_\Omega (-\Delta)^s \psi. \tag{3.23}
\]
But, by Lemma 3.2, we have that
\[
\int_\Omega (-\Delta)^s \psi = -\int_{\mathbb{R}^n \setminus \Omega} N_s \psi = -\int_{\mathbb{R}^n \setminus \Omega} g.
\]
From this and (3.23) we conclude that a solution exists if and only if (3.11) holds.

Finally, the solution is unique up to an additive constant thanks to Lemma 3.8. \hfill \square

3.3. **Eigenvalues and eigenfunctions.** Here we discuss the spectral properties of problem (1.1). For it, we will need the following classical tool.

Lemma 3.10 (Poincaré inequality). Let $\Omega \subset \mathbb{R}^n$ be any bounded Lipschitz domain, and let $s \in (0,1)$. Then, for all functions $u \in H^s(\Omega)$, we have
\[
\int_\Omega \left| u - \frac{1}{|\Omega|^s} \int_\Omega u \right|^2 \, dx \leq C_\Omega \int_\Omega \int_\Omega \frac{|u(x) - u(y)|^2}{|x-y|^{n+2s}} \, dx \, dy,
\]
where the constant $C_\Omega > 0$ depends only on Ω and s.

Proof. We give the details for the facility of the reader. We argue by contradiction and we assume that the inequality does not hold. Then, there exists a sequence of functions $u_k \in H^s(\Omega)$ satisfying
\[
\int_\Omega u_k = 0, \quad \|u_k\|_{L^2(\Omega)} = 1, \tag{3.24}
\]
and
\[
\int \int_{\Omega} \frac{|u_k(x) - u_k(y)|^2}{|x - y|^{n + 2s}} \, dx \, dy < \frac{1}{k}. \tag{3.25}
\]
In particular, the functions \(\{u_k\}_{k \geq 1}\) are bounded in \(H^s(\Omega)\).

Using now that the embedding \(H^s(\Omega) \subset L^2(\Omega)\) is compact (see e.g. [12]), it follows that a subsequence \(\{u_{k_j}\}_{j \geq 1}\) converges to a function \(\bar{u} \in L^2(\Omega)\), i.e.,
\[
u_{k_j} \longrightarrow \bar{u} \quad \text{in} \ L^2(\Omega).
\]
Moreover, we deduce from (3.24) that
\[
\int_{\Omega} \bar{u} = 0, \quad \text{and} \quad ||\bar{u}||_{L^2(\Omega)} = 1.
\tag{3.26}
\]
On the other hand, (3.25) implies that
\[
\int \int_{\Omega} \frac{|\bar{u}(x) - \bar{u}(y)|^2}{|x - y|^{n + 2s}} \, dx \, dy = 0.
\]
Thus, \(\bar{u}\) is constant in \(\Omega\), and this contradicts (3.26). \(\square\)

We finally give the description of the eigenvalues of \((-\Delta)^s\) with zero Neumann boundary conditions.

Theorem 3.11. Let \(\Omega \subset \mathbb{R}^n\) be a bounded Lipschitz domain. Then, there exist a sequence of nonnegative values
\[
0 = \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots,
\]
and a sequence of functions \(u_i : \mathbb{R}^n \rightarrow \mathbb{R}\) such that
\[
\begin{cases}
(-\Delta)^s u_i(x) = \lambda_i u_i(x) & \text{for any } x \in \Omega \\
N^s u_i(x) = 0 & \text{for any } x \in \mathbb{R}^n \setminus \Omega.
\end{cases}
\]
Also, the functions \(u_i\) (when restricted to \(\Omega\)) provide a complete orthogonal system in \(L^2(\Omega)\).

Proof. We define
\[
L^2_0(\Omega) := \left\{ u \in L^2(\Omega) : \int_{\Omega} u = 0 \right\}.
\]
Let the operator \(T_o\) be defined by \(T_o f = u\), where \(u\) is the unique solution of
\[
\begin{cases}
(-\Delta)^s u = f & \text{in } \Omega \\
N^s u = 0 & \text{in } \mathbb{R}^n \setminus \Omega
\end{cases}
\]
according to Definition 3.6. We remark that the existence and uniqueness of such solution is a consequence of the fact that \(f \in L^2_0(\Omega)\) and Theorem 3.9. We also define \(T\) to be the restriction of \(T_o\) in \(\Omega\), that is
\[
T f = T_o f |_{\Omega}.
\]
In this way \(T : L^2_0(\Omega) \longrightarrow L^2_0(\Omega)\).

Also, we claim that the operator \(T\) is compact and self-adjoint.

We first show that \(T\) is compact. Indeed, taking \(v = u = T_o f\) in the weak formulation of the problem (3.10), we obtain
\[
\frac{c_{n,s}}{2} \int_{\mathbb{R}^n \setminus (\Omega)^2} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} \, dx \, dy \leq ||f||_{L^2(\Omega)} ||u||_{L^2(\Omega)}.
\tag{3.27}
\]
Indeed, suppose by contradiction that \(\mu = 0 \), we deduce that
\[
\|u\|_{L^2(\Omega)} \leq C \left(\int_{\Omega \times \Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy \right)^{1/2}.
\]
(3.28)

This and (3.27) give that
\[
\left(\int_{\Omega \times \Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy \right)^{1/2} \leq C\|f\|_{L^2(\Omega)}.
\]
(3.29)

Now, we take a sequence \(\{f_k\}_{k \in \mathbb{N}} \) bounded in \(L^2(\Omega) \). From (3.28) and (3.29) we obtain that \(u_k = Tf_k \) is bounded in \(H^s(\Omega) \). Hence, since the embedding \(H^s(\Omega) \subset L^2(\Omega) \) is compact, there exists a subsequence that converges in \(L^2(\Omega) \). Therefore, \(T \) is compact.

Now we show that \(T \) is self-adjoint in \(L^2(\Omega) \). For this, we take \(f_1 \) and \(f_2 \) in \(C_0^\infty(\Omega) \), with \(f_\Omega f_1 = f_\Omega f_2 = 0 \). Then from the weak formulation in (3.10) we have that, for every \(v, w \in H^s(\Omega) \),
\[
c_n,s \int_{\mathbb{R}^{2n} \setminus (\Omega \times \Omega)} \frac{(T_0f_1(x) - T_0f_1(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy = \int_\Omega f_1 v
\]
(3.30)
and
\[
c_n,s \int_{\mathbb{R}^{2n} \setminus (\Omega \times \Omega)} \frac{(T_0f_2(x) - T_0f_2(y))(w(x) - w(y))}{|x - y|^{n+2s}} \, dx \, dy = \int_\Omega f_2 w.
\]
(3.31)

We observe that we can take \(v := T_0f_2 \) in (3.30) and \(w := T_0f_1 \) in (3.31) (and recall that \(T_0f_i = Tf_i \) in \(\Omega \)), obtaining that
\[
\int_\Omega f_1 T_2 f_2 = \int_\Omega f_2 T_1 f_1, \quad \text{for any } f_1, f_2 \in C_0^\infty(\Omega).
\]
(3.32)

Now, if \(f_1, f_2 \in L^2(\Omega) \) we can find sequences of functions \(f_{1,k}, f_{2,k} \in C_0^\infty(\Omega) \) such that \(f_{1,k} \to f_1 \) and \(f_{2,k} \to f_2 \) in \(L^2(\Omega) \) as \(k \to +\infty \). Therefore, from (3.32), we have
\[
\int_\Omega f_{1,k} T_2 f_{2,k} = \int_\Omega f_{2,k} T_1 f_{1,k}.
\]
(3.33)

We notice that, thanks to (3.28) and (3.29), \(T f_{1,k} \to T f_1 \) and \(T f_{2,k} \to T f_2 \) in \(L^2(\Omega) \) as \(k \to +\infty \), and therefore, from (3.33), we obtain that
\[
\int_\Omega f_1 T_2 f_2 = \int_\Omega f_2 T_1 f_1,
\]
thus proving that \(T \) is self-adjoint in \(L^2(\Omega) \).

Thus, by the spectral theorem there exists a sequence of eigenvalues \(\{\mu_i\}_{i \geq 2} \) of \(T \), and its corresponding eigenfunctions \(\{e_i\}_{i \geq 2} \) are a complete orthogonal system in \(L^2(\Omega) \).

We remark that
\[
\mu_i \neq 0.
\]
(3.34)

Indeed, suppose by contradiction that \(\mu_i = 0 \). Then
\[
0 = \mu_i e_i = T e_i = T_0 e_i \quad \text{in } \Omega.
\]
(3.35)
By construction, $N_s(T_0e_i) = 0$ in $\mathbb{R}^n \setminus \Omega$. This and (3.35) give that
$$T_0e_i(x) = \int_{\Omega} \frac{T_0e_i(y)}{|x - y|^{n + 2s}} dy = 0 \quad \text{in} \quad \mathbb{R}^n \setminus \Omega.$$
Using this and (3.35) once again we conclude that
$$T_0e_i \equiv 0 \quad \text{a.e. in} \quad \mathbb{R}^n.$$
which gives that $e_i \equiv 0$ in Ω, hence it is not an eigenfunction. This establishes (3.34).

From (3.34), we can define
$$\lambda_i := \mu_i^{-1}.$$
We also define $u_i := T_0e_i$ and we claim that u_2, u_3, \cdots is the desired system of eigenfunctions, with corresponding eigenvalues $\lambda_2, \lambda_3, \cdots$

Indeed,
$$u_i = T_0e_i = Te_i = \mu_i e_i \quad \text{in} \quad \Omega,$$

hence the orthogonality and completeness properties of u_2, u_3, \cdots in $L^2_0(\Omega)$ follow from those of e_2, e_3, \cdots

Furthermore, in Ω, we have that $(-\Delta)^s u_i = (-\Delta)^s(T_0e_i) = e_i = \lambda_i u_i$, where (3.36) was used in the last step, and this proves the desired spectral property.

Now, we notice that
$$\lambda_i > 0 \quad \text{for any} \quad i \geq 2.$$

Indeed, its corresponding eigenfunction u_i solves
$$\begin{aligned}
(-\Delta)^s u_i &= \lambda_i u_i \quad \text{in} \quad \Omega \\
N_s u_i &= 0 \quad \text{in} \quad \mathbb{R}^n \setminus \Omega,
\end{aligned}
$$
Then, if we take u_i as a test function in the weak formulation of (3.38), we obtain that
$$\frac{c_{n,s}}{2} \int_{\mathbb{R}^{2n} \setminus \Omega^2} \frac{|u_i(x) - u_2(y)|^2}{|x - y|^{n + 2s}} \, dx \, dy = \lambda_i \int_{\Omega} u_i^2,$$
which implies that $\lambda_i \geq 0$. Now, suppose by contradiction that $\lambda_i = 0$. Then, from Lemma 3.8 we have that u_i is constant. On the other hand, we know that $u_i \in L^2_0(\Omega)$, and this implies that $u_i \equiv 0$, which is a contradiction since u_i is an eigenfunction. This establishes (3.37).

From (3.37), up to reordering them, we can suppose that $0 < \lambda_2 \leq \lambda_3 \leq \cdots$; now, we notice that $\lambda_1 := 0$ is an eigenvalue (its eigenfunction is a constant), thanks to Lemma 3.8. Therefore, we have a sequence of eigenvalues $0 = \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots$, and its corresponding eigenfunctions are a complete orthogonal system in $L^2(\Omega)$. This concludes the proof of Theorem 3.11.

Remark 3.12. We point out that the notion of eigenfunctions in Theorem 3.11 is not completely standard. Indeed, the eigenfunctions u_i corresponding to the eigenvalues λ_i are defined in the whole of \mathbb{R}^n, but they satisfy an orthogonality conditions only in $L^2(\Omega)$.

Alternatively, one can think that the “natural” domain of definition for u_i is Ω itself, since there the eigenvalue equation $(-\Delta)^s u_i = \lambda_i u_i$ takes place, together with the orthogonality condition, and then u_i is “naturally” extended outside Ω via the nonlocal
Neumann condition. Notice indeed that the condition \(N_s u_i = 0\) in \(\mathbb{R}^n \setminus \Omega\) is equivalent to prescribing \(u_i\) outside \(\Omega\) from the values inside \(\Omega\) according to the formula
\[
u_i(x) = \frac{\int_{\Omega} u_i(y) \frac{|x-y|^{n+2s}}{dy}}{\int_{\Omega} \frac{|x-y|^{n+2s}}{dy}} \quad \text{for any } x \in \mathbb{R}^n \setminus \Omega.
\]

In the following proposition we deal with the behavior of the solution of (1.1) at infinity.

Proposition 3.13. Let \(\Omega \subset \mathbb{R}^n\) be a bounded domain and let \(u \in H^s_\Omega\) be a weak solution (according to Definition 3.6) of
\[
\begin{cases}
(-\Delta)^s u = f & \text{in } \Omega \\
N_s u = 0 & \text{in } \mathbb{R}^n \setminus \Omega.
\end{cases}
\]

Then
\[
\lim_{|x| \to \infty} u(x) = \frac{1}{|\Omega|} \int_{\Omega} u \quad \text{uniformly in } x.
\]

Proof. First we observe that, since \(\Omega\) is bounded, there exists \(R > 0\) such that \(\Omega \subset B_R\). Hence, if \(y \in \Omega\), we have that
\[
|x| - R \leq |x - y| \leq |x| + R,
\]
and so
\[
1 - \frac{R}{|x|} \leq \frac{|x - y|}{|x|} \leq 1 + \frac{R}{|x|}.
\]

Therefore, given \(\epsilon > 0\), there exists \(\tilde{R} > R\) such that, for any \(|x| \geq \tilde{R}\), we have
\[
\frac{|x|^{n+2s}}{|x - y|^{n+2s}} = 1 + \gamma(x, y),
\]
where \(|\gamma(x, y)| \leq \epsilon\).

Recalling the definition of \(N_s u\) given in (1.2) and using the fact that \(N_s u = 0\) in \(\mathbb{R}^n \setminus \Omega\), we have that for any \(x \in \mathbb{R}^n \setminus \Omega\)
\[
u(x) = \frac{\int_{\Omega} u(y) \frac{|x-y|^{n+2s}}{dy}}{\int_{\Omega} \frac{|x-y|^{n+2s}}{dy}} = \frac{\int_{\Omega} \frac{|x|^{n+2s} u(y)}{|x-y|^{n+2s} dy}}{\int_{\Omega} \frac{|x|^{n+2s}}{|x-y|^{n+2s} dy}}
= \frac{\int_{\Omega} (1 + \gamma(x, y)) u(y) dy}{\int_{\Omega} (1 + \gamma(x, y)) dy}
= \frac{\int_{\Omega} u(y) dy + \int_{\Omega} \gamma(x, y) u(y) dy}{|\Omega| + \int_{\Omega} \gamma(x, y) dy},
\]

We set
\[
\gamma_1(x) := \int_{\Omega} \gamma(x, y) u(y) dy \quad \text{and } \gamma_2(x) := \int_{\Omega} \gamma(x, y) dy,
\]
and we notice that $|\gamma_1(x)| \leq C\epsilon$ and $|\gamma_2(x)| \leq \epsilon$, for some $C > 0$.

Hence, we have that for any $x \in \mathbb{R}^n \setminus \Omega$

$$\left| u(x) - \int_{\Omega} u(y) \, dy \right| = \left| \int_{\Omega} \frac{u(y) \, dy + \gamma_1(x)}{1 + \gamma_2(x)} - \int_{\Omega} u(y) \, dy \right|$$

$$= \frac{|\gamma_1(x) - \gamma_2(x)|}{1 + \gamma_2(x)} \int_{\Omega} u(y) \, dy$$

$$\leq \frac{C \epsilon}{1 - \epsilon}.$$

Therefore, sending $\epsilon \to 0$ (that is, $|x| \to +\infty$), we obtain the desired result. □

Remark 3.14 (Interior regularity of solutions). We notice that, in particular, Proposition 3.13 implies that u is bounded at infinity. Thus, if solutions are locally bounded, then one could apply interior regularity results for solutions to $(-\Delta)^s u = f$ in Ω (see e.g. [17, 20, 7, 19]).

4. The heat equation

Here we show that solutions of the nonlocal heat equation with zero Neumann datum preserve their mass and have energy that decreases in time.

To avoid technicalities, we assume that u is a classical solution of problem (1.4), so that we can differentiate under the integral sign.

Proposition 4.1. Assume that $u(x,t)$ is a classical solution to (1.4), in the sense that u is bounded and $|u_t| + |(-\Delta)^s u| \leq K$ for all $t > 0$. Then, for all $t > 0$,

$$\int_{\Omega} u(x,t) \, dx = \int_{\Omega} u_0(x) \, dx.$$

In other words, the total mass is conserved.

Proof. By the dominated convergence theorem, and using Lemma 3.2, we have

$$\frac{d}{dt} \int_{\Omega} u = \int_{\Omega} u_t = -\int_{\Omega} (-\Delta)^s u = \int_{\mathbb{R}^n \setminus \Omega} N_s u = 0.$$

Thus, the quantity $\int_{\Omega} u$ does not depend on t, and the result follows. □

Proposition 4.2. Assume that $u(x,t)$ is a classical solution to (1.4), in the sense that u is bounded and $|u_t| + |(-\Delta)^s u| \leq K$ for all $t > 0$. Then, the energy

$$E(t) = \int_{\mathbb{R}^{2n} \setminus (C\Omega)^2} \frac{|u(x,t) - u(y,t)|^2}{|x - y|^{n+2s}} \, dx \, dy$$

is decreasing in time $t > 0$.

Proof. Let us compute $E'(t)$, and we will see that it is negative. Indeed, using Lemma 3.3,

$$E'(t) = \frac{d}{dt} \int_{\mathbb{R}^{2n} \setminus (\Omega^c)^2} \frac{|u(x, t) - u(y, t)|^2}{|x - y|^{n+2s}} \, dx \, dy$$

$$= \int_{\mathbb{R}^{2n} \setminus (\Omega^c)^2} 2 \left(u(x, t) - u(y, t) \right) \left(u_t(x, t) - u_t(y, t) \right) \frac{1}{|x - y|^{n+2s}} \, dx \, dy$$

$$= \frac{4}{c_{n,s}} \int_{\Omega} u_t \, dx,$$

where we have used that $\mathcal{N}_s u = 0$ in $\mathbb{R}^n \setminus \Omega$.

Thus, using now the equation $u_t + (-\Delta)^s u = 0$ in Ω, we find

$$E'(t) = -\frac{4}{c_{n,s}} \int_{\Omega} |(-\Delta)^s u|^2 \, dx \leq 0,$$

with strict inequality unless u is constant. \qed

Next we prove that solutions of the nonlocal heat equation with Neumann condition approach a constant as $t \to +\infty$:

Proposition 4.3. Assume that $u(x, t)$ is a classical solution to (1.4), in the sense that

$$\|u_t\| + |(-\Delta)^s u| \leq K$$

for all $t > 0$. Then,

$$u \xrightarrow{t \to +\infty} \frac{1}{|\Omega|} \int_{\Omega} u_0 \quad \text{in} \ L^2(\Omega)$$

Proof. Let

$$m := \frac{1}{|\Omega|} \int_{\Omega} u_0$$

be the total mass of u. Define also

$$A(t) := \int_{\Omega} |u - m|^2 \, dx.$$

Notice that, by Proposition 4.1, we have

$$A(t) = \int_{\Omega} \left(u^2 - 2mu + m^2 \right) \, dx = \int_{\Omega} u^2 \, dx - |\Omega| m^2.$$

Then, by Lemma 3.3

$$A'(t) = 2 \int_{\Omega} u_t u \, dx = -2 \int_{\Omega} (-\Delta)^s u \, dx = -c_{n,s} \int_{\mathbb{R}^{2n} \setminus (\Omega^c)^2} \frac{|u(x, t) - u(y, t)|^2}{|x - y|^{n+2s}} \, dx \, dy.$$

Hence, A is decreasing.

Moreover, using the Poincaré inequality in Lemma 3.10 and again Proposition 4.1, we deduce that

$$A'(t) \leq -c \int_{\Omega} |u - m|^2 \, dx = -c \, A(t),$$

for some $c > 0$. Thus, it follows that

$$A(t) \leq e^{-ct} A(0),$$
and thus
\[
\lim_{t \to +\infty} \int_{\Omega} |u(x, t) - m|^2 dx = 0,
\]
i.e., \(u \) converges to \(m \) in \(L^2(\Omega) \).

Notice that, in fact, we have proved that the convergence is exponentially fast. \(\square \)

5. Limits

In this section we study the limits as \(s \to 1 \) and the continuity properties induced by the fractional Neumann condition.

5.1. Limit as \(s \to 1 \).

Proposition 5.1. Let \(\Omega \subset \mathbb{R}^n \) be any bounded Lipschitz domain. Let \(u \) and \(v \) be \(C^2_0(\mathbb{R}^n) \) functions. Then,
\[
\lim_{s \to 1} \int_{\mathbb{R}^n \setminus \Omega} N_s u v = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} v.
\]

Proof. By Lemma 3.3, we have that
\[
\int_{\mathbb{R}^n \setminus \Omega} N_s u v = \frac{c_{n,s}}{2} \int_{\mathbb{R}^n \setminus \Omega} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy - \int_{\Omega} v(-\Delta)^s u. \tag{5.1}
\]

Now, we claim that
\[
\lim_{s \to 1} \frac{c_{n,s}}{2} \int_{\mathbb{R}^n \setminus \Omega} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy = \int_{\Omega} \nabla u \cdot \nabla v. \tag{5.2}
\]

We observe that to show (5.2), it is enough to prove that, for any \(u \in C^2_0(\mathbb{R}^n) \),
\[
\lim_{s \to 1} \frac{c_{n,s}}{2} \int_{\mathbb{R}^n \setminus \Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = \int_{\Omega} |\nabla u|^2. \tag{5.3}
\]

Indeed,
\[
\int_{\mathbb{R}^n \setminus \Omega} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy
\]
\[
= \frac{1}{2} \int_{\mathbb{R}^n \setminus \Omega} \frac{|(u + v)(x) - (u + v)(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\]
\[
- \frac{1}{2} \int_{\mathbb{R}^n \setminus \Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\]
\[
- \frac{1}{2} \int_{\mathbb{R}^n \setminus \Omega} \frac{|v(x) - v(y)|^2}{|x - y|^{n+2s}} \, dx \, dy.
\]

Now, we recall that
\[
\lim_{s \to 1} \frac{c_{n,s}}{1 - s} = \frac{4n}{\omega_{n-1}},
\]
(see Corollary 4.2 in [12]), and so we have to show that
\[
\lim_{s \to 1} (1 - s) \int_{\mathbb{R}^n \setminus \Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = \frac{\omega_{n-1}}{2n} \int_{\Omega} |\nabla u|^2. \tag{5.4}
\]
For this, we first show that
\[
\lim_{s \to 1} (1 - s) \int_{\Omega \times (\mathbb{C} \Omega)} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = 0. \tag{5.5}
\]

Without loss of generality, we can suppose that \(B_r \subset \Omega \subset B_R\), for some \(0 < r < R\). Since \(u \in C^2_0(\mathbb{R}^n)\), then
\[
\int_{\Omega \times (\mathbb{C} \Omega)} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy \leq 4\|u\|_{L^\infty(\mathbb{R}^n)} \int_{\Omega \times (\mathbb{C} \Omega)} \frac{1}{|x - y|^{n+2s}} \, dx \, dy
\]
\[
\leq 4\|u\|_{L^\infty(\mathbb{R}^n)} \int_{B_R \times (\mathbb{C} B_r)} \frac{1}{|x - y|^{n+2s}} \, dx \, dy
\]
\[
\leq 4\|u\|_{L^\infty(\mathbb{R}^n)} \omega_{n-1} \int_{B_R} dx \int_{r}^{+\infty} \rho^{n-1} \rho^{-n-2s} \, d\rho
\]
\[
= 4\|u\|_{L^\infty(\mathbb{R}^n)} \omega_{n-1} \int_{B_R} dx \int_{r}^{+\infty} \rho^{-n-2s} \, d\rho
\]
\[
= 4\|u\|_{L^\infty(\mathbb{R}^n)} \frac{\omega_{n-1} r^{-2s}}{2s} \int_{B_R} dx
\]
\[
= 4\|u\|_{L^\infty(\mathbb{R}^n)} \frac{\omega_{n-1} r^{-2s}}{2s} ,
\]

which implies (5.5). Hence,
\[
\lim_{s \to 1} (1 - s) \int_{\mathbb{R}^{2n} \setminus (\mathbb{C} \Omega)^2} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\]
\[
= \lim_{s \to 1} (1 - s) \int_{\Omega \times \Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = C_n \int_{\Omega} |\nabla u|^2 ,
\tag{5.6}
\]

where \(C_n > 0\) depends only on the dimension, see [5].

In order to determine the constant \(C_n\), we take a \(C^2\)-function \(u\) supported in \(\Omega\). In this case, we have
\[
\int_{\Omega} |\nabla u|^2 \, dx = \int_{\mathbb{R}^n} |\nabla u|^2 \, dx = \int_{\mathbb{R}^n} |\xi|^2 |\hat{u}(\xi)|^2 \, d\xi ,
\tag{5.7}
\]

where \(\hat{u}\) is the Fourier transform of \(u\). Moreover,
\[
\int_{\mathbb{R}^{2n} \setminus (\mathbb{C} \Omega)^2} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\]
\[
= \int_{\mathbb{R}^{2n}} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\]
\[
= 2 c_{n,s}^{-1} \int_{\mathbb{R}^n} |\xi|^{2s} |\hat{u}(\xi)|^2 \, dx ,
\]
thanks to Proposition 3.4 in [12]. Therefore, using Corollary 4.2 in [12] and (5.7), we have
\[
\lim_{s \to 1} (1 - s) \int_{\mathbb{R}^{2n} \setminus (\xi \Omega)^2} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} \, dx \, dy
\]
\[
= \lim_{s \to 1} \frac{2(1 - s)}{c_{n,s}} \int_{\mathbb{R}^{n}} |\xi|^2 |\hat{u}(\xi)|^2 \, dx
\]
\[
= \frac{\omega_{n-1}}{2n} \int_{\mathbb{R}^{n}} |\xi|^2 |\hat{u}(\xi)|^2 \, dx
\]
\[
= \frac{\omega_{n-1}}{2n} \int_{\Omega} |\nabla u|^2 \, dx.
\]

Hence, the constant in (5.6) is \(C_n = \frac{\omega_{n-1}}{2n} \). This concludes the proof of (5.4), and in turn of (5.2).

On the other hand,
\[-(-\Delta)^s u \to \Delta u \quad \text{uniformly in } \mathbb{R}^n,\]
(see Proposition 4.4 in [12]). This, (5.1) and (5.2) give
\[
\lim_{s \to 1} \int_{\mathbb{R}^{n} \setminus \Omega} \mathcal{N}_s u \, v = \int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} v \Delta u = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} v,
\]
as desired. \(\square \)

5.2. Continuity properties. Following is a continuity result for functions satisfying the nonlocal Neumann condition:

Proposition 5.2. Let \(\Omega \subset \mathbb{R}^n \) be a domain with \(C^1 \) boundary. Let \(u \) be continuous in \(\overline{\Omega} \), with \(\mathcal{N}_s u = 0 \) in \(\mathbb{R}^n \setminus \overline{\Omega} \). Then \(u \) is continuous in the whole of \(\mathbb{R}^n \).

Proof. First, let us fix \(x_0 \in \mathbb{R}^n \setminus \overline{\Omega} \). Since the latter is an open set, there exists \(\rho > 0 \) such that \(|x_0 - y| \geq \rho \) for any \(y \in \Omega \). Thus, if \(x \in B_{\rho/2}(x_0) \), we have that \(|x - y| \geq |x_0 - y| - |x_0 - x| \geq \rho/2 \).

Moreover, if \(x \in B_{\rho/2}(x_0) \), we have that
\[
|x - y| \geq |y| - |x_0| - |x_0 - x| \geq \frac{|y|}{2} + \left(\frac{|y|}{4} - |x_0| \right) + \left(\frac{|y|}{4} - \frac{\rho}{2} \right) \geq \frac{|y|}{2},
\]
provided that \(|y| \geq R := 4|x_0| + 2\rho \). As a consequence, for any \(x \in B_{\rho/2}(x_0) \), we have that
\[
\frac{|u(y)| + 1}{|x - y|^{n+2s}} \leq 2^{n+2s} (\|u\|_{L^\infty(\Omega)} + 1) \left(\frac{\chi_{B_1}(y)}{\rho^{n+2s}} + \frac{\chi_{\mathbb{R}^n \setminus B_1}(y)}{|y|^{n+2s}} \right) =: \psi(y)
\]
and the function \(\psi \) belongs to \(L^1(\mathbb{R}^n) \). Thus, by the Neumann condition and the Dominated Convergence Theorem, we obtain that
\[
\lim_{x \to x_0} u(x) = \lim_{x \to x_0} \int_{\Omega} \frac{u(y)}{|x - y|^{n+2s}} \, dy = \int_{\Omega} \frac{u(y)}{|x_0 - y|^{n+2s}} \, dy = u(x_0).
\]
This proves that \(u \) is continuous at any points of \(\mathbb{R}^n \setminus \overline{\Omega} \).
Now we show the continuity at a point $p \in \partial \Omega$. We take a sequence $p_k \to p$ as $k \to +\infty$. We let q_k be the projection of p_k to Ω. Since $p \in \Omega$, we have from the minimizing property of the projection that

$$|p_k - q_k| = \inf_{\xi \in \Omega} |p_k - \xi| \leq |p_k - p|,$$

and so

$$|q_k - p| \leq |q_k - p_k| + |p_k - p| \leq 2|p_k - p| \to 0$$

as $k \to +\infty$. Therefore, since we already know from the assumptions the continuity of u at Ω, we obtain that

$$\lim_{k \to +\infty} u(q_k) = u(p). \quad (5.8)$$

Now we claim that

$$\lim_{k \to +\infty} u(p_k) - u(q_k) = 0. \quad (5.9)$$

To prove it, it is enough to consider the points of the sequence p_k that belong to $\mathbb{R}^n \setminus \Omega$ (since, of course, the points p_k belonging to Ω satisfy $p_k = q_k$ and for them (5.9) is obvious). We define $\nu_k := (p_k - q_k)/|p_k - q_k|$. Notice that ν_k is the exterior normal of Ω at $q_k \in \partial \Omega$. We consider a rigid motion \mathcal{R}_k such that $\mathcal{R}_k\nu_k = e_n = (0, \ldots, 0, 1)$. Let also $h_k := |p_k - q_k|$. Notice that

$$h_k^{-1}\mathcal{R}_k p_k = h_k^{-1}\mathcal{R}_k (p_k - q_k) = \mathcal{R}_k \nu_k = e_n. \quad (5.10)$$

Then, the domain

$$\Omega_k := h_k^{-1}\mathcal{R}_k \Omega$$

has vertical exterior normal at 0 and approaches the halfspace $\Pi := \{x_n < 0\}$ as $k \to +\infty$.

Now, we use the Neumann condition at p_k and we obtain that

$$u(p_k) - u(q_k) = \int_{\Omega \setminus B_{h_k(q_k)}} \frac{u(y) - u(q_k)}{|p_k - y|^{n+2s}} dy + u(q_k) - u(q_k) = \int_{\Omega \setminus B_{h_k(q_k)}} \frac{u(y) - u(q_k)}{|p_k - y|^{n+2s}} dy = I_1 + I_2,$$

with

$$I_1 := \int_{\Omega \setminus B_{h_k(q_k)}} \frac{u(y) - u(q_k)}{|p_k - y|^{n+2s}} dy$$

and

$$I_2 := \int_{\Omega \setminus B_{h_k(q_k)}} \frac{u(y) - u(q_k)}{|p_k - y|^{n+2s}} dy.$$
We observe that the uniform continuity of u in $\overline{\Omega}$ gives that
$$\lim_{k \to +\infty} \sup_{y \in \Omega \cap \sqrt{\eta_k}(q_k)} |u(y) - u(q_k)| = 0.$$
As a consequence
$$|I_1| \leq \sup_{y \in \Omega \cap \sqrt{\eta_k}(q_k)} |u(y) - u(q_k)| \to 0 \quad (5.11)$$
as $k \to +\infty$. Moreover, exploiting the change of variable $\eta := h_k^{-1} R_k y$ and recalling (5.10), we obtain that
$$|I_2| \leq \int_{\Omega \setminus \sqrt{\eta_k}(q_k)} \frac{|u(y) - u(q_k)|}{|p_k - y|^{n+2s}} dy$$
$$\leq 2\|u\|_{L^\infty(\overline{\Omega})} \int_{\Omega \setminus B_{\sqrt{\eta_k}}(q_k)} \frac{dy}{|p_k - y|^{n+2s}}$$
$$= 2\|u\|_{L^\infty(\overline{\Omega})} \int_{\Omega \setminus B_{1/\sqrt{\eta_k}}} \frac{d\eta}{|e_n - \eta|^{n+2s}} \int_{\Omega \setminus B_{1/\sqrt{\eta_k}}} \frac{d\eta}{|e_n - \eta|^{n+2s}}.$$
Notice that, if $\eta \in \Omega_k \setminus B_{1/\sqrt{\eta_k}}$ then
$$|e_n - \eta|^{n+2s} = |e_n - \eta|^{n+s}|e_n - \eta|^s \geq |e_n - \eta|^{n+s}(|\eta| - 1)^s$$
$$\geq |e_n - \eta|^{n+s}(h_k^{-1/2} - 1)^s \geq |e_n - \eta|^{n+s} h_k^{-s/4}$$
for large k. Therefore
$$|I_2| \leq 2h_k^{s/4} \|u\|_{L^\infty(\overline{\Omega})} \int_{\Omega_k \setminus B_{1/\sqrt{\eta_k}}} \frac{d\eta}{|e_n - \eta|^{n+2s}}.$$
Since
$$\lim_{k \to +\infty} \int_{\Omega_k} \frac{d\eta}{|e_n - \eta|^{n+s}} = \int_{\Pi} \frac{d\eta}{|e_n - \eta|^{n+s}} = \int_{\Pi} \frac{d\eta}{|e_n - \eta|^{n+2s}} = \int_{\Pi} \frac{d\eta}{|e_n - \eta|^{n+2s}}$$
we conclude that $|I_2| \to 0$ as $k \to +\infty$. This and (5.11) imply (5.9).
From (5.8) and (5.9), we conclude that
$$\lim_{k \to +\infty} u(p_k) = u(p),$$
hence u is continuous at p. \qed
As a direct consequence of Proposition 5.2 we obtain:

Corollary 5.3. Let \(\Omega \subset \mathbb{R}^n \) be a domain with \(C^1 \) boundary. Let \(v_0 \in C(\mathbb{R}^n) \). Let

\[
v(x) := \begin{cases} v_0(x) & \text{if } x \in \overline{\Omega}, \\ \int_{\Omega} \frac{v_0(y)}{|x-y|^{n+2s}} \, dy & \text{if } x \in \mathbb{R}^n \setminus \overline{\Omega}. \end{cases}
\]

Then \(v \in C(\mathbb{R}^n) \) and it satisfies \(v = v_0 \) in \(\Omega \) and \(\mathcal{N}_s v = 0 \) in \(\mathbb{R}^n \setminus \overline{\Omega} \).

Proof. By construction, \(v = v_0 \) in \(\overline{\Omega} \) and \(\mathcal{N}_s v = 0 \) in \(\mathbb{R}^n \setminus \overline{\Omega} \). Then we can use Proposition 5.2 and obtain that \(v \in C(\mathbb{R}^n) \). \(\square \)

Now we study the boundary behavior of the nonlocal Neumann function \(\tilde{\mathcal{N}}_s u \).

Proposition 5.4. Let \(\Omega \subset \mathbb{R}^n \) be a \(C^1 \) domain, and \(u \in C(\mathbb{R}^n) \). Then, for all \(s \in (0,1) \),

\[
\lim_{x \to \partial \Omega} \tilde{\mathcal{N}}_s u(x) = 0.
\] (5.12)

Also, if \(s > \frac{1}{2} \) and \(u \in C^{1,\alpha}(\mathbb{R}^n) \) for some \(\alpha \in (0, 2s - 1) \), then

\[
\partial_\nu \tilde{\mathcal{N}}_s u(x) := \lim_{\epsilon \to 0^+} \frac{\tilde{\mathcal{N}}_s u(x + \epsilon \nu)}{\epsilon} = \kappa \partial_\nu u \quad \text{for any } x \in \partial \Omega,
\] (5.13)

for some constant \(\kappa > 0 \).

Proof. Let \(x_k \) be a sequence in \(\mathbb{R}^n \setminus \overline{\Omega} \) such that \(x_k \to x_\infty \in \partial \Omega \) as \(k \to +\infty \).

By Corollary 5.3 (applied here with \(v_0 := u \)), there exists \(v \in C(\mathbb{R}^n) \) such that \(v = u \) in \(\overline{\Omega} \) and \(\mathcal{N}_s v = 0 \) in \(\mathbb{R}^n \setminus \overline{\Omega} \). By the continuity of \(u \) and \(v \) we have that

\[
\lim_{k \to +\infty} u(x_k) - v(x_k) = u(x_\infty) - v(x_\infty) = 0.
\] (5.14)

Moreover

\[
\tilde{\mathcal{N}}_s u(x_k) = \tilde{\mathcal{N}}_s u(x_k) - \tilde{\mathcal{N}}_s v(x_k)
\]

\[
= \int_{\Omega} \frac{u(x_k) - u(y)}{|x_k-y|^{n+2s}} \, dy - \int_{\Omega} \frac{v(x_k) - v(y)}{|x_k-y|^{n+2s}} \, dy
\]

\[
= \int_{\Omega} \frac{u(x_k) - u(x_k)}{|x_k-y|^{n+2s}} \, dy
\]

\[
= \int_{\Omega} \frac{u(x_k) - u(x_k)}{|x_k-y|^{n+2s}} \, dy
\]

\[
= u(x_k) - v(x_k).
\]

This and (5.14) imply that

\[
\lim_{k \to +\infty} \tilde{\mathcal{N}}_s u(x_k) = 0,
\]

that is (5.12).
Now, we prove (5.13). For this, we suppose that $s > \frac{1}{2}$, that $0 \in \partial \Omega$ and that the exterior normal ν coincides with $e_n = (0, \ldots, 0, 1)$; then we use (5.12) and the change of variable $\eta := \epsilon^{-1} y$ in the following computation:

$$
\epsilon^{-1} \left(\tilde{N}_s u(\epsilon e_n) - \tilde{N}_s u(0) \right) = \epsilon^{-1} \tilde{N}_s u(\epsilon e_n) = \epsilon^{-1} \int \frac{u(\epsilon e_n) - u(y)}{|\epsilon e_n - y|^{n+2s}} \, dy = \epsilon^{-1} \int \frac{u(\epsilon e_n) - u(\epsilon \eta)}{|\epsilon e_n - \eta|^{n+2s}} \, d\eta = I_1 + I_2,
$$

where

$$
I_1 := \int \frac{\nabla u(\epsilon e_n) \cdot (e_n - \eta)}{|e_n - \eta|^{n+2s}} \, d\eta
$$

and

$$
I_2 := \epsilon^{-1} \int \frac{u(\epsilon e_n) - u(\epsilon \eta) - \epsilon \nabla u(\epsilon e_n) \cdot (e_n - \eta)}{|e_n - \eta|^{n+2s}} \, d\eta.
$$

So, if $\Pi := \{x_n < 0\}$, we have that

$$
\lim_{\epsilon \to 0^+} I_1 = \int \frac{\nabla u(0) \cdot (e_n - \eta)}{|e_n - \eta|^{n+2s}} \, d\eta
$$

and

$$
\lim_{\epsilon \to 0^+} I_2 = \int \frac{\partial_n u(0)(1 - \eta_n)}{|e_n - \eta|^{n+2s}} \, d\eta,
$$

where we have used that, for any $i \in \{1, \ldots, n-1\}$ the map $\eta \mapsto \frac{\partial_i u(0) \cdot \eta_i}{|e_n - \eta|^{n+2s}}$ is odd and so its integral averages to zero. So, we can write

$$
\lim_{\epsilon \to 0^+} I_1 = \kappa \partial_n u(0) \quad \text{with} \quad \kappa := \int \frac{(1 - \eta_n)}{|e_n - \eta|^{n+2s}} \, d\eta.
$$

(5.15)
We remark that κ is finite, since $s > \frac{1}{2}$. Moreover
\[
\epsilon^{-1} \left| u(\epsilon e_n) - u(\epsilon \eta) - \epsilon \nabla u(\epsilon e_n) \cdot (e_n - \eta) \right|
= \left| \int_0^1 \left(\nabla u(t \epsilon e_n + (1 - t) \epsilon \eta) - \nabla u(\epsilon e_n) \right) \cdot (e_n - \eta) \, dt \right|
\leq \|u\|_{C^{1,\alpha}(\mathbb{R}^n)} |e_n - \eta| \int_0^1 |te \epsilon e_n + (1 - t) \epsilon \eta - \epsilon e_n|^{\alpha} \, dt
\leq \|u\|_{C^{1,\alpha}(\mathbb{R}^n)} \epsilon^\alpha |e_n - \eta|^{1+\alpha}.
\]
As a consequence
\[
\epsilon^{-\alpha} |I_2| \leq \frac{\|u\|_{C^{1,\alpha}(\mathbb{R}^n)}}{\epsilon} \int_{\frac{1}{\epsilon} \Omega} \frac{d\eta}{|e_n - \eta|^{n+2s-1-\alpha}} \rightarrow \frac{\|u\|_{C^{1,\alpha}(\mathbb{R}^n)}}{\epsilon} \int_{1/\epsilon \Omega} \frac{d\eta}{|e_n - \eta|^{n+2s}}
\]
as $\epsilon \to 0$, which is finite, thanks to our assumptions on α. This shows that $I_2 \to 0$ as $\epsilon \to 0$. Hence, recalling (5.15), we get that
\[
\lim_{\epsilon \to 0^+} \epsilon^{-1} \left(\tilde{N}_s u(\epsilon e_n) - \tilde{N}_s u(0) \right) = \kappa \partial_n u(0),
\]
which establishes (5.13). \hfill \Box

6. AN OVERDETERMINED PROBLEM

In this section we consider an overdetermined problem. For this, we will use the renormalized nonlocal Neumann condition that has been introduced in Remark 3.4. Indeed, as we pointed out in Remark 3.5, this is natural if one considers nonhomogeneous Neumann conditions.

Theorem 6.1. Let $\Omega \subset \mathbb{R}^n$ be a bounded and Lipschitz domain. Then there exists no function $u \in C(\mathbb{R}^n)$ satisfying
\[
\begin{cases}
 u(x) = 0 & \text{for any } x \in \mathbb{R}^n \setminus \Omega \\
 \tilde{N}_s u(x) = 1 & \text{for any } x \in \mathbb{R}^n \setminus \overline{\Omega}.
\end{cases}
\] (6.1)

Remark 6.2. We notice that $u = \chi_{\Omega}$ satisfies (6.1), but it is a discontinuous function.

Proof. Without loss of generality, we can suppose that $0 \in \partial \Omega$. We argue by contradiction and we assume that there exists a continuous function u that satisfies (6.1). Therefore, there exists $\delta > 0$ such that
\[
|u| \leq 1/2 \text{ in } B_\delta.
\] (6.2)

Since Ω is Lipschitz, up to choosing δ small enough, we have that $\Omega \cap B_\delta = \tilde{\Omega} \cap B_\delta$, where
\[
\tilde{\Omega} := \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} \text{ s.t. } x_n < \gamma(x')\}
\]
for a suitable Lipschitz function $\gamma : \mathbb{R}^{n-1} \to \mathbb{R}$ such that $\gamma(0) = 0$ and $\partial_{x'} \gamma(0) = 0$.

Now we let $x := \epsilon e_n \in \mathbb{R}^n \setminus \overline{\tilde{\Omega}}$, for suitable $\epsilon > 0$ sufficiently small. We observe that
\[
u(\epsilon e_n) = 0.
\] (6.3)
Moreover we consider the set
\[\frac{1}{\epsilon} \Omega = \left\{ y = (y', y_n) \in \mathbb{R}^{n-1} \times \mathbb{R} \text{ s.t. } y_n < \frac{1}{\epsilon} \gamma(\epsilon y') \right\}. \]

We also define
\[K := \left\{ y = (y', y_n) \in \mathbb{R}^{n-1} \times \mathbb{R} \text{ s.t. } y_n < -L |y'| \right\}, \]
where \(L \) is the Lipschitz constant of \(\gamma \).

We claim that
\[K \subseteq \epsilon^{-1} \Omega. \quad \text{(6.4)} \]
Indeed, since \(\gamma \) is Lipschitz and \(0 \in \partial \Omega \), we have that
\[-\gamma(\epsilon y') = -\gamma(\epsilon y') + \gamma(0) \leq L \epsilon |y'|, \]
and so, if \(y \in K \),
\[y_n \leq -L |y'| \leq \frac{1}{\epsilon} \gamma(\epsilon y'), \]
which implies that \(y \in \epsilon^{-1} \Omega \). This shows (6.4).

Now we define
\[\Sigma_\epsilon := \int_{B_\delta \cap \Omega} \frac{dy}{|\epsilon e_n - y|^{n+2s}}, \]
and we observe that
\[\int_{B_\delta \cap \Omega} \frac{u(y) - u(\epsilon e_n)}{|\epsilon e_n - y|^{n+2s}} dy \leq \frac{1}{2} \Sigma_\epsilon, \quad \text{(6.5)} \]
thanks to (6.3) and (6.2). Furthermore, if \(y \in \mathbb{R}^n \setminus B_\delta \) and \(\epsilon \leq \delta/2 \), we have
\[|y - \epsilon e_n| \geq |y| - \epsilon \geq \frac{|y|}{2}, \]
which implies that
\[\int_{\Omega \setminus B_\delta} \frac{u(y) - u(\epsilon e_n)}{|\epsilon e_n - y|^{n+2s}} dy \leq C \int_{\Omega \setminus B_\delta} \frac{dy}{|\epsilon e_n - y|^{n+2s}} \leq C \int_{\mathbb{R}^n \setminus B_\delta} \frac{dy}{|y|^{n+2s}} = C \delta^{-2s}, \quad \text{(6.6)} \]
up to renaming the constants.

On the other hand, we have that
\[\int_{\Omega} \frac{dy}{|\epsilon e_n - y|^{n+2s}} \geq \int_{B_{\delta/\epsilon} \cap \Omega} \frac{dy}{|\epsilon e_n - y|^{n+2s}} = \Sigma_\epsilon. \quad \text{(6.7)} \]

Finally, we observe that
\[\epsilon^{2s} \Sigma_\epsilon = \epsilon^{2s} \int_{B_{\delta/\epsilon} \cap \Omega} \frac{dy}{|\epsilon e_n - y|^{n+2s}} = \int_{B_{\delta/\epsilon} \cap (\epsilon^{-1} \Omega)} \frac{dz}{|\epsilon e_n - z|^{n+2s}} \geq \int_{B_{\delta/\epsilon} \cap K} \frac{dz}{|\epsilon e_n - z|^{n+2s}} =: \kappa, \quad \text{(6.8)} \]
where we have used the change of variable \(y = \epsilon z \) and (6.4).
Hence, using the second condition in (6.1) and putting together (6.5), (6.6), (6.7) and (6.8), we obtain

\[0 = \int_{\Omega} \frac{dy}{|\epsilon \epsilon_n - y|^{n+2s}} - \int_{\Omega} \frac{u(\epsilon \epsilon_n) - u(x)}{|\epsilon \epsilon_n - y|^{n+2s}} dy \]

\[= \int_{\Omega} \frac{dy}{|\epsilon \epsilon_n - y|^{n+2s}} - \int_{\Omega \cap B} \frac{u(\epsilon \epsilon_n) - u(x)}{|\epsilon \epsilon_n - y|^{n+2s}} dy - \int_{\Omega \setminus B} \frac{u(\epsilon \epsilon_n) - u(x)}{|\epsilon \epsilon_n - y|^{n+2s}} dy \]

\[\geq \Sigma_{\epsilon} - C \delta^{-2s} \]

\[= \frac{1}{2} \Sigma_{\epsilon} - C \delta^{-2s} \]

\[= \epsilon^{-2s} \left(\frac{2s}{2} \Sigma_{\epsilon} - C \epsilon^{2s} \delta^{-2s} \right) \]

\[\geq \epsilon^{-2s} \left(\frac{\kappa}{2} - C \epsilon^{2s} \delta^{-2s} \right) > 0 \]

if \(\epsilon \) is sufficiently small. This gives a contradiction and concludes the proof. \(\square \)

7. Comparison with previous works

In this last section we compare our new Neumann nonlocal conditions with the previous works in the literature that also deal with Neumann-type conditions for the fractional Laplacian \((-\Delta)^s\).

The idea of [4, 8] (and also [9, 10, 11]) is to consider the regional fractional Laplacian, associated to the Dirichlet form

\[c_{n,s} \int_{\Omega} \int_{\Omega} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy. \]

This operator corresponds to a censored process, i.e., a process whose jumps are restricted to be in \(\Omega \). The operator can be defined in general domains \(\Omega \), and seems to give a natural analogue of homogeneous Neumann condition. However, no nonhomogeneous Neumann conditions can be considered with this model, and the operator depends on the domain \(\Omega \).

On the other hand, in [1, 3] the usual diffusion associated to the fractional Laplacian (1.3) was considered inside \(\Omega \), and thus the “particle” can jump outside \(\Omega \). When it jumps outside \(\Omega \), then it is “reflected” or “projected” inside \(\Omega \) in a deterministic way. Of course, different types of reflections or projections lead to different Neumann conditions. To appropriately define these reflections, some assumptions on the domain \(\Omega \) (like smoothness or convexity) need to be done. In contrast with the regional fractional Laplacian, this problem does not have a variational formulation and everything is done in the context of viscosity solutions.

Finally, in [15] a different Neumann problem for the fractional Laplacian was considered. Solutions to this type of Neumann problems are “large solutions”, in the sense that they are not bounded in a neighborhood of \(\partial \Omega \). More precisely, it is proved in [15] that the following problem is well-posed

\[\begin{align*}
(-\Delta)^s u &= f \quad \text{in } \Omega \\
\partial_\nu(u/d^{s-1}) &= g \quad \text{on } \partial \Omega,
\end{align*} \]
where \(d(x)\) is the distance to \(\partial \Omega\).

With respect to the existing literature, the new Neumann problems (1.1) and (1.4) that we present here have the following advantages:

- The equation satisfied inside \(\Omega\) does not depend on anything (domain, right hand side, etc). Notice that the operator in (1.3) does not depend on the domain \(\Omega\), while for instance the regional fractional Laplacian defined in (7.1) depends on \(\Omega\).
- The problem can be formulated in general domains, including nonsmooth or even unbounded ones.
- The problem has a variational structure. For instance, solutions to the elliptic problem (1.1) can be found as critical points of the functional

\[
E(u) = \frac{c_{n,s}}{4} \int_{\mathbb{R}^n \setminus (\partial \Omega)^2} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy - \int_{\Omega} fu.
\]

We notice that the variational formulation of the problem is the analogue of the case \(s = 1\). Also, this allows us to easily prove existence of solutions (whenever the compatibility condition \(\int_{\Omega} f = 0\) is satisfied).

- Solutions to the fractional heat equation (1.4) possess natural properties like conservation of mass inside \(\Omega\) or convergence to a constant as \(t \to +\infty\).
- Our probabilistic interpretation allows us to formulate problems with nonhomogeneous Neumann conditions \(N_s u = g\) in \(\mathbb{R}^n \setminus \Omega\), or with mixed Dirichlet and Neumann conditions.
- The formulation of nonlinear equations like \((-\Delta)^s u = f(u)\) in \(\Omega\) with Neumann conditions is also clear.

Proof of Theorems 3.9 and 3.11 with a functional analytic notation

As anticipated in the footnote of page 3, we provide this appendix in order to satisfy the reader who wish to prove Theorems 3.9 and 3.11 by keeping the distinction between a function defined in the whole of \(\mathbb{R}^n\) and its restriction to the domain \(\Omega\). For this scope, we will use the notation of denoting \(r^+ u\) and \(r^- u\) the restriction of \(u\) to \(\Omega\) and \(\mathbb{R}^n \setminus \Omega\), respectively. Notice that, in this notation, we have that \(u : \mathbb{R}^n \to \mathbb{R}\), but \(r^+ u : \Omega \to \mathbb{R}\) and \(r^- u : \mathbb{R}^n \setminus \Omega \to \mathbb{R}\).

Proof of Theorem 3.9. One can reduce to the case \(g \equiv 0\). By the Riesz representation theorem, given \(h \in L^2(\Omega)\), one finds \(v := T_oh \in H^s_\Omega\) that is a weak solution of

\[
r^+((-\Delta)^s v + v) = h,
\]

with \(r^- N_s v = 0\).

Notice that \(T_0 : L^2(\Omega) \to H^s_\Omega\). We also define by \(T : L^2(\Omega) \to L^2(\Omega)\) the restriction operator of \(T_0\), that is \(Th := r^+ T_0 h\). One sees that \(T\) is compact and self-adjoint. By construction \(r^- N_s T_0 h = 0\) and

\[
h = r^+((-\Delta)^s T_0 h + T_0 h) = r^+(-\Delta)^s T_0 h + Th,
\]

that is

\[
r^- N_s T_0 = 0 \quad \text{and} \quad Id - T = r^+(-\Delta)^s T_0.
\]
Therefore, by Lemma \ref{lem:kernel}
\[\text{Ker}(Id - T) = \{ h \in L^2(\Omega) \text{ s.t. } r^+(-\Delta)^sT_\alpha h = 0 \} = \{ h \in L^2(\Omega) \text{ s.t. } r^+(-\Delta)^sT_\alpha h = 0 \text{ and } r^{-N_s}T_\alpha h = 0 \} = \{ h \in L^2(\Omega) \text{ s.t. } T_\alpha h \text{ is constant} \} = \{ h \in L^2(\Omega) \text{ s.t. } h \text{ is constant} \} .\]

From the Fredholm Alternative, we conclude that $\text{Im}(Id - T)$ is the space of functions in $L^2(\Omega)$ that are orthogonal to constants. \hfill \square

Proof of Theorem \ref{thm:nonlocal_minimal_surfaces} We define
\[L_0^2(\Omega) := \left\{ u \in L^2(\Omega) : \int_\Omega u = 0 \right\} .\]

By Theorem \ref{thm:existence}, for any $f \in L^2_0(\Omega)$ one finds $v := T_\alpha f \in H^1_0(\Omega)$ that is a weak solution of $r^+(-\Delta)^s v = f$, with $r^{-N_s}v = 0$ and zero average in Ω. We also define T to be the restriction of T_α, that is $Tf := r^+T_\alpha f$. The operator T is compact and self-adjoint in $L^2_0(\Omega)$.

Thus, by the spectral theorem there exists a sequence of eigenvalues $\{ \mu_i \}_{i \geq 2}$ of T, and its corresponding eigenfunctions $\{ e_i \}_{i \geq 2}$ are a complete orthogonal system in $L^2_0(\Omega)$.

Notice that $r^{-N_s}T_\alpha e_i$, which gives, for every $x \in \mathbb{R}^n \setminus \Omega$,
\[T_\alpha e_i(x) \int_\Omega \frac{dy}{|x - y|^{n+2s}} = \int_\Omega \frac{T_\alpha e_i(y)}{|x - y|^{n+2s}} dy = \int_\Omega \frac{Te_i(y)}{|x - y|^{n+2s}} dy = \mu_i \int_\Omega \frac{e_i(y)}{|x - y|^{n+2s}} dy .\]

This gives that
\[\mu_i \neq 0 .\]

Indeed, otherwise we would have that $r^{-T_\alpha e_i} = 0$. Since also
\[0 = \mu_i e_i = Te_i = r^+T_\alpha e_i ,\]
we would get that $T_\alpha e_i = 0$ and thus $0 = (-\Delta)^sT_\alpha e_i = e_i$, which is impossible.

As a consequence, we can define $\lambda_i := \mu_i^{-1}$, and $u_i := T_\alpha e_i$.

Then
\[r^+u_i = r^+T_\alpha e_i = Te_i = \mu_i e_i .\]

thus $\{ r^+u_i \}_{i \geq 2}$ are a complete orthogonal system in $L^2_0(\Omega)$, since so are $\{ e_i \}_{i \geq 2}$.

Furthermore, $r^+(-\Delta)^s e_i = r^+(-\Delta)^s T_\alpha e_i = e_i = \mu_i^{-1} r^+u_i = r^+\lambda_i u_i$. \hfill \square

References

Maxwell Institute for Mathematical Sciences and School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, King’s Buildings, Edinburgh EH9 3JZ, United Kingdom

E-mail address: serena.dipierro@ed.ac.uk

Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona, Spain

E-mail address: xavier.ros.oton@upc.edu

Weierstrass Institut für Angewandte Analysis und Stochastik, Mohrenstrasse 39, 10117 Berlin, Germany

E-mail address: enrico.valdinoci@wias-berlin.de