An Ordinal Lp-Index for Banach Spaces, with Application to Complemented Subspaces of Lp

J. Bourgain; H. P. Rosenthal; G. Schechtman

The Annals of Mathematics, 2nd Ser., Vol. 114, No. 2. (Sep., 1981), pp. 193-228.
Stable URL:
http://links.jstor.org/sici?sici=0003-486X\(198109\)2\%3A114\%3A2\<193\%3AAOFBSW\>2.0.CO\%3B2-\%23
The Annals of Mathematics is currently published by Annals of Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

An ordinal L^{p}-index for Banach spaces, with application to complemented subspaces of L^{p}

By J. Bourgain, H. P. Rosenthal, ${ }^{1}$ G. Schechtman ${ }^{2}$

One of the central problems in the Banach space theory of the L^{p}-spaces is to classify their complemented subspaces up to isomorphism (i.e., linear homeomorphism). Let us fix $1<p<\infty, p \neq 2$. There are five "simple" examples, L^{p}, $l^{p}, l^{2}, l^{2} \oplus l^{p}$, and $\left(l^{2} \oplus l^{2} \oplus \ldots\right)_{p}$. Although these were the only infinitedimensional ones known for some time, further impetus to their study was given by the discoveries of Lindenstrauss and Pełczyǹski [15] and Lindenstrauss and Rosenthal [16]. These discoveries showed that a separable infinite-dimensional Banach space is isomorphic to a complemented subspace of L^{p} if and only if it is isomorphic to l^{2} or is an " L_{p}-space", that is, equal to the closure of an increasing union of finite-dimensional spaces uniformly close to l_{n}^{p} 's. By making crucial use of statistical independence, the second author produced several more examples in [19], and the third author built infinitely many non-isomorphic examples in [23]. These discoveries left unanswered: Does there exist a λ_{p} and infinitely many non-isomorphic λ_{p}-complemented subspaces of L^{p} (equivalently, are there infinitely many separable $\mathfrak{L}_{p, \lambda}$-spaces for some λ depending on p)? We answer these questions by obtaining uncountably many non-isomorphic complemented subspaces of L^{p}.* Before our work, it was suspected that every \mathscr{L}_{p}-space nonisomorphic to L^{p} embedded in $\left(l^{2} \oplus l^{2} \oplus \ldots\right)_{p}($ for $2<p<\infty)$ (see Problem 1 of [23]). Indeed, all the known examples had this property. However our results show that there is no universal \mathfrak{L}_{p}-space besides L^{p}. To obtain these results, we use rather deep properties of martingales together with a new ordinal index, called the local L^{p}-index, which assigns "large" countable ordinals to any

[^0]separable Banach space not containing L^{p}-isomorphically. We pass now to a more detailed summary of our work.

Our main result concerning the classification of the complemented subspaces of L^{p} is as follows:

Theorem A. Let $1<p<\infty, p \neq 2$, and let ω_{1} denote the first uncountable ordinal. There exists a family $\left(X_{\alpha}^{p}\right)_{\alpha<\omega_{1}}$ of complemented subspaces of L^{p} so that for all $\alpha<\beta<\omega_{1}, X_{\alpha}^{p}$ is isometric to a subspace of X_{β}^{p} but X_{β}^{p} is not isomorphic to a subspace of X_{α}^{p}. Moreover if B is a separable Banach space such that X_{α}^{p} is isomorphic to a subspace of B for all α, then L^{p} is isomorphic to a subspace of B.

Since at most one of the spaces X_{α}^{p} can be isomorphic to Hilbert space, we obtain that there exist uncountably many non-isomorphic \mathcal{L}_{p}-spaces, $1<p<\infty$, $p \neq 2$, thus answering a question raised in [23]. (It has recently been proved that there are uncountably many non-isomorphic separable \mathcal{L}_{1}-spaces. See [12].) It of course follows immediately that there is a λ (depending on p) so that there are uncountably many non-isomorphic $\mathcal{L}_{p, \lambda}$ spaces; as noted above, the existence of infinitely many such had remained an open question until now.

Given Banach spaces X and Y, we use the notation $X \hookrightarrow Y$ to mean X is isomorphic (linearly homeomorphic) to a subspace of $Y ; X \stackrel{c}{\hookrightarrow} Y$ means X is isomorphic to a complemented subspace of Y. Given a class K of Banach spaces and a Banach space B, we say that B is universal for K if $E \hookrightarrow B$ for all $E \in K$.

Our main result then yields the following consequence:
Corollary. Let $1<p<\infty, p \neq 2$, and let \mathscr{W}_{p} denote the class of all complemented subspaces X of L^{p} such that $L^{p} \Leftrightarrow X$. Let B be a separable Banach space universal for \mho_{p}. Then $L^{p} \hookrightarrow B$.

In our proof of the Main Theorem, we make essential use of the following result established in [13]:

$$
(\Delta) \text { If } X \subset L^{p} \quad \text { and } \quad L^{p} \hookrightarrow X, \text { then } L^{p} \stackrel{c}{\hookrightarrow} X .
$$

It follows, incidentally, that if $X \stackrel{c}{\hookrightarrow} L^{p}$, then X is isomorphic to L^{p} if (and only if) $L^{p} \hookrightarrow X$. Hence the corollary may be rephrased: if B separable is universal for the class of all separable \mathfrak{L}_{p}-spaces non-isomorphic to L^{p}, then $L^{p} \hookrightarrow B(1<p<$ $\infty, p \neq 2$).

It is a long standing conjecture that every infinite-dimensional complemented subspace of L^{1} is isomorphic to l^{1} or L^{1}. Thus the analogue of our main result is thought to be false for $p=1$ (although this is an open question). If we drop the word "complemented", then the analogue of our main result and its attendant corollary prove true for $p=1$; in fact, we obtain the following improvement:

Proposition. Let \mathcal{C} denote the class of all subspaces of L^{1} satisfying the Radon-Nikodym property and let B be universal for \mathcal{C} with B separable. Then $L^{1} \hookrightarrow B$.

In previous (unpublished) work, M. Talagrand had obtained that the class of all separable Banach spaces with the RNP has no universal element.

To obtain our results, we introduce (in Section 2) an ordinal index for separable Banach spaces, called the local L^{p}-index. Ordinal indices with similar properties were introduced by the first author in [2] for l^{1}-structures and in [3] for quite general structures. (For a discussion of the local L^{∞}-index and its connection with the classical theory of analytical sets, see [21]. Also, see [22] for a summary of the proof of the Main Theorem without the complementation assertion (unknown at the time [22] was written).)

The properties of this index are as follows (ω_{1} denotes the first uncountable ordinal):

Theorem 2.1. For each $1 \leq p \leq \infty$ and separable Banach space B, there exists an ordinal number $h_{p}(B) \leq \omega_{1}$, the local L^{p}-index of B, so that
(a) $h_{p}(B)<\omega_{1}$ if and only if $L^{p} \leadsto B$ and $p<\infty$, or $C([0,1]) \leadsto B$ and $p=\infty$; and
(b) if X is a Banach space such that $X \hookrightarrow B$, then $h_{p}(X) \leq h_{p}(B)$.

We construct the family of Theorem A by alternately taking disjoint and independent sums of subspaces of L^{p}. Precisely, let $1 \leq p<\infty$ and let R_{0}^{p} be the one-dimensional space of constant functions. If R_{α}^{p} has been defined, we let $R_{\alpha+1}^{p}$ equal the L^{p}-direct sum in L^{p} of R_{α}^{p} with itself. If α is a limit ordinal and R_{β}^{p} has been defined for all $\beta<\alpha$, we let R_{α}^{p} equal the independent L^{p}-sum in L^{p} of the R_{β}^{p} 's for $\beta<\alpha$. It is important that the R_{α}^{p} 's are presented as specific spaces of random variables; the precise definitions of disjoint and independent sums in L^{p} may be found in the second part of Section 2.

Incidentally, it follows easily that for $\alpha<\beta, R_{\alpha}^{p}$ isometrically embeds in R_{β}^{p}. In fact, the natural embedding is implemented by a projection of norm one (for $p=1$ as well).

Theorem A then follows easily from the following result:
Theorem B. Let $1 \leq p<\infty, p \neq 2$ and $\alpha<\omega_{1}$. Then
(1) $L^{p} \leadsto R_{\alpha}^{p}$,
(2) $h_{p}\left(R_{\alpha}^{p}\right) \geq \alpha+1$ and
(3) R_{α}^{p} is complemented in L^{p} if $p \neq 1$.

Proof that $\mathrm{B} \Rightarrow \mathrm{A}$. We simply construct an increasing function $\tau: \omega_{1} \rightarrow \omega_{1}$ so that $X_{\alpha}^{p}=R_{\tau(\alpha)}^{p}$ for all $\alpha<\omega_{1}$. Let $\tau(0)=\omega$. (Thus X_{0}^{p} is the first R_{α}^{p} which is infinite dimensional.) Suppose $\beta>0$ is a countable ordinal and $\tau(\alpha)$ has been
defined for all $\alpha<\beta$. Now Theorem 2.1 and (1) yield that $h_{p}\left(R_{\gamma}^{p}\right)<\omega_{1}$ for all $\gamma<\omega_{1}$. Let $\tau(\beta)=\sup \left\{h_{p}\left(R_{\tau(\alpha)}^{p}\right): \alpha<\beta\right\}$. By (2) of Theorem B, $h_{p}\left(R_{\tau(\beta)}^{p}\right)=$ $h_{p}\left(X_{\beta}^{p}\right) \geq \tau(\beta)+1$. Since $\alpha<\beta$ implies $h_{p}\left(X_{\alpha}^{p}\right) \leq \tau(\beta)<h_{p}\left(X_{\beta}^{p}\right)$, it follows from Theorem 2.1(a) that X_{β}^{p} is not isomorphic to a subspace of X_{α}^{p}. Finally, suppose B is as in Theorem A. Then by Theorem 2.1 and part (2) of Theorem B, for all $\alpha<\omega_{1}, \alpha+1 \leq h_{p}\left(X_{\alpha}^{p}\right) \leq h_{p}(B)$. Hence $h_{p}(B)=\omega_{1}$, so by Theorem 2.1, $L^{p} \rightarrow B$, proving Theorem A.

It is easily seen that the R_{α}^{1} 's all have the RNP; hence the above argument also proves the proposition.

The assertions (1)-(3) of Theorem B are essentially established in Sections $1-3$ respectively. We pass to a brief summary of how this is done.

Section 1 is devoted exclusively to the proof of the following result:
Theorem 1.1. Let $1<p<\infty, Y$ be a Banach space with an unconditional Schauder decomposition $\left(Y_{i}\right)$, and suppose $L^{p} \stackrel{c}{\hookrightarrow} Y$. Then either $L^{p} \stackrel{c}{\hookrightarrow} Y_{i}$ for some i, or there exists a block basic sequence of the Y_{i} 's equivalent to the Haar-basis in L^{p}, with closed linear span complemented in Y^{p}.

Theorem $\mathrm{B}(1)$ for $p>1$ now follows easily from the above result, (Δ), and the fact that no independent sequence of random variables is equivalent to the Haar basis in L^{p} (for $p \neq 2$). The details are given in Section 2. Of course, $\mathrm{B}(1)$ for $p=1$ also follows immediately from the fact that the R_{α}^{p} 's all have the RNP, established in Section 2. We do not know if Theorem 1.1 holds if the words "unconditional" or "complemented" are deleted from its statement. The techniques of Enflo and Starbird [9] (see also Kalton [14]) may be used to show that 1.1 does hold for $p=1$ (in which case only the first alternative occurs).

Section 2 is devoted to the definition and properties of the local L^{p}-index, the proof of Theorem $\mathrm{B}(2)$, and the demonstration of a few other properties of the R_{α}^{p} 's. (For example, it is proved that R_{α}^{p} has an unconditional basis for all $1<p<\infty$ and $\alpha<\omega_{1}$.)

In Section 3, we obtain that the R_{α}^{p} 's are complemented in L^{p} for $1<p<\infty$. To accomplish this, we require a fundamentally different description of these spaces.

Let T be a countable partially ordered set such that the set of predecessors of any element of T is finite and linearly ordered; we call such a T a tree. Call a subset Γ of T a branch if it contains all the predecessors of all its elements. Now let $\{0,1\}^{T}$ be endowed with the product measure of the "fair" measure on the two point set $\{0,1\}$, and let X_{T}^{p} denote the closed linear span in $L^{p}\{0,1\}^{T}$ over all branches Γ of those functions which depend only on the coordinates in Γ.

Thus we show in Section 3 (Theorem 3.8) that for any tree, T, X_{T}^{p} is complemented in $L^{p}\left(\{0,1\}^{T}\right), 1<p<\infty$, and verify (Lemma 3.9) that for all α there is a tree T_{α} so that R_{α}^{p} may be identified with $X_{T_{\alpha}}^{p}$ for all $1 \leq p<\infty$.

The complementation result makes crucial use of some martingale inequalities due to Stein, Burkholder, Davis and Gundy. We also note at the end of Section 3 that each R_{α}^{p} may be identified with the closed linear span in L^{p} of a certain set of Walsh functions; that is, with a translation invariant subspace of $L^{p}\left(\{0,1\}^{N}\right)$. Several open questions are posed throughout; in particular, at the end of Section 3.

Much of this research was conducted while the authors held visiting positions in France-the first and second at Universite de Paris VI and the third at Ecole Polytechnique, Palaiseau. We would like to thank our French colleagues for their warm hospitality and support. In particular, we would like to thank G. Pisier for stimulating conversations concerning the work presented here.

1. Complemented embeddings of L^{p} into spaces with unconditional Schauder decompositions

The main result of this section is as follows:
Theorem 1.1. Let $1<p<\infty$ and suppose L^{p} is isomorphic to a complemented subspace of a Banach space Y with an unconditional Schauder decomposition $\left(Y_{i}\right)$. Then one of the following holds:
(1) There is an i so that L^{p} is isomorphic to a complemented subspace of Y_{i};
(2) A block basic sequence of the Y_{i} 's is equivalent to the Haar basis of L^{p} and has closed linear span complemented in Y.
(We recall that $\left(Y_{i}\right)$ is an unconditional Schauder decomposition of Y if each Y_{i} is a closed linear subspace of Y, and if for all $y \in Y$, there exists a unique sequence (y_{i}) with $y_{i} \in Y_{i}$ for all j and Σy_{i} converging unconditionally to y. A sequence $\left(b_{i}\right)$ in Y is called a block basic sequence of the Y_{i} 's if there exist $y_{i} \in Y_{i}$ and integers $n_{1}<n_{2}<\cdots$ with $b_{i}=\sum_{i=n_{i}}^{n_{i+1}-1} y_{j}$ for all i.)

The proof is accomplished by using many standard results about L^{p} and general unconditional Schauder decompositions. In particular, we make essential use of the results and techniques of Alspach, Enflo and Odell [1]. We first assemble these standard results. For the convenience of the reader, we have labeled those used directly in the proof of Theorem 1.1 as scholia; the others are called lemmas.

We first need facts about unconditional bases and decompositions. Let N denote the set of positive integers. Given a Banach space B with an unconditional basis $\left(b_{i}\right)$ and $\left(x_{i}\right)$ a sequence of non-zero elements in B, say that $\left(x_{i}\right)$ is disjoint if there exist disjoint subsets M_{1}, M_{2}, \ldots of N with $x_{i} \in\left[b_{i}\right]_{j_{M_{i}}}$ for all i. Say
that $\left(x_{i}\right)$ is essentially disioint if there exists a disjoint sequence $\left(y_{i}\right)$ such that $\sum\left\|x_{i}-y_{i}\right\| /\left\|x_{i}\right\|<\infty$. Of course, if $\left(x_{i}\right)$ is essentially disjoint, then $\left(x_{i}\right)$ is essentially a block basis of a permutation of $\left(b_{i}\right)$. Also, $\left(x_{i}\right)$ is an unconditional basic sequence. (Throughout this paper, if $\left\{b_{i}\right\}_{i} \in_{J}$ is an indexed family of elements of a Banach space $B,\left[b_{i}\right]_{i \in J}$ denotes the closed linear span of $\left\{b_{i}\right\}_{i \in J}$ in B.)

We next slightly rephrase the useful Lemma 1.1 of [1] (which, as noted in [1], follows easily from the ideas of [7]).

Lemma 1.2. Let $\left(b_{n}\right)$ be an unconditional basis for B with biorthogonal functionals $\left(b_{n}^{*}\right), T: B \rightarrow B$ an operator, $\varepsilon>0$, and $\left(b_{n_{i}}\right)$ a subsequence of $\left(b_{n}\right)$ so that $\left(T b_{n_{i}}\right)$ is essentially disioint and $\left|b_{n_{i}}^{*}\left(T b_{n_{i}}\right)\right| \geq \varepsilon$ for all i. Then $\left(T b_{n_{i}}\right)$ is equivalent to $\left(b_{n_{i}}\right)$ and $\left[T b_{n_{i}}\right]$ is complemented in B.

Our next result follows immediately from the proof of the remarkable diagonalization theorem of Tong [26]; (see also Proposition 1.c. 8 of [17]). If (X_{i}) is an unconditional Schauder decomposition, say that P_{i} is the natural projection onto X_{i} if $P_{i} x=x_{i}$ provided $x=\sum x_{i}$ with $x_{i} \in X_{j}$ for all j. We shall refer to (P_{i}) as the projections corresponding to the decomposition.

Lemma 1.3. Let X and Y be Banach spaces with unconditional Schauder decompositions $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ respectively; and let $\left(P_{i}\right)\left(\right.$ resp. $\left.Q_{i}\right)$ be the natural projection from $X($ resp. $Y)$ onto $X_{i}\left(\right.$ resp. $\left.Y_{i}\right)$. Then if $T: X \rightarrow Y$ is a bounded linear operator, so is $\Sigma Q_{i} T P_{i}$. (In other words, there is a $K<\infty$ so that for all $x \in X, \Sigma Q_{i} T P_{i} x$ converges and $\left\|\Sigma Q_{i} T P_{i} x\right\| \leq K\|x\|$.)

Our next result is used directly in the proof of case 2 of the Main Theorem. (Throughout this paper, "projection" means "bounded linear projection", "operator" means "bounded linear operator".)

Scholium 1.4. Let Y have an unconditional Schauder decomposition with corresponding projections $\left(Q_{i}\right)$ (as in the previous result), and let X be a complemented subspace of Y with an unconditional basis $\left(x_{i}\right)$ with biorthogonal functionals $\left(x_{i}^{*}\right)$. Suppose there exist $\varepsilon>0$, a projection $U: Y \rightarrow X$ and disjoint subsets M_{1}, M_{2}, \ldots of N with the following properties:
(a) $\left(U Q_{i} x_{l}\right)_{l \in M_{i}, i \in N}$ is essentially disjoint and
(b) $\left|x_{l}^{*}\left(U Q_{i} x_{l}\right)\right| \geq \varepsilon$ for all $l \in M_{i}, i \in N$.

Then $\left(Q_{i} x_{l) l \in M_{i}, i \in N}\right.$ is equivalent to $\left(x_{l}\right)_{l \in M_{i}, i \in N}$ and $\left[Q_{i} x_{l}\right]_{l \in M_{i}, i \in N}$ is complemented in Y.

Proof. Let $M=\cup_{i=1}^{\infty} M_{i}$ and $L=N \sim M$. Let $X_{i}=\left[x_{l}\right]_{l \in M_{i}}$ for $i>1$ and $X_{1}=\left[x_{l}\right]_{l \in M_{1} \cup L}$. Then of course $\left(X_{i}\right)$ is an unconditional Schauder decomposition for X; let $\left(P_{i}\right)$ be the corresponding projections. Also, let T be the natural projection from X onto $\left[x_{l}\right]_{l \in M}$. Now if we regard T as an operator from X into
$Y, V=\Sigma Q_{i} T P_{i}$ is also an operator, by the preceding lemma. Fixing i and $l \in M_{i}$, we have

$$
\begin{equation*}
V\left(x_{l}\right)=Q_{i} T P_{i}\left(x_{l}\right)=Q_{i}\left(x_{l}\right) . \tag{1.1}
\end{equation*}
$$

Hence by (b),

$$
\begin{equation*}
\left|x_{l}^{*} U V\left(x_{l}\right)\right|=\left|x_{l}^{*} U Q_{i}\left(x_{l}\right)\right| \geq \varepsilon . \tag{1.2}
\end{equation*}
$$

Moreover, $\left(U V\left(x_{l}\right)\right)_{l \in M}$ is almost disjoint by (a). Thus Lemma 1.2 applies and $\left(U V\left(x_{l}\right)\right)_{l \in M}$ is equivalent to $\left(x_{l}\right)_{l \in M}$ and $\left[U V\left(x_{l}\right)\right]_{l \in M}$ is complemented in X. It now follows directly that $\left(V\left(x_{l}\right)\right)_{l \in M}$ is equivalent to $\left(x_{l}\right)_{l \in M}$ with $\left[V\left(x_{l}\right)\right]$ complemented in Y, which proves the theorem by virtue of (1.1). (To see the final assertion, $\left(V\left(x_{l}\right)\right)$ is dominated by $\left(x_{l}\right)$ but dominates $\left(U V\left(x_{l}\right)\right)$, hence $\left(V\left(x_{l}\right)\right)$ is equivalent to $\left.\left(x_{l}\right)\right)$. Let P be a projection from X onto $\left[U V\left(x_{l}\right)\right]_{l \in M}$ and let $S:\left[U V\left(x_{l}\right)\right]_{l \in M} \rightarrow\left[x_{l}\right]_{l \in M}$ be the isomorphism with $\operatorname{SUV}\left(x_{l}\right)=x_{l}$ for all $l \in M$. Then $Q=V S P U$ is a projection from Y onto $\left[V x_{l}\right]_{l \in M}$, as is seen by considering the commutative diagram

We next recall the fundamental result of Gamlen and Gaudet [10]; throughout this paper, $\left(h_{i}\right)$ denotes the Haar-basis, normalized in L^{∞}.

Lemma 1.5. Let $1<p<\infty$ and $I \subset N$ such that if $E=\{t \in[0,1]: t$ belongs to infinitely many h_{i} 's with $\left.i \in I\right\}$, then E is of positive Lebesgue measure. Then $\left[h_{i}\right]_{i \in I}$ is isomorphic to L^{p}.

Now fix $p, 1<p<\infty$. Following [1], we recall that L^{p} is isomorphic to

$$
L^{p}\left(l^{2}\right)=\left\{\left(f_{i}\right): f_{i} \in L^{p} \quad \text { and } \quad\left\|\left(f_{i}\right)\right\|=\left(\int\left(\sum\left|f_{i}\right|^{2}\right)^{p / 2}\right)^{1 / p}<\infty\right\}
$$

Fixing i and letting $\left(h_{i j}\right)$ be the element of $L^{p}\left(l_{2}\right)$ whose j-th coordinate equals h_{i}, all other coordinates 0 , we see that $\left(h_{i j}\right)_{i, j}$ is an unconditional basis for $L^{p}\left(l^{2}\right)$, thanks to the fact that $\left(h_{i}\right)$ is an unconditional basis for L^{p}. Now any unconditional basic sequence (x_{i}) in L^{p} is equivalent to the diagonal sequence $x_{i j}=x_{i}$ if $j=i ; x_{i j}=0$ otherwise, in $L^{p}\left(l^{2}\right)$; hence as observed in [1], we have the following fact:

Scholium 1.6. There is a constant K_{p} depending only on p so that for any function $\left.j: N \rightarrow N,\left(h_{i j i}\right)\right)_{i=1}^{\infty}$ in $L^{p}\left(l^{2}\right)$ is K_{p}-equivalent to $\left(h_{i}\right)$ in L^{p}.

We are now prepared for the following consequence of the proof of Alspach, Enflo and Odell that L^{p} is primary [1]. Let $\left(h_{i j}^{*}\right)$ denote the biorthogonal functionals to ($h_{i j}$) as defined above.

Scholium 1.7. Let $1<p<\infty$ and $T: L^{p}\left(l^{2}\right) \rightarrow L^{p}\left(l^{2}\right)$ be a given operator. Suppose there is a $c>0$ so that when $I=\left\{i:\left|h_{i j}^{*} T h_{i j}\right| \geq c\right.$ for infinitely many $\left.j\right\}$, then E has positive Lebesgue measure, where

$$
E=\left\{t \in[0,1]: t \text { belongs to infinitely many } h_{i} \text { 's with } i \in I\right\}
$$

Then there is a subspace Y of $L^{p}\left(l^{2}\right)$ with Y isomorphic to $L^{p}, T \mid Y$ an isomorphism, and $T Y$ complemented in $L^{p}\left(l^{2}\right)$.

Proof. We shall show that Y may be chosen of the form $Y=\left[h_{i j(i)}\right]_{i \in I}$ for some $j: I \rightarrow N$.

Fix $i \in I$. By the definition of I, there is a sequence $j_{1}<j_{2}<\cdots$ with $\left\|T h_{i j_{k}}\right\| \geq c>0$ for all k; of course $\left(T h_{i j_{k}}\right)_{k=1}^{\infty}$ is weakly null. It then follows by the standard gliding hump argument and the definition of I that there exists a function $j: I \rightarrow N$ so that $\left(T h_{i j(i)}\right)_{i \in I}$ is essentially disjoint with respect to $\left(h_{i k}\right)_{i, k=1}^{\infty}$ and $\left|h_{i j(i)}^{*} T h_{i j(i)}\right| \geq c$ for all $i \in I$. Then by Lemma $1.2,\left[T h_{i j(i)}\right]_{i \in I}$ is complemented in $L^{p}\left(l^{2}\right)$ and $\left(T h_{i j(i)}\right)_{i \in I}$ is equivalent to $\left(h_{i j(i)}\right)_{i \in I}$, which is equivalent to $\left(h_{i}\right)_{i \in I}$ by Lemma 1.6. In turn, $\left[h_{i}\right]_{i \in I}$ is isomorphic to L^{p} by the result of Gamlen-Gaudet, Lemma 1.5. This completes the proof.

Corollary 1.8. Let $1<p<\infty$ and $T: L^{p} \rightarrow L^{p}$ be a given operator. Then for $S=T$ or $I-T$, there exists a subspace Y of L^{p} with Y isomorphic to $L^{p}, S \mid Y$ an isomorphism, and $S(Y)$ complemented in L^{p}.

Proof. Since L^{p} is isomorphic to $L^{p}\left(l^{2}\right)$, it suffices to prove 1.8 with L^{p} replaced by $L^{p}\left(l^{2}\right)$ in its statement. Let $I_{1}=\left\{i:\left|h_{i j}^{*} T h_{i j}\right| \geq \frac{1}{2}\right.$ for infinitely many $i\}$ and $I_{2}=\left\{i:\left|h_{i j}^{*}(I-T) h_{i j}\right| \geq \frac{1}{2}\right.$ for infinitely many $\left.i\right\}$. Then $N=$ $I_{1} \cup I_{2}$; hence for $j=1$ or $2, E_{j}$ has positive Lebesgue measure, where $E_{j}=\{t: t$ belongs to infinitely many h_{i} 's for $\left.i \in I_{i}\right\}$. The result now follows from the preceding theorem.

Remark: 1.8 was first established by Enflo. The work of Enflo-Starbird [9] shows that it holds for $p=1$ (see also [14]).

Theorem 1.9. Let $1<p<\infty$, and X and Y be given Banach spaces. If L^{p} is isomorphic to a complemented subspace of $X \oplus Y$, then L^{p} is isomorphic to a complemented subspace of X or to a complemented subspace of Y.

Proof. Let P (resp. Q) denote the natural projection from $X \oplus Y$ onto X (resp. Y). Hence $P+Q=I$. Let Z be a complemented subspace of
$X \oplus Y$ isomorphic to L^{p} and let $U: X \oplus Y \rightarrow Z$ be a projection. Since $U P|Z+U Q| Z=I \mid Z$, the preceding result shows that there is a subspace W of Z with W isomorphic to $L^{p}, T \mid W$ an isomorphism, and $T W$ complemented in Z, where $T=U P \mid Z$ or $T=U Q \mid Z$. Suppose the former: Let S be a projection from Z onto $T W$ and $R=(T \mid W)^{-1}$. Then $I|W=R S U P| W$; hence since the identity on W may be factored through X, W is isomorphic to a complemented subspace of X.

Remark: Of course this result also holds for $p=1$, by virtue of the preceding remarks. Also, it thus follows trivially by induction that if X_{1}, \ldots, X_{n} are given Banach spaces with L^{p} isomorphic to a complemented subspace of $X_{1} \oplus \cdots \oplus X_{n}$, then L^{p} is isomorphic to a complemented subspace of X_{i} for some i.

We need two more preliminary results dealing with sequences equivalent to the Haar basis. We recall the explicit definition of the latter, normalized in L^{∞} : $h_{1} \equiv 1$ and for $n=2^{k}+j$ with $0 \leq k$ and $1 \leq j \leq 2^{k}$,

$$
h_{n}=\chi_{\left[\frac{i-1}{2^{k}}, \frac{2 j-1}{2^{k+1}}\right)}-\chi_{\left[\frac{2 j-1}{2^{k+1}}, \frac{j}{2^{k}}\right)}
$$

The next result is essentially Lemma 4 of [10]. (We employ the notation [$f=a$] for $\{t: f(x)=a\} ; \mu$ denotes Lebesgue measure. For a measurable function $f, \operatorname{supp} f=[f \neq 0]$.)

Lemma 1.10. Let $\left(x_{i}\right)$ be a sequence of measurable functions on $[0,1]$ with $x_{1}\{0,1\}$-valued and $\left(x_{i}\right)\{1,0,-1\}$-valued for $i>1$. Suppose there exist positive constants a and b so that, for all positive l, with k the unique integer, $1 \leq k \leq l$, and α the unique choice of +1 or -1 so that $\operatorname{supp} h_{l+1}=\left[h_{k}=\alpha\right]$, then
(a) $\left[x_{k}=\alpha\right]=\operatorname{supp} x_{l+1}(u p$ to a set of measure zero) and
(b) $a / 2 \int\left|h_{k}\right| \leq \mu\left(\left[x_{l+1}=\beta\right]\right) \leq b / 2 \int\left|h_{k}\right|$ for $\beta= \pm 1$.

Then for all $p, 1 \leq p<\infty,\left(x_{n}\right)$ is equivalent to $\left(h_{n}\right)$ in $L^{p},\left[x_{n}\right]$ is isometric to L^{p} and hence is the range of a norm-one projection defined on L^{p}.

Remark: In the above statement, $k=[(l+1) / 2]$ and $\alpha=(-1)^{l+1}$. Also, if $a=b=1,\left(x_{n}\right)$ is isometrically equivalent to $\left(h_{n}\right)$ in the L^{p}-norm.

The hypotheses of our final preliminary result yield sequences equal to a small perturbation of the x_{i} 's of the preceding result, hence these sequences are again equivalent to the Haar basis.

Scholium 1.11. Let $\left(z_{i}\right)$ be a sequence of measurable functions on $[0,1]$ with $z_{1}\{1,0\}$-valued non-zero in L^{1} and $\left(z_{i}\right)\{1,0,-1\}$-valued with $\int z_{i}=0$ for all $i>1$. Suppose that for all positive l, letting k be the unique integer, $1 \leq k \leq l$, and α the unique choice of +1 or -1 so that $\operatorname{supp} h_{l+1}=\left[h_{k}=\alpha\right]$,
then

$$
\operatorname{supp} z_{l+1} \subset\left[z_{k}=\alpha\right]
$$

and $\mu\left(\left[z_{k}=\alpha\right] \sim \operatorname{supp} z_{l+1}\right) \leq \varepsilon_{l} \int\left|z_{1}\right|\left(\right.$ where $\varepsilon_{i}=1 / 2^{i^{2}}$ for all $\left.i\right)$. Then for all $p, 1 \leq p<\infty,\left(z_{n}\right)$ is equivalent to $\left(h_{n}\right)$ in the L^{p}-norm and $\left[z_{n}\right]$ is complemented in L^{p}.

Proof. Buried in the indexing of the Haar system by N is the fact that the supports form a dyadic tree of sets. We introduce the perhaps more natural dyadic indexing as follows: Let D_{k} denote the set of all k-tuples of 0 's and l's and let $\mathscr{D}=\cup_{k=0}^{\infty} D_{k}$. (Thus \mathscr{D} is the set of all finite sequences of 0 's and l's.) For $n>1$, let $t=\left(t_{1} \cdots t_{k}\right)$ be the unique element of \mathscr{D} such that

$$
\begin{equation*}
n-1=2^{k}+\sum_{i=1}^{k} t_{i} 2^{k-i} \tag{1.3}
\end{equation*}
$$

(Here $k=0$ is possible; then " t " denotes the empty sequence \varnothing.) Now for $\varepsilon=0$ or 1 , set $E_{t \varepsilon}=\left[z_{n}=(-1)^{\varepsilon}\right]$. Thus $z_{n}=1$ on $E_{t 0}, z_{n}=-1$ on $E_{t 1}$ and $z_{n}=0$ elsewhere. Also, set $E_{\varnothing}=\left[z_{1}=1\right]$. Let $\varepsilon(t)=\varepsilon_{n-1}$ and $b=\int\left|z_{1}\right|$. Our hypotheses are then equivalent to the following: For all $t \in \mathscr{D}$,

$$
\begin{gather*}
\mu\left(E_{t 0}\right)=\mu\left(E_{t 1}\right) \tag{1.4}\\
E_{t} \supset E_{t 0} \cup E_{t 1} \tag{1.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\mu\left(E_{t} \sim\left(E_{t 0} \cup E_{t 1}\right)\right)<b \varepsilon(t) \tag{1.6}
\end{equation*}
$$

It then follows easily that for $t \in D_{k}, k \geq 1$,

$$
\begin{align*}
& \mu\left(E_{t}\right) \leq \frac{b}{2^{k}} \text { and } \\
& \mu\left(E_{t}\right) \geq \frac{b}{2^{k}}\left(1-\sum_{i=0}^{k-1} \varepsilon\left(t_{1} \cdots t_{i}\right) 2^{i}\right) \tag{1.7}
\end{align*}
$$

Now define $F_{t}=\bigcap_{l=1}^{\infty} \cup_{v \in D_{l}} E_{t v}$. Then fixing $t \in D_{k}$, letting n be as in (1.3), we have

$$
\begin{equation*}
\mu\left(E_{t} \sim F_{t}\right) \leq b \sum_{l=1}^{\infty} \sum_{v \in D_{l}} \varepsilon(t v) \leq b \sum_{l \geq n} \varepsilon_{l} \leq \frac{b}{2^{(n-1)^{2}}} \leq \frac{b}{2^{k^{2}}} \tag{1.8}
\end{equation*}
$$

Since $\varepsilon\left(t_{1} \cdots t_{i}\right) \leq \frac{1}{2^{(i+1)^{2}}}$, we easily obtain from (1.7) and (1.8) that there is a constant $a>0$ so that

$$
\begin{equation*}
\frac{a}{2^{k}} \leq \mu\left(F_{t}\right) \quad \text { for all } \quad t \in D_{k}, \quad \text { for all } k \tag{1.9}
\end{equation*}
$$

Again let n and ($t_{1} \cdots t_{k}$) satisfy (1.3) and let x_{n} be defined by (1.10) $x_{n}=1$ on $F_{t 0}, x_{n}=-1$ on $F_{t 1}$ and $x_{n}=0$ elsewhere.

It follows easily that (x_{n}) satisfies the hypotheses of the preceding lemma. Finally, we obtain from (1.8) that there is a constant c so that for all p, $1 \leq p<\infty$,

$$
\begin{equation*}
\frac{\left\|x_{n}-z_{n}\right\|_{p}^{p}}{\left\|x_{n}\right\|_{p}^{p}}=\frac{\left\|x_{n}-z_{n}\right\|_{1}}{\left\|x_{n}\right\|_{1}} \leq \frac{c}{2^{k^{2}-k}} . \tag{1.11}
\end{equation*}
$$

Hence,

$$
\sum_{n=3}^{\infty} \frac{\left\|x_{n}-z_{n}\right\|_{p}}{\left\|x_{n}\right\|_{p}} \leq \sum_{k=2}^{\infty} \frac{c}{2^{k^{2}-2 k}}
$$

which proves the result in view of the preceding lemma and standard perturbation arguments.

We are at last prepared for the proof of our main theorem. Let us first outline the procedure. We assume that $L^{p}\left(l^{2}\right)$ is a complemented subspace of Y; let $U: Y \rightarrow L^{p}\left(l^{2}\right)$ be a projection. Let $\left(Y_{i}\right)$ be an unconditional decomposition of Y. Suppose that there is no i with L^{p} isomorphic to a complemented subspace of Y_{i}. We shall then construct a "blocking" of the decomposition $\left(Y_{i}\right)$ with corresponding projections (Q_{i}), finite disjoint subsets M_{1}, M_{2}, \ldots, of N, and a map $j: \cup_{i=1}^{\infty} M_{i} \rightarrow N$ so that
(i) $\left(Q_{k} h_{i j(i)}\right)_{i \in M_{k}, k \in N}$ is equivalent to $\left(h_{i}\right)_{i \in M_{k}, k \in N}$ with $\left[Q_{k} h_{i(i)}\right]_{i \in M_{k}, k \in N}$ complemented in $L^{p}\left(l^{2}\right)$ and
(ii) $\left(z_{k}\right)$ is equivalent to the Haar basis and $\left[z_{k}\right]$ is complemented in L^{p}, where $z_{k}=\sum_{i \in M_{k}} h_{i}$ for all k.
(The $h_{i j}$'s are as defined preceding Scholium 1.6.) This is enough to prove the theorem, for we simply let $b_{k}=\sum_{i \in M_{k}} Q_{k} h_{i i(i)}$ for all k; then $\left(b_{k}\right)$ is the desired block basic sequence equivalent to the Haar basis with $\left[b_{k}\right]$ complemented.

We pass now to the details. Let P_{i} be the natural projection from Y onto Y_{i}. More generally, for F a subset of N, we let $P_{F}=\sum_{i \in F} P_{i}$. Also, we let $R_{n}=I-$ $\sum_{i=1}^{n} P_{i}\left(=P_{(n, \infty)}\right)$. We first draw a consequence from our assumption that no Y_{i} contains a complemented isomorph of L^{p}.

Sublemma 1. For each n, let

$$
I=\left\{i \in N: h_{i j}^{*} U R_{n} h_{i j}>\frac{1}{2} \quad \text { for infinitely many integers } j\right\} .
$$

Let $E_{I}=\left\{t: t\right.$ belongs to the support of h_{i} for infinitely many $\left.i \in I\right\}$. Then $\mu\left(E_{I}\right)=1$ (where μ denotes Lebesgue measure).

Indeed, let $L=\left\{i \in N: h_{i j}^{*} U P_{[1, n]} h_{i j} \geq \frac{1}{2}\right.$ for infinitely many integers $\left.j\right\} ;$ then $I \cup L=N$.

Hence $E_{I} \cup E_{L}=[0,1]$. So if $\mu\left(E_{I}\right)<1, \mu\left(E_{L}\right)>0$. But then $T=U P_{[1, n]}$ satisfies the hypotheses of Scholium 1.7. Hence there is a subspace Z of $L^{p}\left(l^{2}\right)$, with Z isomorphic to L^{p} and $T Z$ complemented in $L^{p}\left(l^{2}\right)$. It follows easily that then $P_{[1, n]} \mid \mathrm{Z}$ is an isomorphism with $P_{[1, n]} \mathrm{Z}$ complemented; that is, L^{p} embeds as a complemented subspace of $Y_{1} \oplus \cdots \oplus Y_{n}$. Hence by Scholium 1.9, L^{p} embeds as a complemented subspace of Y_{i} for some i.

We next need a simple but crucial observation.
Sublemma 2. Let $I \subset N, E_{I}$ be as in Sublemma 1 with $\mu\left(E_{I}\right)=1$, and $S \subset[0,1]$ with S a finite union of disioint left-closed dyadic intervals. Then there exists a $J \subset I$ so that $\operatorname{supp} h_{i} \cap \operatorname{supp} h_{l}=\varnothing$ for all $i \neq l, i, l \in J$, with $S \supset$ $\cup_{i \in J}$ supp h_{i} and $S \sim \cup_{i \in J}$ Supp h_{i} of measure zero.

Proof. It suffices to prove the result for S equal to a left-closed dyadic interval. Now any two Haar functions either have disjoint supports or the support of one is contained in that of the other. Moreover, for all but finitely many $i \in I$, $\operatorname{supp} h_{i} \subset S$ or $\operatorname{supp} h_{i} \cap S=\varnothing$. Hence S differs from $\cup\left\{\operatorname{supp} h_{i}: \operatorname{supp} h_{i} \subset S\right.$, $j \in I\}$ by a measure-zero set. Now simply let $J=\left\{j \in I: \operatorname{supp} h_{i} \subset S\right.$ and there is no $l \in I$ with $\left.\operatorname{supp} h_{i} \varsubsetneqq \operatorname{supp} h_{l} \subset S\right\}$.

We now choose M_{1}, M_{2}, \ldots disjoint finite subsets of N, a map $j: \cup_{i=1}^{\infty} M_{i} \rightarrow N$, and $\mathrm{l}=m_{0}<m_{1}<m_{2}, \ldots$ with the following properties:
A. For each k, the h_{i} 's for $i \in M_{k}$ are disjointly supported. Set $z_{k}=\sum_{i \in M_{k}} h_{i}$. Then $\left(z_{k}\right)$ satisfies the hypotheses of Scholium 1.11.
B. Let $Q_{k}=P_{\left[m_{k-1}, m_{k}\right]}$ for all k. Then $\left(U Q_{k} h_{i j(i)}\right)_{i \in M_{k}, k \in N}$ is essentially disjoint and $h_{i(i)}^{*} U Q_{k} h_{i(i)}>\frac{1}{2}$ for all $i \in M_{k}, k \in N$.

Having accomplished this, we set $b_{k}=\sum_{i \in M_{k}} Q_{k} h_{i j(i)}$ for all k. Then by B, $\left(b_{k}\right)$ is a block basic sequence of the Y_{i} 's.

By Scholium 1.4,

$$
\begin{equation*}
\left(Q_{k} h_{i ;(i)}\right)_{i \in M_{k}, k \in N} \sim\left(h_{i,(i)}\right)_{i \in M_{k}, k \in N} \sim\left(h_{i}\right)_{i \in M_{k}, k \in N} \tag{1.12}
\end{equation*}
$$

where " \sim " denotes equivalence of basic sequences; the last equivalence follows from Scholium 1.6, i.e., the unconditionality of the Haar basis. Hence by the definitions of $\left(b_{k}\right)$ and $\left(z_{k}\right),\left(b_{k}\right)$ is equivalent to $\left(z_{k}\right)$ which is equivalent to $\left(h_{k}\right)$, the Haar basis, by Scholium 1.11. Also, since $\left[z_{k}\right]$ is complemented in L^{p} by 1.11, $\left[b_{k}\right]$ is complemented in $\left[Q_{k} h_{i(i)}\right)_{i \in M_{k}, k \in N}$ by (1.12). Again by Scholium 1.4, $\left[Q_{k} h_{i(i(i)}\right]_{i \in M_{k}, k \in N}$ is complemented in Y, hence also $\left[b_{k}\right]$ is complemented in Y.

It remains now to choose the M_{i} 's, m_{i} 's and map j. To insure B , we shall also choose a sequence $\left(f_{i}\right)_{i \in M_{k}, k \in N}$ of disjointly finitely supported elements of $L^{p}\left(l^{2}\right)$
(disjointly supported with respect to the basis $\left(h_{i j}\right)$) so that

$$
\begin{equation*}
\sum_{i \in M_{k}} \frac{\left\|U Q_{k} h_{i i(i)}-f_{i}\right\|}{\left\|U Q_{k} h_{i j(i)}\right\|}<\frac{1}{2^{k}} \quad \text { for all } k . \tag{1.13}
\end{equation*}
$$

To start, we let $M_{1}=\{1\}$ and $j(1)=1$. Thus $z_{1}=1$; we also set $f_{1}=h_{11}$. Then $h_{11}=U h_{11}=\lim _{n \rightarrow \infty} \mathrm{UP}_{[1, n]} h_{11}$. So it is obvious that we can choose $m_{1}>1$ such that $\left\|U P_{\left[1, m_{1}\right]} h_{11}-h_{11}\right\|<\frac{1}{2}$; hence $h_{11}^{*} U P_{\left[1, m_{1}\right]} h_{11}>\frac{1}{2}$. Thus, the first step is essentially trivial.

Now suppose $l \geq 1, \quad M_{1}, \ldots, M_{l}, m_{1}<\cdots<m_{l}, j: \quad \cup_{i=1}^{l} M_{i} \rightarrow N$ and $\left(f_{i}\right)_{i \in M_{k}, 1 \leq k \leq l}$ have been chosen. We set $z_{i}=\sum_{i \in M_{i}} h_{i}$ for all $i, l \leq i \leq l$.

Let $1 \leq k \leq l$ be the unique integer and α the unique choice of ± 1 so that $\operatorname{supp} h_{l+1}=\left[h_{k}=\alpha\right]$. Let $S=\left[z_{k}=\alpha\right]$. Set $n=m_{l}$ and let I be as in Sublemma 1. Since S is a finite union of disjoint left-closed dyadic intervals, by Sublemma 2 we may choose a finite set $M_{l+1} \subset I$, disjoint from $\cup_{i=1}^{l} M_{i}$, so that the h_{i} 's for $i \in M_{l+1}$ are disjointly supported with $\operatorname{supp} h_{i} \subset S$ for $i \in M_{l+1}$ and

$$
\begin{equation*}
\mu\left(S \sim \bigcup_{i \in M_{l+1}} \operatorname{supp} h_{i}\right) \leq \varepsilon_{l} \tag{1.14}
\end{equation*}
$$

(where $\varepsilon_{j}=1 / 2^{i^{2}}$ for all j). At this point, we have that $z_{l+1}=\Sigma_{i \in M_{l+1}} h_{i}$ satisfies the conditions of Scholium 1.11.

By the definition of I, for each $i \in M_{l+1}$ there is an infinite set J_{i} with

$$
h_{i j}^{*} U R_{n} h_{i j}>\frac{1}{2} \quad \text { for all } j \in J_{i} .
$$

Now $\left(U R_{n} h_{i j}\right)_{i=1}^{\infty}$ is a weakly null sequence; hence it follows that we may choose $j: M_{l+1} \rightarrow N$ and disjointly finitely supported elements $\left(f_{i}\right)_{i \in M_{l+1}}$, with supports (relative to the $h_{i j}$'s) disjoint from those of $\left\{f_{i}: i \in \cup_{i=1}^{l} M_{i}\right\}$, so that

$$
\sum_{i \in M_{l+1}} \frac{\left\|U R_{n} h_{i(i)}-f_{i}\right\|}{\left\|U R_{n} h_{i j(i)}\right\|}<\frac{1}{2^{l+1}} .
$$

At last, since $R_{n} g=\lim _{k \rightarrow \infty} P_{\left[m_{l}, k\right)} g$ for any $g \in L^{p}\left(l^{2}\right)$, we may choose an $m_{l+1}>m_{l}$ so that setting $Q_{l+1}=P_{\left[m_{l}, m_{l+1}\right)}$, (1.13) holds for $k=l+1$ and also

$$
h_{i,(i)}^{*} U Q_{k} h_{i j(i)}>\frac{1}{2} \quad \text { for all } \quad i \in M_{k} .
$$

This completes the construction of the M_{i} 's, m_{i} 's and map j. Since (1.12) holds, A and B hold; thus the proof is complete.

2. The local L^{p}-index

Our object in this section is to construct the local L^{p}-index and verify its properties, then apply it to the R_{α}^{p} 's defined in the introduction. The basic theorem is 2.1 of the introduction, which we recall here.

Theorem 2.1. For each $1 \leq p \leq \infty$ and separable Banach space B, there exists an ordinal number $h_{p}(B) \leq \omega_{1}$, the local L^{p}-index of B, so that
(a) $h_{p}(B)<\omega_{1}$ if and only if $L^{p} \Leftrightarrow B$ and $p<\infty$ or $C([0,1]) \nRightarrow B$ and $p=\infty$, and
(b) If X is a Banach space such that $X \hookrightarrow B$, then $h_{p}(X) \leq h_{p}(B)$.

The formal definition of the index requires some preliminary formulations (Proposition 2.2 and Definition 1). The index is given in Definition 2 and the "boundedness principle" Theorem 2.1(a) is established in Proposition 2.3, by use of an evident but crucial permanence property of well-founded relations (Lemma 2.4). Theorem $2.1(\mathrm{~b})$ is then quickly obtained, after which we give a general concatenation lemma (Lemma 2.5) which shows that if $h_{p}(B)>\alpha$ then $h_{p}(B \oplus$ $B)_{p}>\alpha+1$. We then resume our discussion of the R_{α}^{p} 's, giving the formal definitions of independent and disjoint sums in L^{p}, and of the R_{α}^{p} 's themselves in Definition 3. We show in Theorem 2.6 that $h_{p}\left(R_{\alpha}^{p}\right) \geq \alpha+1$ and $L^{p} \Leftrightarrow R_{\alpha}^{p}$ in Proposition 2.7, thus completing parts (1) and (2) of Theorem B of the introduction. Finally, we establish in Proposition 2.8 that the R_{α}^{p} 's have unconditional bases for all $1<p<\infty, \alpha<\omega_{1}$. This is false for $p=1$; see the remarks at the end of this section.

Before formally defining the index and establishing its properties, we begin with some intuitive comments. We may think of $L^{p}[0,1]$ as given by an increasing sequence $\left(E_{n}\right)$ of spaces with E_{n} isometric to $l_{2^{n}}^{p}$ for all n, where E_{n+1} is obtained from E_{n} by "splitting" each element of the natural basis for E_{n} in two. Thus, we let

$$
\begin{aligned}
& E_{0}=[1] \\
& E_{1}=\left[2^{1 / p} \chi_{\left[0, \frac{1}{2}\right]}, 2^{1 / p} \chi_{\left[\frac{1}{2}, 1\right]}\right] \\
& E_{2}=\left[2^{2 / p} \chi_{\left[0, \frac{1}{4}\right]}, 2^{2 / p} \chi_{\left[\frac{1}{4}, \frac{1}{2}\right]}, 2^{2 / p} \chi_{\left[\frac{1}{2}, \frac{3}{4}\right]}, 2^{2 / p} \chi_{\left[\frac{3}{4}, 1\right]}\right], \quad \text { etc. }
\end{aligned}
$$

Now a Banach space B contains an isomorph of L^{p} provided it contains an increasing sequence $\left(F_{n}\right)$ of finite dimensional spaces which "look like" the E_{n} 's. We may interpret the natural basis for E_{n} as an element e_{n} of $\left(L^{p}\right)^{D_{n}}$ (i.e., a function from D_{n} to L^{p}) rather than as a 2^{n}-tuple of vectors, where D_{n} denotes the set of all n-tuples of 0 's and l's. Suppose $F_{n}=\left[u_{n}(x): x \in D_{n}\right]$ with $u_{n} \in B^{D_{n}}$
for all n. Then $\left(F_{n}\right)$ looks like (E_{n}) provided

$$
u_{n}(x)=\frac{u_{n+1}(x, 0)+u_{n+1}(x, 1)}{2^{1 / p}} \quad \text { for all } x \in D_{n}, \quad \text { all } n,
$$

and $\left\{u_{n}(x): x \in D_{n}\right\}$ is uniformly equivalent to the $l_{2^{n}}^{p}$ basis. Then with $\delta>0$ given, we can introduce a partial order on a subset of $\cup_{n=0}^{\infty} B^{D_{n}}$ so that B contains a $1 / \delta$-isomorph of L^{p} provided the partially ordered set has an infinite linearly ordered subset.

We now introduce the needed formal definitions and notation. Let DD denote the set of all finite sequences of 0's and l's. That is, $\mathcal{D}=\cup_{n=0}^{\infty} D_{n}$ where $D_{n}=\left\{\left(t_{1}, \ldots, t_{n}\right): t_{i}=0\right.$ or 1 for all $\left.i\right\}$. Let B be a separable Banach space; if $u \in B^{\text {D }}$, let $|u|=k$ if $u \in D_{k}$. (We shall refer to $|u|$ as the rank of u.)

Since D_{0} is the set consisting of the empty sequence, $B^{D_{0}}$ can be identified with B itself. Now fix $p, 1 \leq p \leq \infty$. For $u, v \in B^{\mathcal{D}}$, we set $u<v$ provided $|u|<|v|$ and
(2.1) $u(x)=2^{-k / p} \sum_{\tau \in D_{k}} v(x, \tau)$ for all $x \in D_{|u|}$, where $k=|v|-|u|$.

It is evident that $<$ is indeed a partial order on B^{\top}. Now fix $\delta, 0<\delta \leq 1$, and let \bar{B}^{δ} denote the set of all $u \in B^{\oplus}$ so that

$$
\begin{equation*}
\delta\left(\sum_{x \in D_{n}}|c(x)|^{p}\right)^{1 / p} \leq\left\|\sum_{x \in D_{n}} c(x) u(x)\right\| \leq\left(\sum_{x \in D_{n}}|c(x)|^{p}\right)^{1 / p} \tag{2.2}
\end{equation*}
$$

for all $c \in \mathbf{R}^{D_{n}}$, where $|u|=n$. (If $p=\infty$, we replace $\left(\sum_{x \in D_{n}}|c(x)|^{p}\right)^{1 / p}$ by $\max \left\{|c(x)|: x \in D_{n}\right\}$.

For simplicity of notation, we set $\bar{B}^{1}=\bar{B}$; thus the rank- n elements of \bar{B}^{1} simply correspond to the 2^{n}-tuples of B that are isometrically equivalent to the usual basis for $l_{2^{n}}^{p}$. The reader may now readily establish the following result: (The case $p=\infty$ is obtained by working with $C(\Delta), \Delta$ the Cantor set, rather than $C([0,1])$.)

Proposition 2.2. $L^{p} \hookrightarrow B$ (resp. $C([0,1]) \hookrightarrow B$ if $\left.p=\infty\right)$ if (and only if) there exist $0<\delta \leq 1$ and elements u_{1}, u_{2}, \ldots in \bar{B}^{δ} with $u_{n}<u_{n+1}$ for all n.

An equivalent formulation: $L^{p} s B$ if and only if every non-empty subset of \bar{B}^{δ} has a maximal element with respect to $<$. In the language of logicians, " $<$ " is a well-founded relation on \bar{B}^{δ}. We now follow a time-honored procedure (in logic!) to determine the "depth" of <; we successively erase the maximal elements until arriving at the empty set.

Definition 1. Set $H_{0}^{\delta}(B)=\bar{B}^{\delta}$. Suppose β is an ordinal >0 and $H_{\alpha}^{\delta}(B)$ has been defined for all $\alpha<\beta$. If $\beta=\alpha+1$, let

$$
H_{\beta}^{\delta}(B)=\left\{u \in H_{\alpha}^{\delta}(B): \quad \text { there is a } \quad v \in H_{\alpha}^{\delta}(B) \quad \text { with } \quad u<v\right\}
$$

If β is a limit ordinal, let $H_{\beta}^{\delta}(B)=\bigcap_{\alpha<\beta} H_{\alpha}^{\delta}(B)$.
We note in passing that the classes $H_{\alpha}^{\delta}(B)$ are all "subtrees" of \bar{B}^{δ}. That is, if $v \in H_{\alpha}^{\delta}(B), u \in \bar{B}^{\delta}$ and $u<v$, then $u \in H_{\alpha}^{\delta}(B)$.

Since the H_{α}^{δ} 's decrease by definition, they must become stationary after some point, that is, $H_{\gamma}^{\delta}(B)=H_{\gamma+1}^{\delta}(B)$ for some γ.

Definition 2. Let α denote the least ordinal γ such that $H_{\gamma}^{\delta}(B)=H_{\gamma+1}^{\delta}(B)$. If $H_{\alpha}^{\delta}(B)=\varnothing$, set $h_{p}(\delta, B)=\alpha$. If $H_{\alpha}^{\delta}(B) \neq \varnothing$, set $h_{p}(\delta, B)=\omega_{1}$. Finally, set $h_{p}(B)=\sup _{\delta>0} h_{p}(\delta, B)$.

As mentioned in the introduction, we call $h_{p}(B)$ the local L^{p}-index of the Banach space B.

Suppose $L^{p} \leadsto B$. Then Proposition 2.1 yields that $H_{\alpha}^{\delta}=\varnothing$ where $\alpha=$ $h_{p}(\delta, B)$. Evidently if $\eta<\delta$, then $H_{\gamma}^{\eta}(B) \supset H_{\gamma}^{\delta}(B)$ for any γ, hence $h_{p}(\eta, B) \geq$ $h_{p}(\delta, B)$. Thus $h_{p}(B)=\lim _{\delta \rightarrow 0} h_{p}(\delta, B)$. It is now evident that to establish Theorem 2.1(a), we need only prove the following:

Proposition 2.3. For all separable B and $0<\delta \leq 1, h_{p}(\delta, B)<\omega_{1}$ provided $L^{p} \leadsto B($ resp. $C[(0,1)] \leadsto B$ if $p=\infty)$.

Although we are mainly interested in isomorphic invariants, it is worth noting that L^{p} is isometric to a subspace of B if and only if $h_{p}(1, B)=\omega_{1}$ (resp. B is isometrically universal if and only if $\left.h_{\infty}(1, B)=\omega_{1}\right)$.

A general boundedness principle (see [8] and the discussion in [3]) asserts that every well-founded analytic relation has index bounded by a countable ordinal. Proposition 2.2 means that $<$ is a well-founded relation on \bar{B}^{δ}, and it is easily seen that $<$ is analytic. Rather than appealing to a general principle, we prefer to give a direct proof based on simple though fundamental ideas concerning well-founded relations. A relation R on a set X is said to be well-founded provided there do not exist x_{1}, x_{2}, \ldots in X with $x_{n} R x_{n+1}$ for all n. We define classes $H_{\alpha}(R)$ by

$$
\begin{aligned}
H_{0}(R) & =X \\
H_{\alpha+1}(R) & =\left\{x \in H_{\alpha}(R): \quad \text { there exists } \quad y \in H_{\alpha}(R) \quad \text { with } \quad x R y\right\} \\
H_{\alpha}(R) & =\bigcap_{\beta<\alpha} H_{\beta}(R)
\end{aligned}
$$

and
if α is a limit ordinal. If R is well-founded, there exists a least ordinal α, denoted by $h(R)$, with $H_{\alpha}(R)=\varnothing$.

The reader may now easily establish the following crucial permanence property:

Lemma 2.4. Let R and R^{\prime} be well-founded relations on X and X^{\prime} respectively and let $\tau: X \rightarrow X^{\prime}$ be an order-preserving map. That is, if $x R y$, then $(\tau x) R^{\prime}(\tau y)$. Then $h(R) \leq h\left(R^{\prime}\right)$. In fact, for all ordinals $\alpha, \tau\left(H_{\alpha}(R)\right) \subset H_{\alpha}\left(R^{\prime}\right)$.

Evidently every countable well-founded relation R has bounded index $h(R)$; i.e. $h(R)<\omega_{1}$. Thus, if we assume $L^{p} \leadsto B$, to establish the boundedness of $h_{p}(\delta, B)$ it suffices to exhibit an order-preserving map τ between \bar{B}^{δ} and a countable set \bar{B}_{0}^{δ} endowed with a well-founded relation R. Let B_{0} be a countable dense subset of B and \bar{B}_{0}^{δ} denote the set of all $u \in B_{0}^{\oplus}$ so that

$$
\begin{equation*}
\frac{\delta}{2}\left(\sum_{x \in D_{n}}|c(x)|^{p}\right)^{1 / p} \leq\left\|\sum_{x \in D_{n}} c(x) u(x)\right\| \leq 2\left(\sum_{x \in D_{n}}|c(x)|^{p}\right)^{1 / p} \tag{2.3}
\end{equation*}
$$

for all $c \in \mathbf{R}^{D_{n}}$, where $|u|=n$. Let $\eta_{k}=\delta 4^{-(k+1)}$ for all k, and define R on \bar{B}_{0}^{δ} by $u R v$ provided $|u|=n,|v|=n+k$ with $k \geq 1$ and

$$
\begin{equation*}
\left\|u(x)-2^{-k / p} \sum_{y \in D_{k}} v(x, y)\right\| \leq \eta_{n} \quad \text { for all } \quad x \in D_{n} . \tag{2.4}
\end{equation*}
$$

Let us check that R is well-founded. Suppose the contrary; let u_{1}, u_{2}, \ldots be in \bar{B}_{0}^{δ} with $u_{n} R u_{n+1}$ for all n. Let $k<l<m$, let $r=\left|u_{k}\right|, s=\left|u_{l}\right|$ and $t=\left|u_{m}\right|$. Let $a=s-r$ and $b=t-s$. By (2.4), we have

$$
\begin{equation*}
\left\|u_{l}(x, y)-2^{-b / p} \sum_{z \in D_{b}} u_{m}(x, y, z)\right\| \leq \eta_{s} \tag{2.5}
\end{equation*}
$$

for all $x \in D_{r}, y \in D_{a}$. Then

$$
\begin{equation*}
\left\|2^{-a / p} \sum_{y \in D_{a}} u_{l}(x, y)-2^{-(a+b) / p} \sum_{z \in D_{a+b}} u_{m}(x, z)\right\| \mid \tag{2.6}
\end{equation*}
$$

Since $2^{n} \eta_{n} \rightarrow 0$ as $n \rightarrow \infty$, it follows from (2.6) and the completeness of B that we may define an element $\bar{u}_{k} \in B^{\mathscr{D}}$ by $\bar{u}_{k}(x)=\lim _{l \rightarrow \infty} 2^{-a / p} \sum_{y \in D_{a}} u_{l}(x, y)$ for all $x \in D_{r}$. Then if we fix $l>k$,

$$
\begin{aligned}
\bar{u}_{k}(x) & =\lim _{m \rightarrow \infty} 2^{-a / p} 2^{-b / p} \sum_{y \in D_{a}, z \in D_{b}} u_{m}(x, y, z) \\
& =2^{-a / p} \sum_{y \in D_{a}} \lim _{m \rightarrow \infty} 2^{-b / p} \sum_{z \in D_{b}} u_{m}(x, y, z)=2^{-a / p} \sum_{y \in D_{a}} \bar{u}_{k}(x, y) ;
\end{aligned}
$$

that is, $\bar{u}_{k}<\bar{u}_{l}$. Finally, (2.4) yields that

$$
\left\|\bar{u}_{k}(x)-u_{k}(x)\right\| \leq \eta_{r} \quad \text { for all } \quad x \in D_{r}
$$

It follows that $\left(u_{k}(x)\right)_{x \in D_{r}}$ is uniformly equivalent to the usual $l_{2^{r}}^{p}$ basis, whence $L^{p} \hookrightarrow B$ (by Proposition 2.2). (In fact $\bar{u}_{k} / 3<\bar{u}_{k+1} / 3$ and $\bar{u}_{k} / 3 \in \bar{B}^{\delta / 12}$ for all k.) Having established that R is well-founded, it remains to define the order preserving map τ. Set $\varepsilon_{k}=\delta \cdot 8^{-(k+1)}$ for all k. For each $k, x \in D_{k}$ and $u \in \bar{B}^{\delta}$ with $|u|=k$, choose $v(x) \in B_{0}$ with $\|u(x)-v(x)\| \leq \varepsilon_{k}$. Then for all $c \in \mathbf{R}^{D_{k}}$,

$$
\left[\delta-2^{k} \varepsilon_{k}\right]\left(\sum|c(x)|^{p}\right)^{1 / p}\left\|\sum_{x \in D_{k}} c(x) v(x)\right\| \leq\left(1+2^{k} \varepsilon_{k}\right)\left(\sum|c(x)|^{p}\right)^{1 / p}
$$

Since $2^{k} \varepsilon_{k} \leq \delta / 2 \leq 1$, we have that $v \in \bar{B}_{0}^{\delta}$. Now set $\tau u=v$. We need only verify that τ is an order-preserving map. Let $|u|=k,|v|=k+l$ and suppose $u<v$. Then

$$
\begin{aligned}
& \left\|\tau u(x)-2^{-l / p} \sum_{y \in D_{l}} \tau v(x, y)\right\| \\
& \leq\|\tau u(x)-u(x)\|+2^{-l / p} \sum_{y \in D_{l}}\|\tau v(x, y)-v(x, y)\| \\
& \leq \varepsilon_{k}+2^{l} \varepsilon_{k+l} \leq \eta_{k} \quad \text { for all } x \in D_{k}
\end{aligned}
$$

thus the proof of Proposition 2.3 is complete.
We may now easily complete the proof of Theorem 2.1. Let us suppose that $X \leftrightharpoons B$ and $L^{p} \leadsto B$. We may choose an $\eta>0$ and a linear map $T: X \rightarrow B$ so that

$$
\begin{equation*}
\eta\|x\| \leq\|T x\| \leq\|x\| \quad \text { for all } \quad x \in X \tag{2.7}
\end{equation*}
$$

Now define $\tau: X^{\mathscr{D}} \rightarrow B^{\mathscr{D}}$ by $(\tau u)(t)=T(u(t))$ for all $u \in X^{\mathscr{D}}, t \in D_{|u|}$. The linearity of T then implies that τ is order preserving. Finally, fix $0<\delta \leq 1$ and suppose $u \in \bar{X}^{\delta}$. Then by (2.7), for all $c \in \mathbf{R}^{D_{|u|}}$,

$$
\begin{aligned}
\eta \delta\left(\sum|c(t)|^{p}\right)^{1 / p} \leq \eta\left\|\sum c(t) u(t)\right\| \leq\left\|\sum_{t \in D_{|u|}} c(t) \tau u(t)\right\| & =\left\|T \sum c(t) u(t)\right\| \\
& \leq\left\|\sum c(t) u(t)\right\| \\
& \leq\left(\sum|c(t)|^{p}\right)^{1 / p}
\end{aligned}
$$

That is, $\tau u \in \bar{B}^{\eta \delta}$. Hence by Lemma 2.4,

$$
\begin{aligned}
h_{p}(\delta, X) & \leq h_{p}(\eta \delta, B), \quad \text { whence } \quad h_{p}(X)=\lim _{\delta \rightarrow 0} h_{p}(\delta, X) \\
& \leq \lim _{\delta \rightarrow 0} h_{p}(\eta \delta, B)=h_{p}(B)
\end{aligned}
$$

This completes the proof of Theorem 2.1.

Before passing to the application of the local L^{p}-index to the R_{α}^{p} 's given in the introduction, we need a general concatenation lemma. The lemma implies that if $h_{p}(B)>\alpha$, then $h_{p}(B \oplus B)_{p}>\alpha+1$.

Lemma 2.5. Let B be a separable Banach space, $0<\delta \leq 1$ and $\alpha<\omega_{1}$. Let $e \in H_{\alpha}^{\delta}(B)$. Let \bar{e} be the element of $(B \oplus B)_{p}^{\mathcal{D}}$ defined by $\bar{e}(t)=2^{-1 / p} e(t) \oplus e(t)$ for all $t \in D_{|e|}$. Then $\bar{e} \in H_{\alpha+1}^{\delta}\left((B \oplus B)_{p}\right)$.

Proof. Let τe be the element of $(B \oplus B)_{p}^{\mathscr{D}}$ defined by

$$
\tau e(0, t)=e(t) \oplus 0 \quad \text { and } \quad \tau e(1, t)=0 \oplus e(t) \quad \text { for all } \quad t \in D_{|e|}
$$

Then we have that $\bar{e}<\tau e$. (Thus if $k=|e|, k+1=|\tau e|$ and τe is obtained by taking the two natural copies of e in B. The picture is as follows:

We need only prove that $\tau e \in H_{\alpha}^{\delta}(B \oplus B)_{p}$. We first check that $\tau \mathrm{e} \in \overline{(B \oplus B)_{p}^{\delta}}$. This is an evident consequence of the equalities

$$
\begin{aligned}
\left\|\sum_{t \in D_{k+1}} c(t) \tau e(t)\right\|^{p} & =\left\|\sum_{t \in D_{k}} c(0, t) \tau e(0, t) \oplus \sum_{t \in D_{k}} c(1, t) \tau e(1, t)\right\|^{p} \\
& =\left\|\sum_{t \in D_{k}} c(0, t) e(t)\right\|^{p}+\left\|\sum_{t \in D_{k}} c(1, t) e(t)\right\|^{p}
\end{aligned}
$$

for all $c \in \mathbf{R}^{D_{k+1}}$ where $k=|e|$.
We now prove the statement:

$$
e \in H_{\alpha}^{\delta}(B) \Rightarrow \tau e \in H_{\alpha}^{\delta}(B \oplus B)_{p}
$$

by induction on α. The case $\alpha=0$ is evident. Suppose $\alpha>0$ and the statement is proved for all $\gamma<\alpha$. Then if α is a limit ordinal, $e \in H_{\alpha}^{\delta}(B) \Rightarrow e \in H_{\gamma}^{\delta}(B)$ for all $\gamma<\alpha \Rightarrow \tau e \in H_{\gamma}^{\delta}(B \oplus B)_{p}$ for all $\gamma<\alpha$ by the induction hypothesis $\Rightarrow \tau e \in$ $H_{\alpha}^{\delta}(B \oplus B)_{p}$. Now suppose $\alpha=\beta+1$. By definition, there exists a $d \in H_{\beta}^{\delta}(B)$ with $e<d$. By the "sub-tree" property mentioned after the definition of the H_{α}^{δ} 's, we may assume that $|d|=|e|+1$. By the induction hypothesis, we have that $\tau d \in H_{\beta}^{\delta}(B \oplus B)_{p}$. Thus, we need only verify that $\tau e<\tau d$, for by the sub-tree property, it then follows that τe is a non-maximal element of $H_{\beta}^{\delta}(B \oplus B)_{p}$.

Letting $t \in D_{|e|}$, we have that
$(\tau e)(0, t)=e(t) \oplus 0=\frac{d(t, 0) \oplus 0+d(t, 1) \oplus 0}{2^{1 / p}}=\frac{(\tau d)(0, t, 0)+\tau d(0, t, 1)}{2^{1 / p}}$
and similarly $(\tau e)(1, t)=((\tau d)(1, t, 0)+\tau d(1, t, 1)) / 2^{1 / p}$. Hence $\tau e(s)=$ $(\tau d(s, 0)+\tau d(s, 1)) / 2^{1 / p}$ for all $s \in D_{|e|+1}$, so $\tau e<\tau d$ and the lemma is proved.

We are now prepared for the precise definition of the spaces R_{α}^{p} and the verification of parts (1) and (2) of Theorem B of the introduction. By a "space of random variables" we mean a linear subspace of $L^{0}(\mu)$ for some probability space $(\Omega, \mathcal{S}, \mu) ; L^{0}(\mu)$ denotes the space of all (equivalence classes of) real-valued measurable functions defined on Ω. Given a random variable x defined on Ω, dist x denotes the probability measure defined on the Borel subsets of the reals by dist $x(S)=\mu\{\omega: x(\omega) \in S\}$ for all $S \in \mathcal{S}$. Given spaces of random variables X, Y on possibly different probability spaces, we say X and Y are distributionally isomorphic if there exists a linear bijection $T: X \rightarrow Y$ so that dist $T x=\operatorname{dist} x$ for all $x \in X$. It is not difficult to see that given such a map T, there exist σ-subalgebras \mathbb{Q} and \mathscr{B} of the measurable sets so that $x \in X(($ resp. $y \in Y)$ is \mathscr{Q}-measurable) (resp. \mathscr{B} measurable) and a map $\tilde{T}: L^{0}(\mathscr{Q}) \rightarrow L^{0}(\mathscr{B})$ extending T. Of course, a distributional isomorphism preserves L^{p}-norms for all $0<p \leq \infty$. It is important for the inductive definition of the R_{α}^{p},s that they are "distributionally presented"; i.e. the isometric Banach space structure itself is not sufficient to define the family.

Given B a (closed linear) subspace of $L^{p}(\mu)$ for some probability space (Ω, δ, μ), we let the " L^{p}-disioint sum", $(B \oplus B)_{p}$, denote a space of random variables distributionally isomorphic to the subspace of $\Omega \times\{0,1\}$ defined as
$\left\{b(\omega, \varepsilon)\right.$: there exist $b_{\varepsilon} \in B$ with $b(\omega, \varepsilon)=b_{\varepsilon}(\omega)$ for all $\omega \in \Omega, \varepsilon=0$ or 1$\}$,
where, of course, $\{0,1\}$ is endowed with the fair probability assigning mass $\frac{1}{2}$ to each 0 and 1 .

Given B_{1}, B_{2}, \ldots subspaces of $L^{p}(\Omega)$, we define the L^{p}-independent sum of the B_{i} 's as follows: Let μ^{N} denote the product probability measure on $\left(\Omega^{N}, \mathcal{S}^{N}\right)$; for each i, let

$$
\bar{B}_{i}=\left\{b \text { on } \Omega^{N}: \exists f \in B_{i} \text { with } b(\omega)=f\left(\omega_{i}\right) \text { for all } \omega \in \Omega^{N}\right\} .
$$

That is, \bar{B}_{i} is simply a "copy" of B_{i} depending only on the i-th coordinate. Then $\left(\sum B_{i}\right)_{\mathrm{Ind}, p}$, the L^{p}-independent sum of the B_{i} 's, denotes any space of random variables distributionally isomorphic to the closed linear span of the \bar{B}_{i} 's in $L^{p}\left(\Omega^{N}\right)$.

These notions may be "intrinsically" expressed as follows: Given B, a space of random variables Y on (Ω, δ, μ) is distributionally isomorphic to $(B \oplus B)_{p}$
provided there exist sets $S_{i} \in \mathcal{S}$ with $\mu\left(S_{i}\right)=\frac{1}{2} \quad(i=1,2), S_{i} \cap S_{2}=\varnothing$ and subspaces X_{i} of $L^{p}\left(2 \mu \mid \delta \cap S_{i}\right)$ each distributionally isomorphic to B, so that $Y=X_{1}+X_{2}$ (where for $x \in X_{i}$, we regard x as a function on Ω, supported on S_{i}). Given B_{1}, B_{2}, \ldots, then Y is distributionally isomorphic to $\left(\Sigma B_{i}\right)_{\text {Ind, } p}$ provided there exist independent σ-subalgebras $\mathbb{Q}_{1}, \mathbb{Q}_{2}, \ldots$ of \mathcal{S} and spaces of random variables $\bar{B}_{1}, \bar{B}_{2}, \ldots$ with Y equal to the closed linear span of the \bar{B}_{i} 's in $L^{p}(\mu)$, so that for each i, every $b \in \bar{B}_{i}$ is \mathbb{Q}_{i} measurable and \bar{B}_{i}, regarded as a subspace of $L^{p}\left(\mu \mid \mathbb{Q}_{i}\right)$, is distributionally isomorphic to B_{i}.

It is worth mentioning that if $\int b d \mu=0$ for all i and $b \in B_{i},\left(\Sigma B_{i}\right)_{\text {Ind, } p}$ has a natural unconditional Schauder decomposition, $\bar{B}_{1}, \bar{B}_{2}, \ldots$ in our above discussion. However if $1 \in B_{i}$ for all i, the independent sum is not even a direct sum. In this case, we simply let $B_{i}^{0}=\left\{b \in B_{i}\right.$: $\left.\int b d \mu=0\right\}$. Then $\left(\sum B_{i}\right)_{\text {Ind, } p}=\left(\Sigma B_{i}^{0}\right)_{\text {Ind, } p}$ $+[1]$ ([1] denotes the space of constant functions on Ω). We shall only deal with separable spaces of random variables; any such space is, of course, distributionally isomorphic to a space on $[0,1]$ under Lebesgue measure.

Definition 3. Let $1 \leq p \leq \infty$. Let $R_{0}^{p}=[1]$. Let β be an ordinal with $0<\beta<\omega_{1}$ and suppose R_{α}^{p} has been defined for all $\alpha<\beta$. If $\beta=\alpha+1$, let $R_{\beta}^{p}=\left(R_{\alpha}^{p} \oplus R_{\alpha}^{p}\right)_{p}$. If β is a limit ordinal, let $R_{\beta}^{p}=\left(\Sigma_{\alpha<\beta} R_{\alpha}^{p}\right)_{\text {Ind, } p}$.

We may now easily complete the proof of part (2) of Theorem B. We let $H_{\alpha}\left(R_{\alpha}^{p}\right)=H_{\alpha}^{1}\left(R_{\alpha}^{p}\right)$.

Theorem 2.6. Let $1 \leq p \leq \infty, 0 \leq \alpha<\omega_{1}$. Then $1 \in H_{\alpha}\left(R_{\alpha}^{p}\right)$.
Since $H_{\alpha}\left(R_{\alpha}^{p}\right) \neq \varnothing$, we thus obtain that $h_{p}\left(R_{\alpha}^{p}\right) \geq h_{p}\left(1, R_{\alpha}^{p}\right) \geq \alpha+1$. We prove 2.6 by transfinite induction. The assertion is trivial for $\alpha=0$. Suppose $0<\alpha$ and the statement has been proved for all $\beta<\alpha$. If $\alpha=\beta+1$, let us take the specific representation of $R_{\alpha}=\left(R_{\beta} \oplus R_{\beta}\right)_{p}$ given above. The element $\overline{1}$ of Lemma 2.5 is then precisely the function 1 ; thus $1 \in H_{\alpha}\left(R_{\alpha}^{p}\right)=H_{\beta+1}\left(R_{\beta}^{p} \oplus R_{\beta}^{p}\right)_{p}$ by 2.5. Now suppose α is a limit ordinal. Fix $\beta<\alpha$. It is evident that there exists a subspace \bar{R}_{β}^{p} of R_{α}^{p} and a distributional isomorphism $T_{\beta}: R_{\beta}^{p} \rightarrow \bar{R}_{\beta}^{p}$. Thus T_{β} may be regarded as an isometry of R_{β}^{p} into R_{α}^{p} such that $T_{\beta} 1=1$. Define $\tau: \overline{R_{\beta}^{p}} \rightarrow \overline{R_{\alpha}^{p}}$ by

$$
(\tau u)(x)=T_{\beta} u(x) \quad \text { for all } \quad u \in\left(R_{\beta}^{p}\right)^{\mathscr{D}}, \quad x \in D_{|u|} .
$$

It is evident that τ is order preserving with $\tau 1=1$. Hence by Lemma 2.4, $1=\tau 1 \in H_{\beta}\left(R_{\alpha}^{p}\right)$. Since this holds for all $\beta<\alpha, 1 \in H_{\alpha}\left(R_{\alpha}^{p}\right)$, completing the proof of Theorem 2.6.

We do not require the local L^{p}-index to complete the proof of Theorem $B(1)$.

Proposition 2.7. Let $0 \leq \alpha<\omega_{1}$. Then $L^{p} \Leftrightarrow R_{\alpha}^{p}$ for $1 \leq p<\infty$. Moreover R_{α}^{1} has the Radon-Nikodym property and R_{α}^{∞} has both the Radon-Nikodym property and the Schur property.

Proof. Let $0<\alpha<\omega_{1}$ and suppose the result proved for all $\gamma<\alpha$. If $\alpha=\gamma+1$, then if $L^{p} \hookrightarrow R_{\alpha}^{p}, L^{p} \stackrel{c}{\hookrightarrow} R_{\alpha}^{p}$ by Theorem 9.1 of [13]; hence $L^{p} \stackrel{c}{\hookrightarrow}\left(R_{\gamma}^{p}\right.$ $\left.\oplus R_{\gamma}^{p}\right)_{p} \Rightarrow L^{p} \stackrel{c}{c} R_{\gamma}^{p}$ by Theorem 1.1, for $1<p<\infty$. The assertions for $p=1$ and $p=\infty$ are trivial in this case. If α is a limit ordinal, let $\gamma_{1}, \gamma_{2}, \ldots$ be an enumeration of the ordinals $\gamma<\alpha$ and for each j, let Y_{i} be the mean-zero elements of $R_{\gamma_{i}}^{p}$. Now if $L^{p} \hookrightarrow R_{\alpha}^{p}, 1<p<\infty, L^{p} \stackrel{c}{\hookrightarrow}\left(\sum Y_{i}\right)_{\text {Ind, } p}$ and, of course, $L^{p} \leadsto Y_{j}$ for all j. Let $\left(\bar{Y}_{j}\right)$ be the natural unconditional Schauder decomposition for $\left(\sum Y_{i}\right)_{\text {Ind, } p}$. Then by Theorem 1.1 there is a block basic sequence $\left(z_{j}\right)$ of $\left(\bar{Y}_{i}\right)$ equivalent to the Haar basis of L^{p}. In particular L^{p} is isomorphic to $\left[z_{i}\right]$. Now $\left(z_{i}\right)$ is a sequence of independent mean-zero random variables. It follows from the results of [19] and [20] (see also [23]) that $L^{p} \leadsto\left[z_{j}\right]$. Let us see briefly why this is so. It is shown in [20] that there is a certain complemented subspace X_{p} of L^{p}, spanned by a sequence of independent mean-zero variables, so that $\left[z_{j}\right] \hookrightarrow X_{p}$ for any sequence of independent mean-zero variables $\left(z_{j}\right)$; moreover X_{p}^{*} is isomorphic to X_{q} where $1 / p+1 / q=1$. Suppose $p>2$. Then $L^{p} \hookrightarrow\left[z_{j}\right]$ implies $\left(l^{2} \oplus l^{2} \oplus \cdots\right)_{p} \hookrightarrow X_{p}$. But it is also shown in [19] that $X_{p} \hookrightarrow l^{2} \oplus l^{p}$, hence $\left(l^{2} \oplus l^{2} \oplus \cdots\right)_{p} \hookrightarrow l^{2} \oplus l^{p}$, proved impossible in [19]. If $1<p<2$ and $L^{p} \leftrightarrows\left[z_{j}\right]$, then $L^{p} \hookrightarrow X_{p}$ and hence by Theorem 9.1 of [13], $L^{p} \stackrel{c}{\hookrightarrow} X_{p}$ whence $L^{q} \stackrel{c}{\hookrightarrow} X_{q}$ where $1 / p+1 / q=1$, already proved impossible. (We have, of course, shown that $\left(l^{2} \oplus l^{2} \oplus \cdots\right)_{p} \hookrightarrow\left[z_{j}\right]$ is impossible for $p>2$; the fact that this is impossible for $p<2$ follows by the reproducibility of the natural basis for $\left(l^{2} \oplus l^{2} \oplus \cdots\right)_{p}$ and Proposition 2 of [23].)

Proposition 2.7 is now proved for $1<p<\infty$, and, of course, the second assertion implies the first for the case $p=1$. For any p, we have that a subspace of codimension one of R_{α}^{p} equals $\left(\Sigma Y_{i}\right)_{\text {Ind, } p}$ where each Y_{i} is isometric to a codimension-one subspace of R_{γ}^{p} for some $\gamma<\alpha$. Now unconditional decompositions in L^{1} are boundedly complete. If $Z=\left[Z_{i}\right]$ where Z_{i} is a subspace of Z with the RNP for all i and $\left(Z_{i}\right)$ is a boundedly complete Schauder decomposition of Z, then Z has the RNP. Hence R_{α}^{1} has the RNP. Finally, $\left(\Sigma Y_{i}\right)_{\text {Ind, } \infty}$ is isomorphic to $\left(\Sigma \oplus Y_{j}\right)_{l^{1}}$; hence again R_{α}^{∞} has the RNP and also the Schur property since all of its summands have this property.

Remark: As observed at the end of the next section, R_{α}^{p} is actually isometric to a separable dual space for $p=1$ or ∞. Of course, the results of this section complete the proof of the proposition of the introduction; also we obtain that if B is separable and $R_{\alpha}^{\infty} \hookrightarrow B$ for all $\alpha<\omega_{1}, C([0,1]) \hookrightarrow B$.

We conclude Section 2 with a proof that the R_{α}^{p} 's have unconditional bases for all $1<p<\infty, \alpha<\omega_{1}$. (This is false for $p=1$; see the remark at the end.)

Proposition 2.8. Let $\omega \leq \alpha<\omega_{1}$. There exists a sequence $\left(u_{k}^{\alpha}\right)_{k=1}^{\infty}$ so that u_{k}^{α} is $\{1,0,-1\}$-valued for all $k,\left(u_{k}^{\alpha}\right)$ is a martingale difference sequence, and the closed linear span of $\left(u_{k}^{\alpha}\right)$ in L^{p} equals R_{α}^{p} for all $1 \leq p \leq \infty$. Consequently $\left(u_{k}^{\alpha}\right)$ is an unconditional basis for R_{α}^{p} for all $1<p<\infty$.

Remarks. 1. A sequence $\left(u_{i}\right)$ is a martingale difference sequence provided $\int_{A} u_{i} d \mu=0$ for all measurable sets A depending on $\left\{u_{1}, \ldots, u_{i-1}\right\}, j=2,3, \ldots$.
2. It is a theorem of Burkholder [4] that martingale difference sequences in L^{p} are unconditional, for $1<p<\infty$.
3. We do not know the answer to the following questions: Let $\left(u_{i}\right)$ be a $\{1,0,-1\}$-valued martingale difference sequence and $1<p<\infty, p \neq 2$. Is [$\left.\boldsymbol{u}_{i}\right]_{p}$ complemented in L^{p} ? Is $\left[u_{i}\right]_{p}$ an \mathscr{L}_{p}-space (an \mathfrak{L}_{2}-space)?

Proof of Proposition 2.7. We shall, in fact, show the existence of $\left(u_{k}^{\alpha}\right)$ for all α, finite, of course, when $\alpha<\omega$, with $u_{1}^{\alpha}=1$. So, the result trivially holds for $\alpha=0$. Suppose the result proved for all $0 \leq \alpha<\beta$. If $\beta=\alpha+1$, let $d_{i}=u_{i+1}^{\alpha}$ for $j=1,2, \ldots$. Regarding R_{α}^{p} as a subspace of $L^{p}(\Omega, \mathcal{S}, \mu)$, we regard R_{β}^{p} as a subspace of $L^{p}(\Omega \times\{0,1\})$. It is then evident that defining r by

$$
\begin{aligned}
r(\omega, \varepsilon) & =1 \quad \text { if } \quad \varepsilon=0, \quad r(\omega, \varepsilon)=-1 \quad \text { if } \quad \varepsilon=1 \\
d_{i}^{\varepsilon}(\omega, \delta) & =d_{i}(\omega) \quad \text { if } \quad \delta=\varepsilon \quad \text { and } \quad d_{i}^{\varepsilon}(\omega, \delta)=0 \quad \text { if } \quad \delta \neq \varepsilon
\end{aligned}
$$

$1, r, d_{1}^{0}, d_{1}^{1}, d_{2}^{0}, d_{2}^{1}, \ldots$ is a sequence whose closed linear span in L^{p} equals R_{β}^{p} for all $1 \leq p \leq \infty$, and, of course, this sequence is $\{1,0,-1\}$-valued since the original sequence $\left(d_{i}\right)$ is. Let us check that this sequence is indeed a martingale difference sequence (m.d.s.). Evidently ($1, r$) is an m.d.s. Fix $n \geq 0$ and suppose it has been verified that $1, r, d_{1}^{0}, d_{1}^{1}, \ldots, d_{n}^{0}, d_{n}^{1}$ is an m.d.s. Let \mathbb{Q}_{0} denote the trivial algebra in Ω; for $1 \leq i \leq n$, let \mathbb{Q}_{i} denote the algebra generated by d_{1}, \ldots, d_{i}. Suppose S is in the algebra generated by $1, r, \ldots, d_{n}^{0}, d_{n}^{1}$. Then it is evident that there exist sets $A_{i} \in \mathbb{Q}_{n}$ so that $S=A_{1} \times\{0\} \cup A_{2} \times\{1\}$. Then $\int_{S} d_{n+1}^{0}=1 / 2 \int_{A_{1}} d_{n+1}=0$ since $1, d_{1}, \ldots, d_{n+1}$ is an m.d.s. Suppose S is in the algebra of sets generated by $1, r, \ldots, d_{n}^{0}, d_{n}^{1}, d_{n+1}^{0}$. Then it is evident that because d_{n+1}^{0} vanishes on $\Omega \times\{1\}$, there is a set A in \mathbb{Q}_{n} with $S \cap(\Omega \times\{1\})=A \times\{1\}$. Hence $\int_{S} d_{n+1}^{1}=1 / 2 \int_{A} d_{n+1}=0$.

Now suppose β is a limit ordinal. Let $\gamma_{1}, \gamma_{2}, \ldots$ be an enumeration of the ordinals less than β. Assuming that μ is an atomless probability measure, we may choose independent σ-subalgebras of $\mathcal{S}, \mathbb{Q}_{1}, \mathbb{Q}_{2}, \ldots$ and for each i, a sequence $\left(d_{i j}\right)_{i=1}^{\infty}$ of $\{1,0,-1\}$-valued \mathbb{Q}_{i}-measurable functions so that $1, d_{i 1}, d_{i 2}, \ldots$ is an m.d.s. with closed linear span in L^{p} distributionally isomorphic to $R_{\gamma_{i}}^{p}$ for all
$1 \leq p \leq \infty$. Then evidently the closed linear span in L^{p} of $\left\{d_{i j}: 1 \leq i, \bar{j}<\infty\right\}$ $\cup\{1\}$ is distributionally isomorphic to R_{β}^{p} for all $1 \leq p \leq \infty$. We need only show that this set is an m.d.s. in a certain order. Of course, all the $d_{i j}$'s have mean zero; so we need only show that there is a bijection $\tau: N \rightarrow N \times N$ so that $\left(d_{\tau(j)}\right)_{j=1}^{\infty}$ is an m.d.s.; then also $1, d_{\tau(1)}, d_{\tau(2)}, \ldots$ is an m.d.s. Order $N \times N$ by $(i, k)<(l, m)$ provided $i=l$ and $k<m$. Let τ be a bijection so that τ^{-1} is order preserving; that is, if $\tau(i)<\tau(j)$ then $i<j$. Fix $n \geq 1$ and let \mathcal{G} equal the algebra of sets generated by $d_{\tau(1)}, \ldots, d_{\tau(n)}$. Let \mathscr{Q} equal the algebra of sets generated by

$$
\left\{d_{\tau(l)}: \tau(l)<\tau(n+1)\right\}
$$

Let \mathfrak{B} equal the algebra of sets generated by

$$
\left\{d_{\tau(l)}: \tau(l) \nless \tau(n+1) \quad \text { and } \quad 1 \leq l \leq n\right\} .
$$

Then \mathcal{Q} and \mathscr{B} are independent, and \mathcal{G} is generated by \mathcal{Q} and \mathscr{B}. Moreover, letting $\tau(n+1)=(i, j)$ we have, since τ^{-1} is order-preserving, that \mathbb{Q} is contained in \mathcal{H}, the algebra generated by $\left\{d_{i l}: 1 \leq l<j\right\}$ and \mathscr{B} is, in fact, independent of \mathcal{Q}_{i}. Now to show that $\int_{G} d_{\tau(n+1)}=0$ for all $G \in \mathcal{G}$, it suffices to show that $\int_{A \cap B} d_{\tau(n+1)}=0$ for all $A \in \mathscr{Q}, B \in \mathscr{B}$. Fixing such an A and B, $\int_{A \cap B} d_{\tau(n+1)}=\int_{A} d_{\tau(n+1)} \mu(B)$, by the independence of \mathscr{Q} and \mathscr{B}. In turn, $\int_{A} d_{\tau(n+1)}=\int_{A} d_{i j}=0$ since $A \in \mathcal{H}$ and $\left(d_{i k}\right)_{k=1}^{\infty}$ is an m.d.s. This completes the proof.

Remark. It is proved in [24] that the class of subspaces of L^{1} with an unconditional basis has a universal element. Hence there must exist an α so that R_{α}^{1} has no unconditional basis. It would be interesting to find the least such α explicitly.

3. Tree subspaces of \boldsymbol{L}^{p}

The main object of this section is to demonstrate that the R_{α}^{p} 's of the introduction and Section 2 are all complemented in L^{p} for $1<p<\infty$. Let \mathscr{D} be the tree of all finite sequences of 0's and l's; we obtain from Lemma 3.6 and Lemma 3.9 that R_{α}^{p} is isometric to a contractively complemented subspace of $X_{\mathscr{Q}}^{p}$ for all $1 \leq p \leq \infty$ (where X_{T}^{p} is as defined in the introduction).

Thus $X_{\mathscr{Q}}^{p}$ is the "natural" universal space for the R_{α}^{p} 's. The meat of the proof that the R_{α}^{p} 's are complemented is contained in the demonstration that $X_{\mathscr{Q}}^{p}$ is complemented, Theorem 3.1. The needed inequalities used directly in the proof are given as Scholium 3.4 and Scholium 3.5, after which the proof of Theorem
3.1 is completed. An alternate description of the X_{T}^{p} 's as translation-invariant subspaces of $L^{p}\left(\{0,1\}^{N}\right)$ is given at the end of the section.

We recall that \mathscr{D} denotes the set of all finite sequences of 0's and 1's; D_{k} denotes all such sequences of length k; thus $\mathbb{D}=\cup_{k=0}^{\infty} D_{k}$. We now use the natural ordering on \mathscr{D}; for $\alpha, \beta \in \mathscr{D}, \alpha<\beta$ provided, say $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$, then $k<m$ and $\alpha_{i}=\beta_{i}$ for all $1 \leq i \leq k$. A finite branch in DD is simply the set of predecessors of some element of \mathfrak{D}. That is, the finite branch corresponding to $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ is simply the set of all $\left(\alpha_{1}, \ldots, \alpha_{i}\right)$ for $0 \leq i \leq k$.

An infinite branch is then defined as a subset of \mathscr{D} order-isomorphic to N in its natural ordering. Of course, an infinite branch corresponds uniquely to an infinite sequence $\left(\alpha_{j}\right)_{j=1}^{\infty}$ of 0 's and l's; the branch then equals the set of all ($\alpha_{1}, \ldots, \alpha_{j}$) for all $0 \leq j$.

Now our aim is to show that the R_{α}^{p} 's are complemented in L^{p}. Of course, it suffices to work with $L^{p}\left(\{0,1\}^{N}\right)$ rather than $L^{p}[0,1]$. In fact, it is more convenient to work with $L^{p}\{0,1\}^{D}$. We say that a measurable function f on $\{0,1\}^{0 D}$ depends only on the coordinates $F \subset \mathscr{D}$ provided $f(x)=f(y)$ for all x, $y \in\{0,1\}^{\text {D. }}$ with $x(\gamma)=y(\gamma)$ for all $\gamma \notin F$. Of course, we say a set $S \subset\{0,1\}^{\infty}$ depends only on F if χ_{S} does.

We now arrive at a crucial definition.
Let $1 \leq p \leq \infty$; let X^{p} denote the closed linear span in $L^{p}\{0,1\}^{\text {p }}$ over all finite branches Γ in \mathcal{D} of all those measurable functions which depend only on the coordinates of Γ.
(It is trivial that one can replace "finite" by "infinite" in this definition, and arrive at the same space.)

Theorem 3.1. X_{0}^{p} is complemented in $L^{p}\{0,1\}^{\text {Q }}$ for all $1<p<\infty$.
It is trivial that L^{p} is isometric to a contractively complemented subspace of $X^{p} p$. Hence in view of the Pełczyǹski decomposition method, Theorem 3.1 yields that X_{0}^{p} is isomorphic to $L^{p}, 1<p<\infty$.

We require some theorems concerning martingales and conditional expectations. For \mathscr{Q} a σ-subalgebra of the measurable sets on a probability space, $\mathcal{E}_{\mathscr{Q}}$ denotes conditional expectation with respect to \mathscr{Q}. Let us now fix a probability space (Ω, \mathcal{S}, P). The next result is a special case of a result of Burkholder, Davis and Gundy [6].

Lemma 3.2. Let $\mathbb{Q}_{1} \subset \mathbb{Q}_{2} \subset \cdots$ be σ-subalgebras of \mathfrak{S}, and let f_{1}, f_{2}, \ldots be non-negative measurable functions on Ω. Then $\left\|\Sigma_{i} \mathscr{E}_{i} f_{i}\right\|_{p} \leq p\left\|\Sigma f_{i}\right\|_{p}$ for all $1 \leq p<\infty$, where $\mathcal{E}_{i}=\mathcal{E}_{\mathbb{Q}_{i}}$ for all j.

We present a simplified version of the proof in [11]. We first need the
Sublemma. Let a_{1}, \ldots, a_{n} be non-negative numbers and $1 \leq p<\infty$. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)^{p} \leq p \sum_{k=1}^{n}\left(\sum_{i=1}^{k} a_{i}\right)^{p-1} a_{k} . \tag{3.1}
\end{equation*}
$$

Proof. Let $s_{j}=\sum_{i=1}^{i} a_{i}$ with $s_{0}=0 ; 0 \leq i \leq n$. Then, of course, $s_{0} \leq s_{1} \leq s_{2}$ $\leq \cdots \leq s_{n}$. Thus

$$
s_{n}^{p}=p \int_{0}^{s_{n}} t^{p-1} d t=p \sum_{i=1}^{n} \int_{s_{i-1}}^{s_{i}} t^{p-1} d t \leq p \sum_{i=1}^{n} s_{i}^{p-1}\left(s_{i}-s_{i-1}\right)
$$

since t^{p-1} is increasing, proving the sublemma.
To prove 3.2, fix n. We recall that by the definition of conditional expectations, if g and f are non-negative measurable with $g \mathbb{Q}$-measurable, then

$$
\begin{equation*}
\int g \mathscr{E}_{\mathbb{Q}} f=\int g f . \tag{3.2}
\end{equation*}
$$

Now fix n. Applying (3.1), we obtain immediately that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \mathcal{E}_{i} f_{i}\right)^{p} \leq p \sum_{k=1}^{n}\left(\sum_{i=1}^{k} \mathcal{E}_{i} f_{i}\right)^{p-1} \mathscr{E}_{k} f_{k} \text { pointwise. } \tag{3.3}
\end{equation*}
$$

Integrating this inequality and applying (3.2), we get

$$
\begin{equation*}
\int\left(\sum_{i=1}^{n} \mathscr{E}_{i} f_{i}\right)^{p} \leq p \sum_{k=1}^{n} \int\left(\sum_{i=1}^{k} \mathscr{E}_{i} f_{i}\right)^{p-1} \mathscr{E}_{k} f_{k}=p \sum_{k=1}^{n} \int\left(\sum_{i=1}^{k} \mathscr{E}_{i} f_{i}\right)^{p-1} f_{k} \tag{3.4}
\end{equation*}
$$

by (3.2), since with k fixed, the fact that the algebras \mathscr{Q}_{i} increase implies that $\left(\sum_{i=1}^{k} \mathcal{E}_{i} f_{i}\right)^{p-1}$ is \mathbb{Q}_{k}-measurable.

$$
\begin{align*}
\sum_{k=1}^{n} \int\left(\sum_{i=1}^{k} \mathscr{E}_{i} f_{i}\right)^{p-1} f_{k} & \leq \sum_{k=1}^{n} \int\left(\sum_{i=1}^{n} \mathcal{E}_{i} f_{i}\right)^{p-1} f_{k}=\int\left(\sum_{i=1}^{n} \mathcal{E}_{i} f_{i}\right)^{p-1} \sum_{k=1}^{n} f_{k} \tag{3.5}\\
& \leq\left(\int\left(\sum \mathscr{E}_{i} f_{i}\right)^{p}\right)^{(p-1) / p}\left(\int\left(\sum f_{k}\right)^{p}\right)^{1 / p}
\end{align*}
$$

by Hölder's inequality.
Combining (3.4) and (3.5), we obtain

$$
\left(\int\left(\sum \mathscr{E}_{i} f_{i}\right)^{p}\right)^{1 / p} \leq p\left(\int\left(\sum f_{k}\right)^{p}\right)^{1 / p}
$$

proving Lemma 3.2.

Let us say that a sequence $\left(\mathscr{Q}_{i}\right)$ of σ-subalgebras of \mathcal{S} is compatible if for all i and $\boldsymbol{j}, \mathbb{Q}_{i} \subseteq \mathbb{Q}_{i}$ or $\mathbb{Q}_{i} \subseteq \mathbb{Q}_{i}$. It is evident that Lemma 3.2 holds for compatible sequences $\left(\mathbb{Q}_{i}\right)$ as well. Indeed, fix n and f_{1}, \ldots, f_{n} non-negative measurable. Then the compatibility of the \mathbb{Q}_{i} 's implies that there is a permutation σ of $\{1, \ldots, n\}$ with $\mathbb{Q}_{\sigma(i)} \subseteq \mathbb{Q}_{\sigma(j)}$ for all $1 \leq i \leq j \leq n$. Hence

$$
\left\|\sum_{i} \mathcal{E}_{\mathbb{Q}_{i}} f_{i}\right\|_{p}=\left\|\sum_{i} \mathcal{E}_{\mathbb{Q}_{\sigma(i)}} f_{\sigma(i)}\right\|_{p} \leq p\left\|\sum_{i} f_{\sigma(i)}\right\|_{p}=p\left\|\sum_{i} f_{i}\right\|_{p}
$$

Lemma 3.3. Let m be a positive integer and $\mathscr{Y}_{1}, \ldots, \mathscr{Y}_{m}$ be σ-subalgebras of ร. Suppose there exist sequences $\left(\mathscr{B}_{i}\right),\left(\mathscr{Z}_{i}\right)$, and $\left(\mathscr{W}_{i}\right)$ of σ-subalgebras with the following properties for all $i, 1 \leq i \leq m$.
(a) Each sequence $\left(\mathscr{B}_{i}\right),\left(\mathscr{Z}_{i}\right)$, and $\left(\mathscr{W}_{i}\right)$ is compatible.
(b) $\mathcal{E}_{\mathscr{B}_{i}}, \mathcal{E}_{\mathscr{\Psi}_{i}}$ and $\mathcal{E}_{\mathscr{U}_{i}}$ commute.
(c) $\mathscr{Y}_{i}=\mathscr{B}_{i} \cap \mathscr{Z}_{i} \cap \mathscr{U}_{i}$.

Then $\left\|\sum \mathcal{E}_{\text {gif }_{i}} f_{i}\right\|_{p} \leq p^{3}\left\|\Sigma f_{i}\right\|_{p}$ for all non-negative measurable functions f_{1}, \ldots, f_{m}, $1<p<\infty$.

Proof. The assumption (b) implies that $\mathcal{E}_{\mathscr{B _ { i }}} \mathcal{E}_{\mathscr{I}_{i}} \mathcal{E}_{\mathcal{W}_{i}}=\mathcal{E}_{\mathscr{G}_{i} \cap \mathscr{I}_{i} \cap \mho \tilde{W}_{i}}=\mathcal{E}_{\mathcal{Y}_{i}}$ by (c). Lemma 3.3 then follows by our preceding remarks, i.e. applying Lemma 3.2 three times.

Remark. Of course, the analogous result holds for algebras equal to the intersection of a finite number of "commuting" compatible algebras; we only have need of the case of three such intersections. However, it seems natural to pose the following question: Let $\mathbb{Q}_{1}, \mathbb{Q}_{2}, \ldots$ be σ-subalgebras of \mathcal{S}. Under what (combinatorial) conditions on the \mathscr{Q}_{j} 's, is it true that there exists a constant C_{p} so that $\left\|\Sigma \mathcal{E}_{\mathbb{U}_{i}} f_{i}\right\|_{p} \leq C_{p}\left\|\Sigma f_{i}\right\|_{p}$ for all non-negative measurable functions $f_{1}, f_{2}, \ldots, 1$ $\leq p<\infty$?

We now require an explicit order-preserving enumeration γ of \mathbb{D}. The enumeration between $\{1, \ldots, 7\}$ and $\cup_{i=0}^{2} D_{i}$ is as follows:

In general, let n be a positive integer, and let $0 \leq k$ and t_{1}, \ldots, t_{k} be the unique
choice of 0's and l's so that

$$
n=2^{k}+\sum_{i=1}^{k} t_{i} 2^{k-i}
$$

(Thus the representation of n in dyadic notation is $1 t_{1} \cdots t_{k}$.) Let $\gamma(n)=$ $\left(t_{1}, \ldots, t_{k}\right)$. Then $\gamma: N \rightarrow \mathscr{D}$ is a bijection and γ^{-1} is order-preserving; that is, if $\gamma(i)<\gamma(j)$, then $i<j$. Now for each j, let $\mathscr{\mathscr { G }}_{i}$ denote the family of all measurable subsets of $\{0,1\}^{\mathcal{D}}$ depending only on the coordinates $\{u \in \mathscr{D}: u \leq \gamma(j)\}$. (That is, \mathscr{Y}_{j} is the "branch" algebra of sets determined by $\gamma(j)$.) We have arrived at a crucial step in the proof of Theorem 3.1.

Scholium 3.4. $\left\|\Sigma \mathcal{E}_{\mathscr{\theta}_{i}} f_{i}\right\|_{p} \leq p^{3}\left\|\Sigma f_{i}\right\|_{p}$ for all non-negative measurable functions $f_{1}, f_{2}, \ldots, 1 \leq p<\infty$.

Proof. Fix k and let $m=2^{k+1}-1$. We shall show that the hypotheses of Lemma 3.3 are valid. For F a subset of \mathscr{D}, let $\mathscr{Q}(F)$ denote the σ-algebra of measurable sets depending only on the coordinates F. It is evident that if A and B are subsets of \mathscr{D}, then $\mathcal{E}_{\mathscr{Q}(A)}$ and $\mathcal{E}_{\mathscr{Q}(B)}$ commute. Of course, $\mathscr{Q}(A) \cap \mathscr{Q}(B)=$ $\mathscr{Q}(A \cap B)$. If $Y_{i}=\{u \in \mathscr{D}: u \leq \gamma(j)\}$, then, of course, $\mathscr{Y}_{i}=\mathscr{Q}\left(Y_{i}\right)$.

First fix n with $2^{k} \leq n<2^{k+1}$ (thus $\gamma(n)$ is maximal in the partially ordered set $T_{k}=\{\gamma(i): i \leq m\}$.

Let

$$
Z_{n}=\left\{u \in \mathscr{D}: u \leq \gamma(i) \quad \text { for some } i \text { with } 2^{k} \leq i \leq n\right\}
$$

Let

$$
W_{n}=\left\{u \in \mathscr{D}: u \leq \gamma(i) \quad \text { for some } i \text { with } n \leq i<2^{k+1}\right\}
$$

For example, here is a picture, for $k=2$, of Z_{5} and W_{5} :

Then evidently the Z_{n} 's increase, the W_{n} 's decrease, and

$$
\begin{equation*}
Y_{n}=Z_{n} \cap W_{n} \quad \text { for all such } \quad n \tag{3.6}
\end{equation*}
$$

Now for each $1 \leq i \leq m$, let $X_{i}=\{\gamma(i): 1 \leq i \leq i\}$ and let $\Re_{j}=\mathbb{Q}\left(X_{i}\right)$. Finally, fix $j, 1 \leq i \leq m$, and let $n(j)$ be such that $\gamma(j) \leq \gamma(n(j))$ and $2^{k} \leq n(j)$ $<2^{k+1}$. Thus $\gamma(n(j))$ is a maximal element of our partially ordered set T_{k} containing $\gamma(i)$.

Then evidently

$$
\begin{equation*}
Y_{i}=Y_{n(i)} \cap X_{i} . \tag{3.7}
\end{equation*}
$$

We illustrate for the case $k=2, j=3$ and $n(j)=6$.

We thus have by (3.6) and (3.7) that $Y_{i}=X_{i} \cap Z_{n(i)} \cap W_{n(i)}$.
We now simply set

$$
\begin{aligned}
& \mathscr{B}_{i}=\mathbb{Q}\left(X_{i}\right), \\
& \mathscr{Z}_{i}=\mathbb{Q}\left(Z_{n(i)}\right) \quad \text { and } \\
& \mathscr{W}_{i}=\mathbb{Q}\left(W_{n(i)}\right), \quad 1 \leq i \leq m .
\end{aligned}
$$

Thus the hypotheses of 3.3 are satisfied, so Scholium 3.4 is proved.
We finally need the following crucial martingale theorem of Burkholder [4].
Scholium 3.5. Let $\Re_{1} \subset \Re_{2} \subset \cdots$ be σ-algebras, $1<p<\infty$, and let $b_{1}, \ldots, b_{n}, \ldots$ be functions in L^{p} so that for all j, b_{i} is \Re_{i}-measurable with $\mathcal{E}_{\text {Gi }_{j-1}} b_{i}=0$ if $j>1$. There exists a constant K_{p} depending only on p so that

$$
\begin{equation*}
K_{p}^{-1}\left\|\left(\sum b_{i}^{2}\right)^{1 / 2}\right\|_{p} \leq\left\|\sum b_{i}\right\|_{p} \leq K_{p}\left\|\left(\sum b_{i}^{2}\right)^{1 / 2}\right\|_{p} \tag{3.7}
\end{equation*}
$$

We are now prepared for the
Proof of Theorem 3.1. As in the proof of Scholium 3.4, we let \mathscr{B}_{j} denote the algebra of measurable sets in $\{0,1\}^{0 / 2}$ depending only on the coordinates $X_{i}=\{u$ $\in \mathscr{D}: u \leq \gamma(j)\}$. Also let \mathscr{B}_{0} denote the trivial algebra.

For each $j \geq 0$, we let B_{i} denote the set of all functions f which are \mathscr{B}_{j}-measurable and $\mathscr{E}_{6 b_{j}, 1} f=0$ if $j \neq 1$. We let $Y_{0}=B_{0}$ ($=$ the set of constant functions) and, for $1 \leq i, Y_{i}=\left\{f \in B_{i}: f\right.$ is \mathscr{Y}_{j}-measurable $\}$. Incidentally, (3.7) yields that $\left(B_{j}\right)_{j=0}^{\infty}$ is an unconditional Schauder decomposition of $L^{p}\left(\{0,1\}^{012}\right)$; in reality, it is simply the standard "dyadic martingale" decomposition of L^{p}. We next verify that $X_{v R}^{p}$ equals $\left[Y_{j}\right]$, the closed linear span of the Y_{i} 's in L^{p}. It is trivial that $Y_{i} \subset X_{o 贝}^{p}$ for all j, hence $\left[Y_{j}\right] \subset X_{o p}^{p}$. For the reverse inclusion, suppose $n \in N$
is given and let x be $\mathscr{\mathscr { Y }}_{n}$-measurable. Then

$$
x=\left(\int x\right)+\sum_{i=1}^{n}\left(\mathcal{E}_{\mathrm{GB}_{i}}-\mathcal{E}_{G \mathfrak{g}_{i}-1}\right) x
$$

and, of course, with $1 \leq i \leq n,\left(\mathcal{E}_{\mathrm{GB}_{j}}-\mathcal{E}_{\mathrm{GB}_{j_{i-1}}}\right) x \in B_{i}$. We need only verify that $\left(\mathcal{E}_{\mathrm{olj}_{j}}-\mathcal{E}_{u j_{j-1}}\right) x$ is \mathscr{y}_{j}-measurable for all j with $1 \leq i \leq n$.

If $\gamma(j)$ and $\gamma(n)$ are not comparable with respect to the ordering of \mathscr{D}, then
 $\gamma(j)$ and $\gamma(n)$ are comparable, then $\gamma(j) \leq \gamma(n)$ since γ^{-1} is order-preserving. Then $\mathscr{B}_{j} \cap \mathscr{Y}_{n}=\mathscr{G}_{i}$. Indeed, if $i \leq j$ and $\gamma(i) \leq \gamma(n)$, then $\gamma(i)$ and $\gamma(j)$ must be comparable, whence $\gamma(i) \leq \gamma(j)$ since γ^{-1} is order-preserving. Hence $\mathscr{B}_{i-1} \cap$
 is $\mathscr{\mathscr { G }}_{i}$-measurable. Thus $X_{\mathscr{D}}^{p}=\left[Y_{i}\right]$.

We shall prove that orthogonal projection P onto $X_{\text {oR }}^{2}$ yields a bounded linear projection onto $X_{0,0}^{p}$ for all $1<p<\infty$. Since P is "self-adjoint", it suffices to consider the case $p>2$. Let $b \in L^{p}\left(\{0,1\}^{\text {D }}\right)$. There exists a unique sequence $\left(b_{i}\right)$ with $b_{i} \in B_{i}$ for all j so that $b=\sum_{i=0}^{\infty} b_{i}$. Then

$$
\begin{equation*}
P b=\sum_{i=0}^{\infty} \mathcal{E}_{\mathfrak{o y}_{i}} b_{i} \tag{3.8}
\end{equation*}
$$

the series converging in L^{2}-norm. (We note that with i fixed, $\mathcal{E}_{\mathfrak{G}_{i-1}} \mathcal{E}_{\mathscr{O}_{j}} b_{i}=$
 projection of B_{i} onto Y_{j}.)

With n fixed,

$$
\begin{align*}
\left\|\sum_{i=0}^{n} \mathcal{E}_{O_{i}} b_{i}\right\|_{p} & \leq K_{p}\left\|\left(\sum_{i=0}^{n}\left(\mathcal{E}_{\mathscr{g}_{i}} b_{i}\right)^{2}\right)^{1 / 2}\right\|_{p} \tag{3.7}\\
& \leq K_{p}\left\|\left(\sum_{i=0}^{n} \mathcal{E}_{O_{j}} b_{i}^{2}\right)^{1 / 2}\right\|_{p} \leq K_{p}\left(\frac{p}{2}\right)^{3 / 2}\left\|\left(\sum_{i=0}^{n} b_{i}^{2}\right)^{1 / 2}\right\|_{p}
\end{align*}
$$

by Scholium 3.4 applied to $\frac{p}{2}$

$$
\begin{equation*}
\leq K_{p}^{2}\left(\frac{p}{2}\right)^{3 / 2}\left\|\sum_{i=0}^{n} b_{i}\right\|_{p} \tag{3.7}
\end{equation*}
$$

Hence $\|P\| \leq K_{p}^{2}\left(\frac{p}{2}\right)^{3 / 2}$. This completes the proof of Theorem 3.1.
Remarks. 1. We are applying Scholium 3.4 to the sequence (b_{i}^{2}) and b_{i}^{2} is, of course, \mathscr{B}_{j}-measurable. The proof of 3.4 then yields the sharper estimate $\|P\| \leq p K_{p}^{2} / 2$; only two intersections need be taken.
2. It is possible to deduce Theorem 3.1 by using an earlier result due to E. Stein; namely, if $\mathbb{Q}_{1}, \mathbb{Q}_{2}, \ldots$ are increasing σ-algebras and f_{1}, f_{2}, \ldots are arbitrary measurable functions, then $\left\|\left(\Sigma\left|\mathfrak{E}_{Q_{i}} f_{i}\right|^{2}\right)^{1 / 2}\right\|_{p} \leq A_{p}\left\|\left(\Sigma\left|f_{i}\right|^{2}\right)^{1 / 2}\right\|_{p}$ for all $1<p<\infty$, where A_{p} depends only on p. (See Theorem 8, page 108 of [25].) The proof of Scholium 3.4 then yields that

$$
\left\|\left(\sum\left|\mathcal{E}_{Q_{p}} f_{i}\right|^{2}\right)^{1 / 2}\right\|_{p} \leq A_{p}^{3}\left\|\left(\sum\left|f_{i}\right|^{2}\right)^{1 / 2}\right\|_{p}
$$

for all measurable functions $f_{1}, f_{2}, \ldots, 1<p<\infty$. This allows one to prove 3.1 for all $1<p<\infty$ directly, without passing to the $p<2$-case by duality. The above remark about estimates, however, remains exactly the same, since, in fact, A_{p} has order of magnitude $p^{1 / 2}$ as $p \rightarrow \infty$.
3. Our proof shows that $X_{i d}^{p}$ has the following structure: there exist subalgebras \mathscr{Q}_{j} of \mathscr{G}_{j} so that $\mathcal{E}_{\mathbb{Q}_{j}}$ and $\mathcal{E}_{\mathfrak{m i j}_{j_{1}}}$ commute for all $j \geq 1$ and B equals the closed linear span in L^{p} of $\left\{f: f\right.$ is \mathbb{Q}_{i}-measurable and $\left.f \in B_{i}, j=0,1,2, \ldots\right\}$ where $B=X_{o p}^{p}$. Now given any such B, if the \mathbb{Q}_{i} 's satisfy the conclusion of Lemma 3.3, i.e. the inequality of the remark following 3.3, then B is indeed complemented in L^{p}, for all $1<p<\infty$.
4. For $f \in L^{1}$, let $f=\sum_{i=0}^{\infty} b_{i}$ with $b_{i} \in B_{i}$ for all j and set $\|f\|_{H^{1}}=$ $\left\|\left(\sum b_{i}^{2}\right)^{1 / 2}\right\|_{1} ; H_{1}=\left\{f \in L^{1}:\|f\|_{H_{1}}<\infty\right\}$. Let $X_{\bullet D}^{H^{1}}$ denote the closed linear span in H^{1} of the functions depending on the coordinates of some finite branch in DD. The second-named author has shown that the above orthonormal projection is unbounded from H^{1} onto $X_{0 \text { Pl }}^{H^{1}}$ (in fact, $P: H^{1} \rightarrow L^{1}$ is unbounded). This suggests that $X_{Q R}^{H^{1}}$ is uncomplemented in H^{1}; perhaps it is true that $X_{o \sim}^{H^{1}}$ is not isomorphic to a complemented subspace of H^{1}.

Now let T be a subset of \mathscr{D}. A subset Γ of T is called a branch of T if it contains the predecessors in T of all its elements; i.e. $\gamma \in \Gamma, \alpha \in T$ and $\alpha<\gamma \Rightarrow \alpha$ $\in \Gamma$, where " $<$ " is the natural order on \mathscr{D}. We define X_{T}^{p} as the closed linear span in $L^{p}\{0,1\}^{T}$ over all branches Γ of functions depending only on the coordinates of Γ. We may and shall regard $L^{p}\left(\{0,1\}^{T}\right)$ as equal to the subspace of $L^{p}\{0,1\}^{D}$ consisting of those measurable functions f depending only on T.

Lemma 3.6. X_{T}^{p} is a contractively complemented subspace of X_{0}^{p} for all $1 \leq p<\infty$.

Proof. Let $P=\mathcal{E}_{\mathbb{Q}(T)}$; i.e. P is conditional expectation with respect to the algebra of measurable sets depending only on the coordinates T. Now every finite branch of T is contained in a finite branch of \mathbb{Q}. Indeed, let Γ be a finite non-empty branch of T and let m be its largest element; i.e. $m \in \Gamma$ and $\gamma \leq m$ for all $\gamma \in \Gamma$. Now let $\Lambda=\{d \in \mathscr{D}: d \leq m\}$. Hence $\Lambda \supset \Gamma$. Then if f depends only on Γ, f depends only on Λ; this proves $X_{T}^{p} \subset X_{9}^{p}$; evidently $P\left|X_{T}^{p}=I\right| X_{T}^{p}$. On the
other hand, let Λ be a finite branch of \mathscr{D}. Then $\Lambda \cap T$ is a branch of T. But if f depends only on Λ, $P f$ depends only on $\Lambda \cap T$, so $P f \in X_{T}^{p}$. This proves $P X_{\mathscr{D}}^{p}=X_{T}^{p}$. Since $\|P\|=1$, the lemma is proved.

Now the subsets of \mathscr{D} in their inherited order may be described in the following abstract way: A partially ordered set $(T,<)$ shall be called a tree provided it satisfies the following properties:
(a) The set of predecessors of an element of T is finite and linearly ordered,
(b) T is countable.
(The more general definition used by logicians: (b) is not required and (a) is replaced by: the set of predecessors of an element is well-ordered. Thus, we are really just dealing with "countable trees of finite-ranked elements".)

Of course, \mathscr{D} is a tree. So is $\mathscr{F}(N)$, the set of all finite sequences of positive integers, under the order $\left(t_{1}, \ldots, t_{k}\right)<\left(u_{1}, \ldots, u_{m}\right)$ if $k<m$ and $t_{i}=u_{i}$ for all $1 \leq i \leq k$. Any subset of a tree is also a tree in its inherited order. Given a tree T, we again say that $\Gamma \subset T$ is a branch if Γ contains the set of predecessors (in T) of all its elements. A tree T is said to be well-founded if it has no infinite branches. (Of course, a well-founded tree is a special case of a well-founded relation discussed in Section 2.) Given a tree T, we define X_{T}^{p} in exactly the same way we did preceding Lemma 3.6. Evidently X_{T}^{p} is isometrically and distributionally determined by the order type of T. Now it is a standard rather simple result in logic that $\mathscr{F}(N)$ is order isomorphic to a subset of \mathscr{D} and every tree T is order isomorphic to a subset of $\mathscr{F}(N)$. That is, we have

Lemma 3.7. Every tree is order isomorphic to a subset of D. 2.
Theorem 3.8. For every tree T and p with $1<p<\infty, X_{T}^{p}$ is complemented in $L^{p}\{0,1\}^{T}$.

Proof. By the preceding result, we may assume that $T \subset \mathscr{D}$; we regard X_{T}^{p} as a subspace of $X_{\mathscr{D}}^{p}$ as in Lemma 3.6, and also $L^{p}\{0,1\}^{T}$ as a subspace of $L^{p}\{0,1\}^{\mathscr{D}}$. Then $X_{\mathscr{Q}}^{p}$ is complemented in $L^{p}\{0,1\}^{\mathscr{D}}$ by Theorem 3.1. Thus the result follows immediately from 3.1 and Lemma 3.6.

Remark. It is possible to give a direct proof of 3.8 , without passing through the dyadic tree \mathscr{D}. In particular, if we let $\gamma_{1}, \gamma_{2}, \ldots$ be the distinct finite branches of T and for each j, let U_{i} be the conditional expectation operator with respect to the algebra of sets depending only on the coordinates of γ_{i} (in $\{0,1\}^{T}$ of course), then we obtain again

$$
\left\|\Sigma v_{i}\right\|_{\|_{p}} \leq p^{3}\left\|\Sigma f_{i}\right\|_{p}
$$

for all non-negative f_{i} 's, $1 \leq p<\infty$, and

$$
\left\|\left(\sum\left(U_{i} f_{i}\right)^{2}\right)^{1 / 2}\right\|_{p} \leq C_{p}\left\|\left(\sum\left(f_{i}\right)^{2}\right)^{1 / 2}\right\|_{p}
$$

for all measurable f_{i} 's, $1<p<\infty$, where C_{p} depends only on p, by using the result of Burkholder, Davis and Gundy [6] for the first inequality and that of Stein [25] for the second. The "purist" might thus prefer to cast this entire discussion in the language of "tree-martingales", that is, of martingales indexed by a partially ordered set.

We now complete the proof of Theorem B, part (3) of the introduction.
Lemma 3.9. Let $\alpha<\omega_{1}$. There exists a well-founded tree T_{α} so that R_{α}^{p} is distributionally isomorphic to $X_{T_{a}}^{p}, 1 \leq p<\infty$.

Remark. It follows immediately that R_{α}^{p} is complemented in L^{p} for all $1<p<\infty$ and $\alpha<\omega_{1}$.

Proof of 3.9. We establish the statement by induction on α. It trivially holds for $\alpha=0$. Suppose $0<\alpha$ and the result has been established for all $\gamma<\alpha$. If α is a successor ordinal, let γ be such that $\gamma+1=\alpha$. We may, of course, assume that $R_{\gamma}^{p}=X_{T_{\gamma}}^{p}$. Let $t \notin T_{\gamma}$, set $T_{\alpha}=T_{\gamma} \cup\{t\}$, and order T_{α} by $<$ defined as follows:

$$
t<u \text { for all } u \in T_{\gamma} \text {; if } u, v \in T_{\gamma},
$$

then $u<v$ if and only if $u<v$, where " $<$ " is the order on T_{γ}. (Thus t is simply a "top" node introduced above all of T_{γ}, where $u<v$ is visualized by " v is below u ".) It is then trivial that T_{α} is also a well-founded tree. We must show that $R_{\alpha}^{p}=X_{T_{\alpha}}^{p}$. By definition, $R_{\alpha}^{p}=\left(R_{\gamma}^{p} \oplus R_{\gamma}^{p}\right)_{p}$. Define $e_{i} \in L^{p}\{0,1\}^{\{t]}$ by

$$
e_{1}(\varepsilon(t))=\varepsilon(t), \quad e_{2}=1-e_{1}, \text { for } \varepsilon \in\{0,1\}^{\{t\}} .
$$

Then

$$
\begin{equation*}
R_{\alpha}^{p}=\left\{b_{1} \otimes e_{1}+b_{2} \otimes e_{2}: b_{i} \in R_{\gamma}^{p} \text { for } i=1,2\right\} \tag{3.9}
\end{equation*}
$$

where, of course, $\left(b_{i} \otimes e_{i}\right)(s, \varepsilon)=b_{i}(s) e_{i}(\varepsilon)$ for $s \in\{0,1\}^{T_{r}}, \varepsilon \in\{0,1\}^{[i\}}, i=1,2$.
Now let f be a function on $\{0,1\}^{T_{\alpha}}$ which depends only on the coordinates of Γ, a branch of T_{α}. Since T_{γ} is non-empty, we can assume $\Gamma \cap T_{\gamma}=\Gamma \sim\{t\}$ is non-empty (by enlarging Γ if necessary). Then, of course, $\Gamma \cap T_{\gamma}$ is a branch of T_{γ}. We may then regard f as a function of two variables, s and ε, for $s \in\{0,1\}^{T_{\alpha}}$ and $\varepsilon \in\{0,1\}^{\{t\rangle}$. Set

$$
b_{1}(s)=f(s, 0) \text { and } b_{2}(s)=f(s, 1) \text { for all } s \in \Gamma_{\gamma} .
$$

Then evidently b_{i} depends only on $\Gamma \cap \Gamma_{\gamma}$; hence $b_{i} \in X_{T_{\gamma}}^{p}$ for $i=1,2$ and $f=b_{1} \otimes e_{1}+b_{2} \otimes e_{2}$. Thus by (3.9), we have shown $X_{T_{a}}^{p} \subset R_{\alpha}^{p}$. On the other
hand, if Λ is a branch of T_{γ} and b depends only on $\Lambda, b \otimes e_{i}$ depends only on $\Lambda \cup\{t\}$, a branch of T_{α}; hence $b \otimes e_{i} \in X_{T_{a}}^{p}$ for $i=1,2$. Thus in view of (3.9), $X_{T_{\alpha}}^{p}=R_{\alpha}^{p}$.

Now suppose that α is a limit ordinal. We may choose trees T_{γ} such that $R_{\gamma}^{p}=X_{T_{\gamma}}^{p}$ for all $\gamma<\alpha$; without loss of generality, we may assume that $T_{\gamma} \cap T_{\gamma^{\prime}}$ $=\varnothing$ for all $\gamma \neq \gamma^{\prime}$. We then set $T_{\alpha}=\cup_{\gamma<\alpha} T_{\gamma}$. Letting " $<_{\gamma}$ " be the order relation on T_{γ}, we simply set $<_{\alpha}=\cup_{\gamma<\alpha}<_{\gamma}$. That is, for $u, v \in T_{\alpha}, u<_{\alpha} v$ if and only if $u, v \in T_{\gamma}$ for some γ and $u<{ }_{\gamma} v$. (T_{α} may be visualized as simply setting the trees T_{γ} "side-by-side".) It is evident that T_{α} is well-founded since any branch of T_{α} must be contained in T_{γ} for some $\gamma<\alpha$. It is also clear that

$$
\begin{equation*}
X_{T_{\alpha}}^{p}=\left(\sum_{\gamma<\alpha} X_{T_{\gamma}}^{p}\right)_{\operatorname{Ind}, p} . \tag{3.10}
\end{equation*}
$$

Indeed, suppose f depends only on Γ, Γ a branch of T_{α}. Then as remarked above, $\Gamma \subset T_{\gamma}$ for some $\gamma<\alpha$; thus $f \in X_{\gamma}^{p}$. On the other hand, if Γ is a branch of T_{γ} for some $\gamma<\alpha$, then Γ is already a branch of T_{α}. Thus $X_{T_{a}}^{p}=\left[X_{T_{\gamma}}^{p}\right]_{\gamma<\alpha}$. But the disjointness of the T_{γ} 's implies $\left[X_{T_{\gamma}}^{p}\right]_{\gamma<\alpha}=\left[\Sigma_{\gamma<\alpha} X_{T_{\gamma}}^{p}\right]_{\text {Ind, } p}$. Thus (3.10) holds and the proof is complete, since

$$
R_{\alpha}^{p}=\left(\sum_{\gamma<\alpha} R_{\gamma}^{p}\right)_{\operatorname{Ind}, p}
$$

by definition.
Remarks and open problems. 1. Let T be a tree. Then there exists a subset W_{T} of the Walsh functions so that $X_{T}^{p}=[w]_{w \in W_{T}}$ in L^{p} for all $1 \leq p \leq \infty$. That is, X_{T}^{p} is a closed translation invariant subspace of $L^{p}(G)$ where $G=\{0,1\}^{N}$. Let us see why this is so. Let $\beta: N \rightarrow T$ be a bijection; we then set

$$
W_{T}=\left\{r_{n_{1}} \cdot \ldots \cdot r_{n_{k}}: k \geq 1, \beta\left(n_{1}\right)<\cdots<\beta\left(n_{k}\right)\right\} \cup\{1\} .
$$

Here is an alternate description: For each $t \in T$, let $r_{t} \in L^{p}\{0,1\}^{T}$ be defined by $r_{t}(x)=(-1)^{x(t)}$. Then W_{T} equals the union over all branches Γ of the set of all finite products of Rademacher functions belonging to Γ; i.e.

$$
W_{T}=\left\{w: \text { there exist } \Gamma \text { a branch and } k \text {, with } w=\prod_{i=1}^{k} r_{t_{\mathrm{i}}} \text { for } t_{1}, \ldots, t_{k} \in \Gamma\right\} .
$$

Now if Γ is a finite branch, then by standard properties of the Walsh functions, the span of the set of all products of Rademacher functions belonging to Γ equals $L^{p}\{0,1\}^{\Gamma}$; hence we obtain $\left[W_{T}\right]=X_{T}^{p}$. In particular, R_{α}^{p} may thus be regarded as a closed translation invariant subspace of $L^{p}(G)$ for all α. By a result of F . Lust [18], if a translation-invariant subspace of $L^{p}(G)$ has the RNP, it is isometric
to a dual space for $p=1$ or ∞. Thus, $\boldsymbol{R}_{\alpha}^{p}$ is isometric to a dual space for all α, $p=1$ or ∞. Consequently the proposition of the introduction may be strengthened as follows: Let \mathcal{C} denote the class of all subspaces of L^{1} that are isometric to a dual space and let B be separable and universal for \mathcal{C}. Then $L^{1} \hookrightarrow B$.
2. The following question was suggested by A. Pełczyǹ̀ski: Let Γ be an infinite compact abelian group and $1<p<\infty, p \neq 2$. Are there uncountably many non-isomorphic complemented translation-invariant subspaces of $L^{p}(\Gamma)$? What if $\Gamma=\Pi$, the circle group?
3. Let T be a well-founded tree. Is there an α so that X_{T}^{p} is isomorphic to R_{α}^{p} for all $1<p<\infty, p \neq 2$?
4. Let B be an \mathcal{L}_{p} space non-isomorphic to $L^{p}, 1<p<\infty$. Is there an α so that B embeds in R_{α}^{p} ?
5. Are the R_{α}^{p},s isomorphically distinct over the family of limit ordinals α ? Is it so that setting $\tau(\alpha)=\omega \alpha$, then $R_{\tau(\alpha+1)}^{p} \leftrightharpoons R_{\tau(\alpha)}^{p}$ for all α ? What is the explicit value of $h_{p}\left(R_{\alpha}^{p}\right)$ for all α ? For $\alpha=\omega$?
6. Does there exist an α such that R_{α}^{p} contains uncountably many nonisomorphic \mathfrak{R}_{p}-spaces, $1<p<\infty, p \neq 2$? Of course, our results yield that there exists an α and a λ_{p} such that R_{α}^{p} contains infinitely many non-isomorphic $\ell_{p, \lambda_{p}}$-spaces.
7. Let W be the class of all separable \mathcal{L}_{1}-spaces B so that $L^{1} \leadsto B$ and let X be separable and universal for W. Does $L^{1} \hookrightarrow X$?*
8. Let $1 \leq p<\infty, p \neq 2, X, Y$ be Banach spaces, and suppose $L^{p} \hookrightarrow X \oplus Y$. Does $L^{p} \leftrightarrows X$ or $L^{p} \leftrightarrows Y$? This problem was posed in [21]; a possible approach to the problem: is there a function $f_{p}: \omega_{1} \times \omega_{1} \rightarrow \omega_{1}$ so that $h_{p}(X \oplus Y) \leq$ $f_{p}\left(h_{p}(X), h_{p}(Y)\right)$ provided $L^{p} \nrightarrow X$ and $L^{p} \nrightarrow Y$? Can f_{p} be chosen to be addition? Although the basic problem stated has an affirmative answer for $p=2$ or $p=\infty$, we do not know if such a function f_{p} exists for $p=2$ or for $p=\infty$ (where one replaces " L^{p} " by " $C([0,1]$)").

First author:

University of Paris VI, France
Free University of Brussels, Belgium
Second author:
University of Paris VI, France
University of Texas at Austin
Third author:
Ecole Polytechnique, Paris, France
Ohio State University at Columbus
*The first author has answered this in the affirmative; see "A new class of L-spaces" (to appear).

References

[1] D. Alspach, P. Enflo and E. Odell, On the structure of separable \mathscr{E}_{p} spaces $(1<p<\infty)$, Studia Math. 60 (1977), 79-90.
[2] J. Bourgain, On convergent sequences of continuous functions, to appear.
[3] - On separable Banach spaces universal for all separable reflexive spaces, to appear.
[4] D. L. Burkholder, Martingale transforms, Ann. Math. Stat. 37 (1966), 1494-1504.
[5] -_, Distribution function inequalities for martingales, Ann. Prob. 1 (1973), 19-43.
[6] D. L. Burkholder, B. J. Davis and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, Proc. of the 6-th Berkeley Symposium on Math. Stat. and Prob. (1972), 223-240.
[7] P. G. Casazza and Bor-Luh Lin, Projections on Banach spaces with symmetric bases, Studia Math. 52 (1974), 189-193.
[8] C. Dellacherie, Les derivations en théorie descriptive des ensembles et le théorème de la borne, Seminaire de Prob. XI, Université de Strasbourg, Lecture Notes 581, 34-46, Springer, 1977.
[9] P. Enflo and T. Starbird, Subspaces of L^{1} containing L^{1}, Studia Math. 65 (1979), 203-225.
[10] J. L. B. Gamlen and R. J. Gaudet, On subsequences of the Haar system in $L_{p}[0,1]$, $(1<p<\infty)$, Israel J. Math. 15 (1973), 404-413.
[11] A. M. Garsia, Martingale Inequalities, Seminar notes on recent progress, Benjamin, Reading, Mass. 1973.
[12] W. B. Johnson and J. Lindenstrauss, Examples of E_{1} spaces, to appear.
[13] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Memoirs A.M.S. 217 (1979).
[14] N. Kalton, Embedding L_{1} in a Banach lattice, Israel J. Math 32 (1979), 209-220.
[15] J. Lindenstrauss and A. Pelczỳ̀ski, Absolutely summing operators in \mathcal{L}_{p} spaces and their applications, Studia Math. 29 (1968), 275-326.
[16] J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_{p} spaces, Israel J. Math. 7 (1969), 325-349.
[17] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Sequence Spaces, SpringerVerlag, Berlin, 1977.
[18] F. Lust, Ensembles de Rosenthal et ensembles de Riesz, C.R. Acad. Sci. Paris Série A, 282 (1976), 833-835.
[19] H. P. Rosenthal, On the subspaces of $L^{p}(p>1)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.
[20] -_, On the span in L^{p} of sequences of independent random variables (II), Proc. of the 6-th Berkeley Symp. on Prob. and Stat., Berkeley, CA, 1971, 149-167.
[21] - - On applications of the boundedness principle to Banach space theory, according to J. Bourgain, Seminaire d'Initiation de l'Analyse, Paris VI, 1978-1979, S-01-S-14.
[22] ——, Subspaces of L^{p} which do not contain L^{p} isomorphically, Seminaire sur la géométrie des espaces de Banach, 1978-1979, Ecole Polytechnique, Exposé No. 28.
[23] G. Schechtman, Examples of \mathcal{L}_{p} spaces, Israel J. Math. 22 (1975), 138-147.
[24] - -, On Pełczyǹski's paper "Universal bases", Israel J. Math. 22 (1975), 181-184.
[25] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Ann. of Math. Studies, 63, Princeton, 1970.
[26] A. E. Tong, Diagonal submatrices of matrix maps, Pacific J. Math. 32 (1970), 551-559.

[^0]: 003-486X / 81/0114-2/0193/036\$01.80/1
 © 1981 by Princeton University (Mathematics Department)
 For copying information, see inside back cover.
 *It is not known if there are c non-isomorphic complemented subspaces of $L^{p}, 1<p<\infty$, $p \neq 2, c$ the cardinality of the continuum. For $p=\infty$ the question becomes, are there c nonisomorphic complemented subspaces of $c([0,1])$? It is conjectured in this case that an affirmative answer implies the continuum hypothesis.
 ${ }^{1}$ Supported in part by NSF-MCS-7827056
 ${ }^{2}$ Supported in part by NSF-MCS-7606565 and 7903042.

