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's. By making crucial use 1: union of finite-dimensional spaces uniformly close to 

An ordinal LP-index for Banach spaces, with 
application to complemented subspaces of LP  

One of the central problems in the Banach space theory of the LP-spaces is 
to classify their complemented subspaces up to isomorphism (i.e., linear home* 
morphism). Let us fix 1< p < m, p # 2. There are five "simple" examples, LP, 
lP, 12, l2 @ lp, and (12@ l2 @ . . . ),. Although these were the only infinite-
dimensional ones known for some time, further impetus to their study was given 
by the discoveries of Lindenstrauss and Pelczyriski [15] and Lindenstrauss and 
Rosenthal [16]. These discoveries showed that a separable infinitedimensional 
Banach space is isomorphic to a complemented subspace of L P  if and only if it is 
isomorphic to 1%r is an "Cp-space", that is, equal to the closure of an increasing 

of statistical independence, the second author produced several more examples in 
1191, and the third author built infinitely many non-isomorphic examples in [23]. 
These discoveries left unanswered: Does there exist a A, and infinitely mar?y 
non-isomorphic h,complemented subspaces of L P  (equivalently, are there in- 
finitely many separable C,, ^-spaces for some h depending on p)? We answer 
these questions by obtaining uncountably many non-isomorphic complemented 
subspaces of LP.* Before our work, it was suspected that every Cp-space non- 
isomorphic to L P  embedded in (1% 12@ . . .), (for 2 < p < co)(see Problem 1of 
[23]). Indeed, all the known examples had this property. However our results 
show that there is no universal !?,-space besides LP.  TO obtain these results, we 
use rather deep properties of martingales together with a new ordinal index, 
called the local LP-index, which assigns "large" countable ordinals to any 

00~3-486X/81/01142/019n/03$01.80/1 
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.It is not known if there are c non-isomorphic complemented subspaces of Z A P ,  1 < p < m ,  
p # 2, c the cardinality of the continuum. For p = m the question becomes, are there c 
nonisomorphic complemented subspaces of c([0,I])? It is conjectured in this case that an 
affirmative answer implies the continuum hypothesis. 
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separable Banach space not containing LP-isomorphically. We pass now to a 
more detailed summary of our work. 

Our main result concerning the classification of the complemented sub- 
spaces of L P  is as follows: 

THEOREMA. Let 1 < p < r ; ~ ,p # 2, and let w l  denote the first uncount-
able ordinal. There exists a family (XE),,,, of complen~ented subspaces of Lp so 
that for all a < p < w,, XE is isometric to a subspace of  X$ but X$ is not 
isomorphic to a subspace of XE. Moreover if  B is a separable Banach space such 
that XE is ismnorphic to a subspace of B for all a ,  then L P  is isovwrphic to a 
subspace of B. 

Since at most one of the spaces X z  can be isomorphic to Hilbert space, we 
obtain that there exist uncountably many non-isomorphic Cp-spaces, 1< p < r ; ~ ,  

p # 2, thus answering a question raised in [23]. (It has recently been proved that 
there are uncountably many non-isomorphic separable Cl-spaces. See 1121.) It of 
course follows immediately that there is a h (depending on p )  so that there are 
uncountably many non-isomorphic Cp,A spaces; as noted above, the existence of 
infinitely many such had remained an open question until now. 

Given Banach spaces X and Y, we use the notation X -+ Y to mean X is 
isomorphic (linearly homeomorphic) to a subspace of Y; X Y means X is 
isomorphic to a complemented subspace of Y. Given a class K of Banach spaces 
and a Banach space B, we say that B is universal for K if E -.B for all E E K .  

Our main result then yields the following consequence: 

COROLLARY.Let 1< p < m, p # 2, and let sJfP denote the c h s  of  all 
complemented subspaces X o f  LPsuch that L P~t X. Let B be a separable Banach 
space universal for O J P .  Then L P-+ B. 

In our proof of the Main Theorem, we make essential use of the following 
result established in [13]: 

( A ) l f  X c LP and L P - X ,  then L P ~ X .  

It follows, incidentally, that if X LP,  then X is isomorphic to L P  if (and only 
if) L P  -+ X. Hence the corollary may be rephrased: i f  B separable is universal for 
the class of  all separable CP-spaces non-isonwrphic to LP,  then L P- B (1  < p < 
a,p # 2). 

It is a long standing conjecture that every infinitedimensional comple- 
mented subspace of L1 is isomorphic to 1' or L'. Thus the analogue of our main 
result is thought to be false for p = 1 (although this is an open question). If we 
drop the word "complemented", then the analogue of our main result and its 
attendant corollary prove true for p = 1; in fact, we obtain the following 
improvement: 



PROPOSITION.Let C? denote the class of all subspaces of L1 satisfying the 
Radon-Nikodym property and let B be universal for C? with B separable. Then 
L1 -. B. 

In previous (unpublished) work, M. Talagrand had obtained that the class of 
all separable Banach spaces with the RNP has no universal element. 

To obtain our results, we introduce (in Section 2) an ordinal index for 
separable Banach spaces, called the local LP-index. Ordinal indices with similar 
properties were introduced by the first author in [2] for 1'-structures and in [3] 
for quite general structures. (For a discussion of the local L"-index and its 
connection with the classical theory of analytical sets, see [21]. Also, see 1221 for a 
summary of the proof of the Main Theorem without the complementation 
assertion (unknown at the time [22] was written).) 

The properties of this index are as follows (w, denotes the first uncountable 
ordinal): 

THEOREM2.1. For each 15 p 5 CQ and separable Banuch space B, there 
exists an ordinal number hp(B) 5 w,, the local LP-index of B, so that 

(a) hp(B) < w l  if and only if L PY, B and p < CQ,or C([O, 11) 'P B and 
p = CQ; and 

(b) if X is a Banuch space such that X -. B, then hp(X) 5 hp(B). 

We construct the family of Theorem A by alternately taking disjoint and 
independent sums of subspaces of LP. Precisely, let 15 p < cc and let RE be the 
one-dimensional space of constant functions. If RP, has been defined, we let RP,,, 
equal the LPdirect sum in L P  of RP, with itself. If a is a limit ordinal and RF has 
been defined for all P < a ,  we let RP, equal the independent LP-sum in L P  of the 
RF's for p < a .  It is important that the RE'S are presented as specific spaces of 
random variables; the precise definitions of disjoint and independent sums in LP 
may be found in the second part of Section 2. 

Incidentally, it follows easily that for a < P ,  RP, isometrically embeds in RF. 
In fact, the natural embedding is implemented by a projection of norm one (for 
p = 1 as well). 

Theorem A then follows easily from the following result: 

THEOREMB. Let 15 p < CQ, p # 2 and a < w,. Then 
(1) L P 'P RP,, 
(2) hp(RP,)2 a + 1and 
(3) RP, is complemented in L P  if p # 1. 

Proof that B =, A. We simply construct an increasing function T: w l  -, w, so 
that X,P = RF(,, for all a < wl .  Let r(0) = W .  (Thus X,P is the first RP, which is 
infinite dimensional.) Suppose P > 0 is a countable ordinal and ~ ( a )  has been 
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defined for all a < P. Now Theorem 2.1 and (1) yield that hP(Ry) < w ,  for all 
y < w,. Let r (P)  = a < P) .  By (2) of Theorem B, h,(R&) sup(hp(R~~,)) :  = 
hP(XpP)2 r (P )  + 1. Since a < /3 implies hP(X,P) Ir ( P )< hP(XpP), it follows 
from Theorem 2.l(a) that X j  is not isomorphic to a subspace of X,P. Finally, 
suppose B is as in Theorem A. Then by Theorem 2.1 and part (2) of Theorem B, 
for all a < w,, a + 1 5 hP(X,P)5 hP( B). Hence hP( B) = w,, so by Theorem 2.1, 
LP 9B, proving Theorem A. 

It is easily seen that the Ri's all have the RNP; hence the above argument 
also proves the proposition. 

The assertions (1)-(3) of Theorem B are essentially established in Sections 
1-3 respectively. We pass to a brief summary of how this is done. 

Section 1 is devoted exclusively to the proof of the following result: 

THEOREM1.1. Let 1< p < co, Y be a Banuch space with an unconditional 
Schauder decomposition (Y,), and suppose LP % Y. Then either LP  4Y, for 
some i, or there exists a block basic sequence of the Y,'s equivalent to the 
Haar-basis in LP, with closed linear span complemented in YP. 

Theorem B(l) for p > 1 now follows easily from the above result, ( A ) ,  and 
the fact that no independent sequence of random variables is equivalent to the 
Haar basis in LP (for p # 2). The details are given in Section 2. Of course, B(l) 
for p = 1also follows immediately from the fact that the RP, 'S all have the RNP, 
established in Section 2. We do not know if Theorem 1.1 holds if the words 
"unconditional" or "complemented" are deleted from its statement. The tech- 
niques of Enflo and Starbird [9] (see also Kalton [14]) may be used to show that 
1.1 does hold for p = 1 (in which case only the first alternative occurs). 

Section 2 is devoted to the definition and properties of the local LP-index, 
the proof of Theorem B(2), and the demonstration of a few other properties of 
the RE'S. (For example, it is proved that RP, has an unconditional basis for all 
1< p < co and a < w l . )  

In Section 3, we obtain that the RP, 'S are complemented in LP for 1< p < 30. 

To accomplish this, we require a fundamentally different description of these 
spaces. 

Let T be a countable partially ordered set such that the set of predecessors 
of any element of T is finite and linearly ordered; we call such a T a tree. Call a 
subset r of T a branch if it contains all the predecessors of all its elements. Now 
let {0,1)' be endowed with the product measure of the "fair" measure on the 
two point set {0,1), and let XF denote the closed linear span in LP{O, 1ITover all 
branches r of those functions which depend only on the coordinates in T. 



Thus we show in Section 3 (Theorem 3.8) that for any tree, T, X $  is 
complemented in LP({O, 1IT), 1< p < GO, and verify (Lemma 3.9) that for all a 
there is a tree T, so that RP, may be identified with X$a for all 15 p < oo. 

The complementation result makes crucial use of some martingale inequali- 
ties due to Stein, Burkholder, Davis and Gundy. We also note at the end of 
Section 3 that each RP, may be identified with the closed linear span in LP  of a 
certain set of Walsh functions; that is, with a translation invariant subspace of 
LP({O,1IN).Several open questions are posed throughout; in particular, at the 
end of Section 3. 

Much of this research was conducted while the authors held visiting 
positions in France-the first and second at Universitk de Paris VI and the third 
at Ecole Polytechnique, Palaiseau. We would like to thank our French colleagues 
for their warm hospitality and support. In particular, we would like to thank 
G. Pisier for stimulating conversations concerning the work presented here. 

1. Complemented embeddings of LP into spaces with unconditional 
Schauder decompositions 

The main result of this section is as follows: 

THEOREM1.1. Let 1< p < oo and suppose LP is isomorphic to a comple- 
mented subspace of a Banach space Y with an unconditional Schauder decom- 
position (Y,). Then one of the following holds: 

(1) There is an i so that LPis isomorphic to a complemented subspace of Y,; 
(2) A block basic sequence of the Y,'s is equivalent to the Haar basis of LP 

and has closed linear span complemented in Y. 

(We recall that (Y,) is an unconditional Schauder decomposition of Y if each 
Y, is a closed linear subspace of Y, and if for all y E Y, there exists a unique 
sequence ( y,) with y, E Yi for all i and Eyi converging unconditionally to y. A 
sequence (b , )in Y is called a block basic sequence of the Yi's if there exist y, E Y, 
and integers n ,  < n, < . - with b, = Z~L-;,- 'yi for all i.) 

The proof is accomplished by using many standard results about LP  and 
general unconditional Schauder decompositions. In particular, we make essential 
use of the results and techniques of Alspach, Enflo and Odell [I]. We first 
assemble these standard results. For the convenience of the reader, we have 
labeled those used directly in the proof of Theorem 1.1 as scholia; the others are 
called lemmas. 

We first need facts about unconditional bases and decompositions. Let N 
denote the set of positive integers. Given a Banach space B with an unconditional 
basis (b , )and (x i )  a sequence of non-zero elements in B, say that (x i ) is disjoint 
if there exist disjoint subsets M,, M,, . . . of N with x, E [b,], el,, for all i .  Say 
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that (xi)  is essentially disjoint if there exists a disjoint sequence (y,) such that 
Zll xi - y, 1 1 / 1 1  xi l l  < co.Of course, if (xi)  is essentially disjoint, then (xi)  is 
essentially a block basis of a permutation of (b,). Also, (xi) is an unconditional 
basic sequence. (Throughout this paper, if {b,}, is an indexed family of 
elements of a Banach space B, [b,] , denotes the closed linear span of (bi},. in 

Be) 
We next slightly rephrase the useful Lemma 1.1of [l](which, as noted in 

[I], follows easily from the ideas of [7]). 

LEMMA 1.2. Let (b,) be an unconditional basis for B with biorthogonal 
functionuls ( b,*), T: B -,B an operator, E > 0, and ( b, ) a subsequence of ( b, ) so 
that (Tb, ) is essentially disjoint and (b,*(Tb, ) (  r e for all i. Then (Tb,,)is 
equiva& to (bn) and [Tbn,] is ccnnplemeAted /n B. 

Our next result follows immediately from the proof of the remarkable 
diagonalization theorem of Tong 1261; (see also Proposition l.c.8 of [17]). If (Xi)  
is an unconditional Schauder decomposition, say that Pi is the natural projection 
onto X iif Pix = xi provided x = Ex, with xi E Xi for all i .  We shall refer to (Pi)  
as the projections corresponding to the decomposition. 

LEMMA1.3. Let X and Y be Banach spaces with unconditional Schauder 
decompositions (Xi)  and (Y,) respectively; and let (Pi) (resp. Qi)  be the natural 
projection from X ( resp. Y ) onto Xi ( resp. Yi ). Then if T: X -, Y is a bounded 
linear operator, so is ZQ,TP,. (In other words, there is a K < oo so that for all 
x E X, ZQ,TP,x converges and IIZQ,TP,x 1 1  5 K I 1  x 1 1 . )  

Our next result is used directly in the proof of case 2 of the Main Theorem. 
(Throughout this paper, "projection" means "bounded linear projection", "oper- 
ator" means "bounded linear operator".) 

SCHOLIUM1.4. Let Y have an unconditional Schauder decomposition with 
corresponding projections (Q,) (as in the previous result), and let X be a 
complemented subspace of Y with an unconditional basis (x, ) with biorthogonal 
functionals (x:). Suppose there exist e > 0, a projection U: Y -t X and disjoint 
subsets MI, M,, . . . of N with the following properties: 

(a) (UQ, x,), .w, , .\ is essentially disjoint and 
(b) (x~(UQ,x , ) (r e forall Z E  M,,i  E N. 

Then (Q,x,,, .$1,., \ is equivalent to (x,),. ~ 1 ,, .Iand [Q,x,l,, V, , \ is comple- 
mented in Y. 

Proof L e t M =  U," , ,M,andL=N-M.LetX,  = [ x , ] , . ~ l , f o r i > l a n d  
XI = [x,], .M, UL.Then of course (X,) is an unconditional Schauder decomposi- 
tion for X; let (PI)  be the corresponding projections. Also, let T be the natural 
projection from X onto [x,], .v. Now if we regard T as an operator from X into 



Y ,  V = EQiTPi is also an operator, by the preceding lemma. Fixing i and 1 E M i ,  
we have 

(1.1)  V ( x 1 )= QiTPi(x,>= Qi(xl>.  

Hence by (b), 

(1 .2 )  IxfUV(x,) l  = IxfUQi(xl) l2 e .  

Moreover, ( U V ( x , ) ) ,,, is almost disjoint by (a). Thus Lemma 1.2 applies and 
( U V ( x , ) ) ,,,, is equivalent to ( x , ) ,,, and [UV(x , ) ], ,,is complemented in X. It 
now follows directly that ( V ( x , ) ) ,,, is equivalent to ( x , ) , ,,, with [ V ( x l ) ]  
complemented in Y ,  which proves the theorem by virtue of (1.1). (To see the 
final assertion, ( V ( x , ) )  is dominated by ( x , )  but dominates (UV(x , ) ) ,hence 
( V ( x , ) )is equivalent to ( x , ) ) .Let P be a projection from X onto [UV(x, ) I  , ., and 

be the isomorphism with SUV(x l )  x ,  for all let ,,,[UV(x , ) ]S :  -, [ x , ], 
1 E M. Then Q = VSPU is a projection from Y onto [Vx,],,,,, as is seen by 
considering the commutative diagram 

We next recall the fundamental result of Gamlen and Gaudet [lo];throughout 
this paper, ( hi) denotes the Haar-basis, normalized in  L" . 

LEMMA1.5. Let 1 < p < oo and I C N such that i f  E = { t  E [O,l]:  t 
belongs to infinitely many hi's with i E I ) ,  then E is of positive Lehesgue 
measure. Then [ h i ]  ,, is isomorphic to L P .  

Now fix p, 1 < p < oo.Following [ l ] ,we recall that L P is isomorphic to 

Fixing i and letting (h , , ) be the element of LP(l , )  whose j-th coordinate equals 
h i ,all other coordinates 0 ,  we see that is an unconditional basis for Lp(12) ,  
thanks to the fact that ( h i )is an unconditional basis for L P . NOW any uncondi- 
tional basic sequence ( x i) in LP is equivalent to the diagonal sequence xi i  xi if 
j = i; x i ,= 0 otherwise, in ~ p ( 1 ' ) ;  hence as observed in [ I ] , we have the 
following fact: 

SCHOLIUM1.6. There is a constant K p  depending only on p so that for any 
function j: N + N, (hii(t,)y=c=,in Lp(12)  is Kp-equivalent to ( h i )  in  L P .  
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We are now prepared for the following consequence of the proof of Alspach, 
Enflo and Odell that LP is primary [ l] .Let (h ; )  denote the biorthogonal 
functionals to ( h i i )as defined above. 

SCHOLIUM1.7. Let 1 < p < co and T:  Lp(12) -+ Lp(12)be a given operator. 
Suppose there is a c > 0 so that when I = { i : I h;Thii ( 2 c for infinitely many j ) ,  
then E has positive Lebesgue measure, where 

E = { t  E [O,1]: t belongs to infinitely many hi 's with i E I } .  

Then there is a subspace Y of Lp(12) with Y isomorphic to LP ,  T 1 Y an 
isomorphim, and TY complemented in Lp( l  ,). 

Proof. We shall show that Y may be chosen of the form Y = [h i i ( i , ] i e rfor 
some i : I -,N. 

Fix i E I. By the definition of I ,  there is a sequence j ,  < j ,  < . . . with 
1 1  Thiik1 1  2 c > 0 for all k; of course (Thiik):='=,is weakly null. It then follows by 
the standard gliding hump argument and the definition of I that there exists a 
function j :  1 + N so that (Thii(i)) , , lis essentially disjoint with respect to 
(h i k )Tk=,and I h,*i(,,Thii(,,l is2 c for all i E I .  Then by Lemma 1.2, [Th, i ( i ) ] iEI  
complemented in Lp(1,) and (Thii(i))i,, is equivalent to ( hii( i )) i,,, which is 
equivalent to ( h i ) ,,, by Lemma 1.6. In turn, [ h i ], ,, is isomorphic to LPby the 
result of Gamlen-Gaudet, Lemma 1.5. This completes the proof. 

COROLLARY1.8. Let 1 < p < cc and T :  L P+ L P  be a given operator. Then 
for S = Tor I - T ,  there exists a subspace Y of LP with Y isomorphic to L P ,  S (Y  
an isomorphism, and S ( Y )  complemented in LP. 

Proof. Since L p  is isomorphic to L P ( ~ , ) ) ,  suffices to 1.8 withit prove 
L P  replaced by ~ p ( 1 , )  in its statement. Let 1, = { i :  (h,*irtziil 2 $ for infinitely 
many j )  and I, = { i :  I h;(I - T)h i i( 2 $ for infinitely many j ) .  Then N = 
I ,  U I,; hence for i = 1 or 2,  Ei has positive Lebesgue measure, where Ei = { t :  t 
belongs to infinitely many hi's for i E I i ) .  The result now follows from the 
preceding theorem. 

Remark: 1.8 was first established by Enflo. The work of Enflo-Starbird [9] 
shows that it holds for p = 1 (see also [14]). 

THEOREM1.9. Let 1 < p < cc,and X and Y be given Banuch spaces. If L p  
is isomorphic to a complemented subspace of X @ Y ,  then LP is isomorphic to a 
complemented subspace of X or to a complemented subspace of Y.  

Proof: Let P (resp. Q )  denote the natural projection from X @ Y onto 
X (resp. Y ) .  Hence P + Q = I .  Let Z be a complemented subspace of 



X @ Y isomorphic to LP and let U: X @ Y - Z be a projection. Since 
UP I Z + U Q  I Z = 112, the preceding result shows that there is a subspace W of 
Z with W isomorphic to LP,  TI W an isomorphism, and TW complemented in Z, 
where T = UP ( 2or T = UQ(2.Suppose the former: Let S be a projection from 
Z onto TW and R = ( T  ( W )' . Then I ( W = RSUP ( W ;hence since the identity 
on W may be factored through X, W is isomorphic to a complemented subspace 
of X. 

Remark: Of course this result also holds for p = 1, by virtue of the 
preceding remarks. Also, it thus follows trivially by induction that if XI,. . . ,X,, 
are given Banach spaces with L P  isomorphic to a complemented subspace of 
X, @ . . .@X,, then LP is isomorphic to a complemented subspace of X I  for 
some i .  

We need two more preliminary results dealing with sequences equivalent to 
the Haar basis. We recall the explicit definition of the latter, normalized in L";: 
h ,  = 1 and for n = 2, + j with 0 I k and 1 5  j 5 2,, 

The next result is essentially Lemma 4 of [lo].(We employ the notation 
[ f = a ]  for { t :  f ( x )  = a ) ;  p denotes Lebesgue measure. For a measurable 
function f ,  supp f = [ f # 01.) 

LEMMA1.10. Let ( x , )  be a sequence of measurable functions on [ O , l ]  with 
x, {O,l)-valued and ( x , )  {1,0,  -1)-valued for i > 1. Suppose there exist positive 
constants a and b so that, for all positive 1 ,  with k the unique integer, 1 5 k I 1 ,  
and a the unique choice of +1 or -1 so that supp h,,, = [ h ,  = a ] ,  then 

(a) [x, = a ]  = supp x +,( u p  to a set of measure zero) and 
(b) a / 2 /  I h k l  = for P =I P ( [ X ~ L ~P I )  I b /2 /  IhkI  

Then for all p ,  1 5 p  < CQ, ( x , )  is equivalent to (h,)  in LP, [x,]  is 
isometric to LP and hence is the range of a norn-one projection defined on LP. 

Remark: In the above statement, k = [ ( I  + 1)/2]and a = (- 1)'". Also, if 
a = b = 1, ( x , )  is isometrically equivalent to (h,)  in the LP-norm. 

The hypotheses of our final preliminary result yield sequences equal to a 
small perturbation of the x i ' s  of the preceding result, hence these sequences are 
again equivalent to the Haar basis. 

SCHOLIUM1.11. Let ( z ,  ) be a sequence of measurable functions on [O,1] 
with z ,  { 1,O)-valued non-zero in L' and ( z , )  {1,0, -1)-valued with / z l  = 0 for 
all i > 1. Suppose that for all positive 1 ,  letting k be the unique integer, 
1 5 k 5 1, and a the unique choice of +1 or -1 so that supp h,,, = [h,  = a ] ,  
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then 

and p([zk = a]  - suppzi+,) 5 E ~ /( z I (  (where ri = 1/2f2 for all i ) .  Then for all 
p,  1 5p < oo, (z,)  is equivalent to (h,) in the LP-norm and [z,] is cmnple- 
mented in LP. 

Proof: Buried in the indexing of the Haar system by N is the fact that the 
supports form a dyadic tree of sets. We introduce the perhaps more natural 
dyadic indexing as follows: Let D, denote the set of all k-tuples of 0's and 1's and 
let 9= U (Thus Q is the set of all finite sequences of 0's and 1's.) For 
n > 1, let t = ( t ,  . . .t,) be the unique element of 9such that 

(Here k = 0 is possible; then "t  " denotes the empty sequence 0 .) Now for 
E = 0 or 1, set E,,= [z ,= (-l)']. Thus z ,= 1 on Eto, z ,=  -1 on E,, and 
z, = 0 elsewhere. Also, set E, = [z, = 11. Let ~ ( t  = E , ~ ,  and b = / 1 z, 1 .  Our) 
hypotheses are then equivalent to the following: For all t E 9, 

(1.5) Et 'Eto U Et1 

and 

(1.6) 	 p(Et - (Eto u Et,)) < be(t 1. 
It then follows easily that for t E D,, k 2 1, 

b
p(E, )  5 ,  and 

2 

Now define F, = flp, U. Then fixing t E D,, letting n be as in (1.3), we 
have 

OC 


(1.8) 	 ( E  - F )  5 b 2 &(to)5 b 2 El  5-
b 

5-. 
b 

1=1 O E D ,  l r n  2(n-1)2  2k 2  

1
Since ~ ( t ,  . . . t i)  I-we easily obtain from (1.7) and (1.8) that there is 

2(i+lY' 
a constant a > 0 so that 

a 
(1.9) -< ( F )  for all t E D,, for all k. 

2, -



Again let n and ( t ,  . t k )satisfy (1.3) and let x ,  be defined by 

(1.10) X ,  - 1  on F,,, x ,  = - 1  on F,, and x ,  = O  elsewhere. 

It follows easily that ( x , )  satisfies the hypotheses of the preceding lemma. 
Finally, we obtain from (1.8) that there is a constant c so that for all p, 
l l p c o o ,  

IIxn-znIlp P 
-- I I X , - Z , I I ~ c

I -
1 1  xn l l :  1 1  xn 1 1  1 2 k 2 - k  

Hence, 

which proves the result in view of the preceding lemma and standard perturba-
tion arguments. 

We are at last prepared for the proof of our main theorem. Let us first 
outline the procedure. We assume that ~ ~ ( is a complemented subspace of~ ) Y ;1 
let U: Y + Lp(12)be a projection. Let ( Y , )be an unconditional decomposition of 
Y .  Suppose that there is no i with L P isomorphic to a complemented subspace of  
Y,. We shall then construct a "blocking" of the decomposition ( Y , )  with 
corresponding projections ( Q , ) , finite disjoint subsets M I , M,, . . . , of N, and a 
map j :  U Pc, ,Mi + N so that 

(i) ( Q k h i i ( i ) ) i e ~ , ,  k t is equivalent to~ ( h,) ,e,k, E N  with [ Q k h t i ( ~ ) I i ~ ~ k ,k e N  

complemented in Lp(12)and 
(ii) ( 2 , )  is equivalent to the Haar basis and [ z k ]is complemented in L P ,  

where zk  = 2,tMkhifor all k .  
(The hLi'sare as defined preceding Scholium 1.6.) This is enough to prove the 
theorem, for we simply let b k= X i  tMkQkhii(i)for all k ;  then ( b k )is the desired 
block basic sequence equivalent to the Haar basis with [ b k ]complemented. 

We pass now to the details. Let P, be the natural projection from Y onto Y,. 
More generally, for F a subset of N ,  we let P, = 2,,,PI. Also, we let R ,  = I -
27=,Pi ( = P(,, ,,). We first draw a consequence from our assumption that no Y,  
contains a complemented isomorph of L P .  

SUBLEMMA1. For each n ,  let 

I = { i E N :  hZUR, h i ,> i for infinitely many integers j } 

Let E ,  = { t :  t belongs to the support of h,  for infinitely many i E I } . Then 
p (E , )  = 1 (where p denotes Lebesgue measure). 
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Indeed, let L = {i  EN: h,*iUP,l,nlhii m i for infinitely many integers j); 
then I U L = N. 

Hence E, U EL = [O, 11. So if p(E,) < 1, p(EL) > 0. But then T = UP,,, ,,I 
satisfies the hypotheses of Scholium 1.7. Hence there is a subspace Z of Lp(12), 
with Z isomorphic to LP  and TZ complemented in Lp(12). It follows easily that 
then P,,, 1 Z is an isomorphism with P, ,, Z complemented; that is, LP embeds 
as a complemented subspace of Y, @ . @  Y,,. Hence by Scholium 1.9, LP  
embeds as a complemented subspace of Yi for some i. 

We next need a simple but crucial observation. 

SUBLEMMA = 1, and 2. Let I C N, El be as in Sublernmu 1 with p(E,) 
S C [O,l] with S a finite union of disjoint left-closed dyadic intervals. Then there 
exists a J C I so that supp h, n supp h, = 0 for all i # 1, i, 1 E J, with S 3 

U i s  ~ s u p phi and S - U i ,  ~ s u p phi of measure wro. 

Proof: It suffices to prove the result for S equal to a leftclosed dyadic 
interval. Now any two Haar functions either have disjoint supports or the support 
of one is contained in that of the other. Moreover, for all but finitely many i E I ,  
supp h, C S or supp hi f l  S = 0.  Hence S differs from U {supp hi: supp hi C S, 
j E I )  by a measure-zero set. Now simply let J = { j E I: supp h, C S and there is 
no 1 E I with supp h i s  supp h, C S) . 

We now choose M,, M,, . . . disjoint finite subsets of N, a map j :  U ,P",,M,+ N, 
and 1= m, < m,< m,, . . . with the following properties: 

A. For each k ,  the hi's for i EMk are disjointly supported. Set z, = Ei EMkhi. 
Then (z,) satisfies the hypotheses of Scholium 1.11. 

'a Let Qk = P[n,k_,,n ~ dfor all k. Then (UQkhii(i))i E M k ,  k EAT is essentially 
disjoint and h,*i(i,UQkhii(i, > i for all i E M,, k EN. 

Having accomplished this, we set b, = Ei E,kQkhii(i, for all k. Then by B, 
(b,) is a block basic sequence of the Y,'s. 

By Scholium 1.4, 

where "- " denotes equivalence of basic sequences; the last equivalence follows 
from Scholium 1.6, i.e., the unconditionality of the Haar basis. Hence by the 
definitions of (b,) and ( z , ) ,  (b,) is equivalent to (z,) which is equivalent to 
(h,), the Haar basis, by Scholium 1.11. Also, since [zk]  is complemented in LP 
by 1.11, [b,] is complemented in [Qkhii(i))i tMk,kEN Againby (1.12). by 
Scholium 1.4, [Qkhii(i)]iEMk,kE, is complemented in Y, hence also [b,] is 
complemented in Y. 

It remains now to choose the Mi's, mi's and map j. To insure B, we shall also 
choose a sequence ,,of disjointly finitely supported elements of LP(E2) 



(disjointly supported with respect to the basis (h,,)) so that 

Q k ( - A 1 1<- forallk. 

To start, we let M, = (1) and i(1) = 1. Thus z, = 1; we also set f,= hll. 
Then hll  = Uhll = limn,, UPl,, h,,. So it is obvious that we can choose 
m l >  1 such that IIUP,l,ml,hll- hl11 <i;hence h:,UP,, , , ,] h , , > i .  Thus, the 
first step is essentially trivial. 

Now suppose 1 2 1 ,  M,,..., Mi, m l < . . . < m , ,  j: uI , ,M,-+N and 
(f;)ltMk,15k51 = for all i ,  1 I i I 1.have been chosen. We set z i  Xi.,,hi 

Let 1Ik 5 1 be the unique integer and a the unique choice of f1so that 
supp h l+ l  = [h, = a] .Let S = [z, = a] .Set n = m, and let I be as in Sublemma 
1. Since S is a finite union of disjoint leftclosed dyadic intervals, by Sublemma 2 
we may choose a finite set Mi+, C I, disjoint from U f = , ~ , ,so that the h,'s for 
i E MI+, are disjointly supported with supp hi C S for i E MI+, and 

(where ti= 1/21' for all i ) . At this point, we have that zl+, = 2,.MlL,h, satisfies 
the conditions of Scholium 1.11. 

By the definition of I, for each i E MI+, there is an infinite set J, with 

h;,UR,hli>k forall ~ E J ,  

Now (UR,h,,)?=, is a weakly null sequence; hence it follows that we may choose 
j: M,-,, + N and disjointly finitely supported elements (A)i with supports 
(relative to the h,,'s) disjoint from those of {A: i E Uf = ,M,), so that 

At last, since R,,g = limk,,Plm,,k,g for any g E Lp(12), we may choose an 
ml+, > ml so that setting Q,+i = (1.13) holds for k 1 + 1and also P l m I , m I c l ) ~  = 

This completes the construction of the Mi's, mi's and map j. Since (1.12) 
holds, A and B hold; thus the proof is complete. 
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2. The local LP-index 

Our object in this section is to construct the local LP-index and verify its 
properties, then apply it to the RE'S defined in the introduction. The basic 
theorem is 2.1 of the introduction, which we recall here. 

THEOREM2.1. For each 15 p 5 oo and separable Banuch space B, there 
exists an ordinal number hp(B) 5 w,, the local LP-index of B, so that 

(a) hp(B) < o, if and only if LPr, B and p < oo or C([O,l]) r, B and 
p = co,and 

(b) If X is a Banuch space such that X -t B, then hp(X) 5 hp(B). 

The formal definition of the index requires some preliminary formulations 
(Proposition 2.2 and Definition 1). The index is given in Definition 2 and the 
"boundedness principle" Theorem 2.l(a) is established in Proposition 2.3, by use 
of an evident but crucial permanence property of well-founded relations (Lemma 
2.4). Theorem 2.l(b) is then quickly obtained, after which we give a general 
concatenation lemma (Lemma 2.5) which shows that if hp(B) > a then hp(B @ 

B), > cw + 1. We then resume our discussion of the RE'S, giving the formal 
definitions of independent and disjoint sums in LP, and of the RE'S themselves in 
Definition 3. We show in Theorem 2.6 that hp(RP,) 2 a + 1 and LP r, RP, in 
Proposition 2.7, thus completing parts (1) and (2) of Theorem B of the introduc- 
tion. Finally, we establish in Proposition 2.8 that the RE'S have unconditional 
bases for all 1 < p < oo,cw < w,. This is false for p = 1; see the remarks at the 
end of this section. 

Before formally defining the index and establishing its properties, we begin 
with some intuitive comments. We may think of LPIO,11 as given by an 
increasing sequence (En)  of spaces with E, isometric to 11"for all n, where En+,  
is obtained from En by "splitting" each element of the natural basis for En in 
two. Thus, we let 

etc. 

Now a Banach space B contains an isomorph of LP provided it contains an 
increasing sequence (F,) of finite dimensional spaces which "look like" the En's. 
We may interpret the natural basis for En as an element e, of ( L P ) ~ ~  (i.e., a 
function from D, to LP)  rather than as a 2"-tuple of vectors, where Dn denotes 
the set of all n-tuples of 0's and 1's. Suppose Fn = [u,(x): x E Dn] with u, E BDn 



for all n. Then (F,) looks like (En)  provided 

and {u,(x): x E D,) is uniformly equivalent to the lgn basis. Then with 6 > 0 
given, we can introduce a partial order on a subset of U,",,BDn so that B 
contains a l/&isomorph of LP  provided the partially ordered set has an infinite 
linearly ordered subset. 

We now introduce the needed formal definitions and notation. Let 62 denote 
the set of all finite sequences of 0's and 1's. That is, O2 = U,",, Dn where 
Dn = {(tl , ..., t,): t, = 0 or 1 for all i}. Let B be a separable Banach space; if 
u E B", let 1 u /  = k if u E Dk. (We shall refer to 1 u 1 as the rank of u.) 

Since D, is the set consisting of the empty sequence, BDo can be identified 
with B itself. Now fix p, 15 p 5 co.For u, v E B", we set u < v provided 
J u J< J u J  and 

(2.1) u ( x ) = ~ - ~ / P2 v ( x , r )  forall X E D , , , ,  where k =  1 0 1  - lul. 
TED^ 

It is evident that < is indeed a partial order on B " ~ .  Now fix 6,O < S 5 1, and let 
E' denote the set of all u E B" so that 

for all c E R ~ . ,where / u / = n. (If p = oo, we replace (2, / c(x)/P)) ' /P by 
max{Ic(x)/: x E D,). 

For simplicity of notation, we set B" = E; thus the rank-n elements of B" 
simply correspond to the 2"-tuples of B that are isometrically equivalent to the 
usual basis for 1;". The reader may now readily establish the following result: 
(The case p = oo is obtained by working with C(A), A the Cantor set, rather 
than C([O, I]).) 

PROPOSITION = oo) if (and only if) 2.2. LP9 B (resp. C([O, 11) -t B if p 
there exist 0 < 6 5 1and elements u,, u,, . . . in E' with u, < u,,, for all n.  

An equivalent formulation: LP ~t B if and only if every nonempty subset of -as a maximal element with respect to < . In the language of logicians, "< " 
is a well-founded relation on B'. We now follow a time-honored procedure (in 
logic!) to determine the "depth" of < ; we successively erase the maximal 
elements until arriving at the empty set. 
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Definition 1. Set Hi(  B )  = g'. Suppose P is a n  ordinal > 0 and H:( B )  has 
been defined for all a < P.  I f  /3 = a + 1, let 

H ~ ( B ) ={ ~ E H , ~ ( B ) :  a c H : ( B )  u < v ) .there isa  wi th  

I f  /3 is a limit ordinal, let H;( B )  = fl H:( B) .  

We note in passing that the classes H:(B)  are all "subtrees" of B'. That is, if 
v E H:(B),  u E E' and u < v ,  then u E H:(B). 

Since the H:'s decrease by definition, they must become stationary after 
some point, that is, H:( B )  = H:+,( B )  for some y. 

Definition 2. Let a denote the least ordinal y such that H:(B) = H:+,(B). 
I f  H: (B)  = 0 ,set h p ( 6 ,  B )  = a. I f  H:(B)  # 0 ,set hp (6 ,  B )  = a,. Finally, set 

h p ( B )= sups,ohp(63 B ) .  

As mentioned in the introduction, we call h p ( B )  the local LP-index of the 
Banach space B. 

Suppose L P~t B. Then Proposition 2.1 yields that H: = 0 where a = 

h p ( 6 ,  B ) .  Evidently if q < 6 ,  then H ; ( B )  3 H:(B)  for any y,  hence h p ( q ,  B )  2 

h p ( 6 ,  B ) .  Thus h p ( B )= lim6,,hp(6, B ) .  It is now evident that to establish 
Theorem 2.l(a) ,we need only prove the following: 

PROPOSITION2.3. For all separable B and 0 < 6 5 1, h p ( 6 ,  B )  < w,  pro- 
vided L P  ~t B ( r e v .  C[(O, l ) ]~t B i f  p = m). 

Although we are mainly interested in isomorphic invariants, it is worth 
noting that L P is isometric to a subspace of B if and only if h p ( l ,  B )  = w ,  (resp. 
B is isometrically universal if and only if h,(l, B )  = a , ) .  

A general boundedness principle (see [8]and the discussion in [ 3 ] )asserts 
that every well-founded analytic relation has index bounded by a countable 
ordinal. Proposition 2.2 means that < is a well-founded relation on B', and it is 
easily seen that < is analytic. Rather than appealing to a general principle, we 
prefer to give a direct proof based on simple though fundamental ideas concern- 
ing well-founded relations. A relation R on a set X is said to be well-founded 
provided there do not exist x,, x,, . . . i n  X wi th  x,Rx,,, for all n. We define 
classes H,(R)  by 

H,,,(R) = { x  E H a ( R ) :  there exists y E H , ( R )  with x R y )  

and H a ( R )= nH D ( R )  
p<a 



if a is a limit ordinal. If R is well-founded, there exists a least ordinal a ,  denoted 
by h(R), with H,(R) = 0.  

The reader may now easily establish the following crucial permanence 
property: 

LEMMA2.4. Let R and R' be well-founded relations on X and X' respec- 
tively and let r: X -+ X' be an order-preserving m a p .  That is, if xRy, then 
(rx)R'(ry). Then h(R) 5 h(R'). In fact, for all ordinals a ,  r(H,(R)) C H,(R'). 

Evidently every countable well-founded relation R has bounded index h(R); 
i.e, h(R) < a,. Thus, if we assume LP Y, B, to establish the boundedness of 
hp(6, B) it suffices to exhibit an order-preserving map r between and a 
countable set g: endowed with a well-founded relation R. Let B, be a countable 
dense subset of B and B: denote the set of all u E B: so that 

for all c E R~.,where lul = n. Let q, = 6 4 ( k + 1 '  for all k, and define R on B: 
by uRu provided lul = n,Iu(  = n + k with k L 1and 

(2.4) ( - 2 - c u(* ,Y)I l sqn  for all x E D,. 
y t D k  

Let us check that R is well-founded. Suppose the contrary; let u,, u,, . . . be 
i n ~ ~ w i t h u , ~ u , , , f o r a l l n .Let k <  l < m , l e t r  = ( u , ( , s =  ( u 1 ( a n d t= IunlI. 
Let a = s - r and b = t - s. By (2.4), we have 

for all x E D,, y E D,. Then 

5 2 " " / ~
V $  -== - gsvs for all x E Dr. 

Since 2"qn + 0 as n + co,it follows from (2.6) and the completeness of B that 
we may define an element C, E B' by C,(x) 2 " / p Z y  t D o ~ l ( ~ .  = lim,-, y) for all 
X E  Dr. Then if we fix 1 > k, 

= 2-"/P lim 2-"P 2 u,,(x, y, z )  = 2-"/' 2 U,(X, y ) ;  
m + x  


Y E D ,  ZED, Y t D,  
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that is, iik< El. Finally, (2.4) yields that 

I E x )  - u k ( x )5 q for all x E Dr. 

It follows that (u,(x)),,,, is uniformly equivalent to the usual 1; basis, 
whence L~- B (by Proposition 2.2). (I* fact i i k / 3  < i i k+ , /3 and G k / 3 E BS/12 

for all k. )  Having established that R is well-founded, it remains to define the 
order preserving map 7.  Set E,= 6 . 8 p ( k + 1 'for all k .  For each k,  x t D, and 
u E B8 with lul = k ,  choose u ( x )E Bo with I l  u ( x )- u(x)ll 5 E,. Then for all 
c E RDk, 

[ a - 2 k E k ~ j  ~ ( ~ ) I I: ~ ( x ) u ( X /c I P C ~ ) I ~ 5 ( 1  + 2 k E k ) /c I C ( X ) I P ) ~ ' ~ .  
xcDk 

Since 2k&k5 6 / 2  5 1, we have that u E @. Now set r u  = u. We need only 
verify that r is an order-preserving map. Let ( u ( = k ,  ( u ( = k + 1 and suppose 
u < v .  Then 

r u ( x )- 2 c 7u(*.  y)ll 
Y €Dl 

u(x)II + 2 ' "  ~ ( x ,1 1 1  r u ( x )- 1 1  7 0 ( x ,Y )  - Y 111 
Y C D ,  

I ek + 2'tk+/ qk for all x E D k ;  

thus the proof of Proposition 2.3 is complete. 

We may now easily complete the proof of Theorem 2.1. Let us suppose that 
X =+ B and L PY=B. We may choose an q > 0 and a linear map T : X -+ B so that 

(2.7) q l lxI I I I ITxII5IIxII  forall x t X .  


Now define 7:  xu'- B-' by ( r u ) ( t )= T ( u ( t ) ) for all u t x", t  t Dl,,l .  The 

linearity of T then implies that r is order preserving. Finally, fix 0 < 6 5 1 and 
suppose u t X8. Then by (2.7),for all c E R~ 

That is, r u  E B"" Hence b y  Lemma 2.4, 

h p ( 6 ,  X )  5 h p ( q 6 ,  B ) ,  whence h p ( X )= lim h p ( 6 ,X )
6-0 

5 lim h p ( q 6 ,  B )  = h p ( B ) .
6-0 

This completes the proof of Theorem 2.1. 



Before passing to the application of the local LP-index to the RE'S given in 
the introduction, we need a general concatenation lemma. The lemma implies 
that if h P ( B )> a ,  then h p ( B@ B ) ,  > a + 1. 

LEMMA2.5. Let B be a separable Banach space, 0 < 6 f 1 and a < a,.Let 
e t H , ~ ( B ) .Let E be the element of ( B  @ B): defined by  E( t )  = 2 " ~ e ( t )@ e ( t )  
for all t t D,.,. Then E t H:+,((B @ B),).  

Proof: Let re be the element of ( B  @ B ) ;  defined by 

r e ( O , t ) = e ( t ) @ O  and r e ( l , t ) = O @ e ( t )  forall t € D C .  

Then we have that E < re. (Thus if k = 1 el, k + 1 = 1 re I and re is obtained by 
taking the two natural copies of e in B. The picture is as follows: 

We need only prove that re E H:(B @ B ) p .  We first check that 
re E ( B  @ B):. This is an evident consequence of the equalities 

for all c E R D k - 1  where k = lei. 
We now prove the statement: 

e E H : ( B )  =, re E H ; ( B  @ B ) ,  

by induction on a. The case a = 0 is evident. Suppose a > 0 and the statement 
is proved for all y < a. Then if a is a limit ordinal, e E HE(B) * e t H:(B) for 
all y < a * re E H:(B @ B ) ,  for all y < a by the induction hypothesis =, re t 
HE(B @ B),, Now suppose a = P + 1. By definition, there exists a d E H$B)  
with e < d .  By the "sub-tree" property mentioned after the definition of the 
H E  's, we may assume that I d 1 = 1 e 1 + 1. By the induction hypothesis, we have 
that rd E H ~ ( B@ B),. Thus, we need only verify that re < r d ,  for by the 
sub-tree property, it then follows that re is a non-maximal element of Hi( B @ B),. 
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Letting t E Diet ,we have that 

and similarly (re)( l ,  t )  = ((rd)( l ,  t ,0) + rd(1, t ,  1))/2llp. Hence re(s) 
(rd(s,O) + rd(s, 1))/2l/p for all s E D e + , ,  so re < rd and the lemma is proved. 

We are now prepared for the precise definition of the spaces RP, and the 
verification of parts (1)and (2) of Theorem B of the introduction. By a "space of 
random variables" we mean a linear subspace of Lo(p) for some probability 
space (Q, S ,  p); Lo(p) denotes the space of all (equivalence classes of) real-valued 
measurable functions defined on Q. Given a random variable x defined on Q, 
dist x denotes the probability measure defined on the Bore1 subsets of the reds by 
dist x(S) = p{W: X( a )  E S) for all S E S. Given spaces of random variables X, Y 
on possibly different probability spaces, we say X and Y are distributionally 
isomorphic if there exists a linear bijection T: X -+ Y so that dist Tx = dist x for 
all x E X. It is not difficult to see that given such a map T, there exist 
a-subalgebras @ and 3 of the measurable sets so that x E X ((resp. y E Y) is 
&measurable) (resp. 93 measurable) and a map f:Lo(@)-+ Lo($) extending T. 
Of course, a distributional isomorphism preserves LP-norms for all 0 < p 5 co.It 
is important for the inductive definition of the RE'S that they are "distribution- 
ally presented"; i.e. the isometric Banach space structure itself is not sufficient to 
define the family. 

Given B a (closed linear) subspace of LP(p)  for some probability space 
( a ,  S,  p), we let the "LPdisioint sum", (B @ B),, denote a space of random 
variables distributionally isomorphic to the subspace of Q X ( 0 , l )  defined as 

where, of course, (0 , l )  is endowed with the fair probability assigning mass to 
each 0 and 1. 

Given B,, B,, . . . subspaces of LP(Q), we define the LP-independent sum of 
the B,'s as follows: Let pN denote the product probability measure on (QN, SN); 
for each i, let 

That is, 6 is simply a "copy" of Bi depending only on the i-th coordinate. Then 

( 2Bi ) Ind, p 3 the LP-independent sum of the Bi's, denotes any space of random 
variables distributionally isomorphic to the closed linear span of the 6 ' s  in 
L P ( ~ " ) .  

These notions may be "intrinsically" expressed as follows: Given B, a space 
of random variables Y on ( a ,  S,p) is distributionally isomorphic to ( B  @ B), 



provided there exist sets Si E S with p(Si) = 4 ( i  = 1,2), Si n S, = 0 and 
subspaces X i  of LP(2p1S n Si)  each distributionally isomorphic to B, so that 
Y = X ,  + X ,  (where for x E Xi,  we regard x as a function on Q ,  supported on 
Si). Given B,, B,, . . . , then Y is distributionally isomorphic to ( 2Bi) ,,,, ,provided 
there exist independent a-subalgebras @,, @,, . . . of S and spaces of random 
variables &, g,,. . , with Y equal to the closed linear span of the 6 ' s  in L P ( p ) ,SO 

that for each i ,  every b E B is @, measurable and B ,  regarded as a subspace of 
L P ( p1 @,),is distributionally isomorphic to B,. 

It is worth mentioning that if /bdp = 0 for all i and b E B,, (EB,)Ind,  has a 
natural unconditional Schauder decomposition, 6,&,. . . in our above discus- 
sion. However if 1 E Bi for all i ,  the independent sun1 is not even a direct sum. In 
this case, we simply let Bo = { b E B,: /bdp = 0). Then ( EBi),,,, = ( 2BO)
+ [ l ]( [ I ]denotes the space of constant functions on Q ) .We shall only deal with 
separable spaces of random variables; any such space is, of course, distribution- 
ally isomorphic to a space on [O,l]under Lebesgue measure. 

Definition 3. Let 1 5 p 5 m.Let R t  = [I]. Let /3 be an ordinal with 
0 < p < w, and suppose RP, has been defined for all a < P. If Lf = a + 1, let 
R Pf l  = (RE@ If P is a limit ordinal, let RF = (2,,pRP,)Ind,p. 

We may now easily complete the proof of part ( 2 )  of Theorem B. We let 
H,(RP,) = H,'(RP,). 

THEOREM2.6. Let 1 Ip Ioo,O 5 a < w,. Then 1 E H,(RP,). 

Since H,(RP,) # 0 ,we thus obtain that hp(RP,)2 h,(l, RP,) 2 a + 1. We 
prove 2.6 by transfinite induction. The assertion is trivial for a = 0. Suppose 
0 < a and the statement has been proved for all p < a. If a = P + 1, let us take 
the specific representation of R ,  = ( R g@ R P ) ,  given above. The element 1 of 
Lemma 2.5 is then precisely the function 1; thus 1 E H,(RP,) = Hp+l(Rf;@ R;) ,  
by 2.5. Now suppose a is a limit ordinal. Fix P < a. It is evident that there exists 
a subspace f f f ;  of RP, and a distributional isomorphism Tp: R; + RE.Thus Tpmay 
be regarded as an isometry of Rf;into RP, such that Tpl = 1. Define r:  -
by 

( r u ) ( x )= T p u ( x )  for all u E ( R ; ) " ,  x E D,,I 

It is evident that r is order preserving with r1 = 1. Hence by Lemma 2.4, 
1 = r1 E Hp(RP,).Since this holds for all P < a,  1 E H,(RP,), completing the 
proof of Theorem 2.6. 

We do not require the local LP-index to complete the proof of Theorem 

B(1). 



214 J. BOURGAIN, H. P. ROSENTHAL, G. SCHECHTMAN 

PROPOSITION2.7. Let 0 5 a < o,. Then L P  ~t RP, for 1 Ip < m. Moreover 
R', has the Radon-Nikodym property and R z  has both the Radon-Nikodym 
property and the Schur property. 

Proof. Let 0 < a < o, and suppose the result proved for all y < a. If 
a = y + 1, then if LP - RE, LP  GRP, by Theorem 9.1 of 1131; hence LP~ ( R Y  
@Re) ,* LPGR", by Theorem 1.1, for 1 < p < rxr.  The assertions for p = 1 
and p = m are trivial in this case. If a is a limit ordinal, let y,, y2,. . . be an 
enumeration of the ordinals y < a and for each j ,  let Y, be the mean-zero 
elements of R:. Now if LP v RE, 1 < p < rxr ,  LP  & ( Z Y , ) ~ ~ ~ ,  and, of course, 

L P  59 Y, for all i. Let (7)be the natural unconditional Schauder decomposition 
for (EY,),,,, ,.Then by Theorem 1.1 there is a block basic sequence ( z , )of (?) 
equivalent to the Haar basis of LP. In particular L P  is isomorphic to [ z i ] .Now 
( z , )  is a sequence of independent mean-zero random variables. It follows from 
the results of [19]and 1201 (see also [23])that LP~t [ z i ] .Let us see briefly why 
this is so. It is shown in [20]that there is a certain complemented subspace X ,  of 
L P ,spanned by a sequence of independent mean-zero variables, so that [ z , ]- X ,  
for any sequence of independent mean-zero variables ( 2 , ) ;  moreover X,* is 
isomorphic to X ,  where l / p  + l / q  = 1. Suppose p > 2. Then LP- [ z i ]implies 
( 1 2 @  12@ . . . ) p  X p .  But it is also shown in [19] that X ,  - 1 2 @  l P ,  hence 
( 1 2 @  12@ . . .), - 1 2 @  l p ,  proved impossible in [19].If 1 < p < 2 and L P=+ [ z , ] ,  
then LP=+ X p  and hence by Theorem 9.1 of 1131, L p  =5X ,  whence LY Lxq  
where l / p  + l / q  = 1, already proved impossible. (We have, of course, shown 
that ( 1  @ 1 @ . . .), v [ x , ]  is impossible for p > 2; the fact that this is impossible 
for p < 2 follows by the reproducibility of the natural basis for ( 1 2 @  12@ . . .), 
and Proposition 2 of [23].) 

Proposition 2.7 is now proved for 1 < p < x, and, of course, the second 
assertion implies the first for the case p = 1. For any p ,  we have that a subspace 
of codimensiorl one of RP, equals (CY,),,,,,,, where each Y, is isometric to a 
codimension-one subspace of Ry for some y < a.  Now unconditiorlal decomposi- 
tions in L' are boundedly complete. If Z = [Z,]  where Z, is a subspace of Z with 
the RNP for all i and ( 2 , )is a boundedly complete Schauder decomposition of Z,  
then Z has the RNP. Hence R', has the RNP. Finally, (21;),,,,,,,is isomorphic to 
( C  @ Y,),I;hence again R z  has the RNP and also the Schur property since all of 
its summands have this property. 

Remark: As observed at the end of the next section, RP, is actually isometric 
to a separable dual space for p = 1 or m. Of course, the results of this section 
complete the proof of the proposition of the introduction; also we obtain that if B 
is separable and R z  -,B for all a < o l ,C([O,11) v B. 



We conclude Section 2 with a proof that the RP, 'S have unconditional bases 
for all 1< p < co,a < a,.  (This is false for p = 1; see the remark at the end.) 

PROPOSITION a < w,. There exists a sequence (ui)P=, so that 2.8. Let w I 
u t  is ( 1,0, -1)-ualued for all k ,  ( u t  ) is a martingale difference sequence, and 
the closed linear span of (u;) in LP equals RP, for all 15 p 5 co.Consequently 
(u;) is an unconditional basis for RP, for all 1< p < oo. 

R m r k s .  1. A sequence (u i )  is a martingale difference sequence provided 
/,uidp = 0 for all measurable sets A depending on {u,, . . . ,ui-,), j = 2,3,.. . . 

2. It is a theorem of Burkholder [4] that martingale difference sequences in 
LP  are unconditional, for 1< p < oo. 

3. We do not know the answer to the following questions: Let (ui)  be a 
(1,0, -1)-valued martingale difference sequence and 1< p < oo, p # 2. Is 
[ui], complemented in LP? IS [ui] an CP-space (an C,-space)? 

Proof of Proposition 2.7. We shall, in fact, show the existence of ( u i )  for all 
a ,  finite, of course, when a < a ,  with u: = 1. So, the result trivially holds for 
a = 0. Suppose the result proved for all 0 5 a <: 0.If = a + 1, let d j = u;+, 
for j = 1,2,.. . . Regarding RP, as a subspace of LP( a ,  S,p ) ,  we regard RF as a 
subspace of LV(Q X (0 , l ) ) .  It is then evident that defining r by 

r ( w , ~ ) = l  if E = O ,  r i a , & ) = - 1  if & = I ,  

d f ( w , S ) = d i ( w )  if S = E  and d ~ ( w , S ) = 0  if a # & ,  
1, r, d :, d i, d i,d :, . . . is a sequence whose closed linear span in LP  equals RF for 
all 1 5 p I:oo, and, of course, this sequence is (l,O, -1)-valued since the 
original sequence ( d l )  is. Let us check that this sequence is indeed a martingale 
difference sequence (m.d.s.). Evidently (1, r )  is an m.d.s. Fix n 2 0 and suppose 
it has been verified that 1, r, d :, d i, . . . ,d :, d f, is an m.d.s. Let W, denote the 
trivial algebra in a; for 1I:j 5 n,  let Q1 denote the algebra generated by 
c l , ,  . . . ,dl .  Suppose S is in the algebra generated by 1, r, . . . ,d :, d f,. Then it is 
evident that there exist sets A, E W, so that S = A ,  X (0)  U A, X (1) .  Then 
/$d ,?, , = 1/2/,,d ,+ , = 0 since 1, d ,,. . . ,d ,, + ,is an m.d.s. Suppose S is in the 
algebra of sets generated by 1,r, . . . ,d ,?,d A ,  d ,O + ,.Then it is evident that because 
d:,, vanishes on X (11, there is a set A in W,,with S n (a X (1) )  = A X (1 ) .  
Hence /,d!+, = 1/21,d,+, = 0. 

Now suppose /3 is a limit ordinal. Let y,, y,, . . . be an enumeration of the 
ordinals less than 0.Assuming that p is an atomless probability measure, we may 
choose independent a-subalgebras of S,W ,,@,, . . . and for each i ,  a sequence 
( d,,); ,of ( 1,0, -1)-valued @,-measurable fimctions so that 1,d ,,, c l , , ,  . . . is an 
m.d.s, with closed linear span in LP  distributionally isomorphic to Re, for all 
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1 5 p 5 m. Then evidently the closed linear span in L p of { d ,,: 1'a i, i < m) 
U (1) is distributionally isomorphic to RF for all 1a p a m. We need only 
show that this set is an m.d.s. in a certain order. Of course, all the dti 's have 
mean zero; so we need only show that there is a bijection r: N + N X N so that 
(dT(i,)F=lis an m.d.s.; the11 also l ,d,( , , ,dT( ,,,... is an m.d.s. Order N X N by 
( i , k )  < ( 1 ,  m) provided i = 1 and k < m. Let r be a bijection so that r- '  is 
order preserving; that is, if r ( i )  < r( j )  then i < j. Fix n 2 1 and let 8 equal the 
algebra of sets generated by d,(,,, . . . ,d,(,,. Let 62 equal the algebra of sets 
generated by 

Let 91equal the algebra of sets generated by 

{dr(,,:r(1) # r ( n  + 1) and 1 5 1 5  n )  

Then W and 3 are independent, and 8 is generated by 6? and 3. Moreover, 
letting r ( n  + 1) = (i ,  j) we have, since r p l  is order-preserving, that W is con- 
tained in X, the algebra generated by {dl / :  1 a 1 < j) and 91is, in fact, 
independent of &, . Now to show that /,d,(,+ ,,= 0 for all G E 9,it suffices to 
show that /A,,d,(n+l, = 0 for all A E 62, B E 93. Fixing such an A and B, 
/AnBd,(n+l,= /Adr(n+l,p(B), by the independence of Q and 3. In turn, 

= /Adl,= 0 since A E X and (d,k)p=l is an m.d.s. This completes the 
proof. 

Remark. It is proved in [24] that the class of subspaces of L1 with an 
unconditional basis has a universal element. Hence there must exist an a so that 
R1, has no unconditional basis. It would be interesting to find the least such a 
explicitly. 

3. Tree subspaces of LP 

The main object of this section is to demonstrate that the RE'S of the 
introduction and Section 2 are all complemented in LPfor 1< p < m. Let 9be 
the tree of all finite sequences of 0's and 1's; we obtain from Lemma 3.6 and 
Lemma 3.9 that RP, is isometric to a contractively complemented subspace of X &  
for all 1 5 p 5 oo (where X ;  is as defined in the introduction). 

Thus X & is the "natural" universal space for the RP,'s. The meat of the proof 
that the RE'S are complemented is contained in the demonstration that X $  is 
complemented, Theorem 3.1. The needed inequalities used directly in the proof 
are given as Scholium 3.4 and Scholium 3.5, after which the proof of Theorem 



3.1 is completed. An alternate description of the X;'s as translation-invariant 
subspaces of LP({O, 11.') is given at the end of the section. 

We recall that 9denotes the set of all finite sequences of 0's and 1's; D, 
denotes all such sequences of length k; thus 9= Ur=oDk.  We now use the 
natural ordering on 9;for a ,  6 E 9,a < p provided, say a = (a , , .  .., a,), 
/3 = (Dl,...,p,,), then k < m and a , =  p, for all 1 i i Ik .  A finite branch in Vi! 
is simply the set of predecessors of some element of 9.That is, the finite branch 
corresponding to a = ( a , ,. . .,a k )  is simply the set of all (a , , . . . ,a , )  for O 5 i 5 k.  

An infinite branch is then defined as a subset of 9order-isomorphic to N in 
its natural ordering. Of course, an infinite branch corresponds uniquely to an 
infinite sequence (a,)?=, of 0's and 1's; the branch then equals the set of all 
( a , , . . .,a , )  for all 0 I j .  

Now our aim is to show that the RE'S are complemented in L? Of course, it 
suffices to work with LP({O,l)") rather than LP[O,l]. In fact, it is more 
convenient to work with LP{O, 1)'" We say that a measurable function f on 
(0,l) ' '  depends only on the coordinates F c9provided f(x)  = f(y)  for all x, 
y E {0,1)" with x(y) = y(y) for all y G F. Of course, we say a set S C (0,l)"-
depends only on F if X, does. 

We now anive at a crucial definition. 

Let 1 Ip a oo; let X& denote the closed linear span in LP{O, 1)'' over all 
finite branches r in L;j3 of all those measurable functions u;hich depend only on 
the coordinates of r. 

(It is trivial that one can replace "finite" by "infinite" in this definition, and 
arrive at the same space.) 

THEOREM3.1. X$ is complemented in LP{O, 1) ' for  all 1< p < oo. 

It is trivial that LP  is isometric to a contractively complemented subspace of 
X$. Hence in view of the Pelczynski decomposition method, Theorem 3.1 yields 
that X$ is isomorphic to LP, 1< p < oo. 

We require some theorems concerning martingales and conditional expecta- 
tions. For 62 a a-subalgebra of the measurable sets on a probability space, && 

denotes conditional expectation with respect to @. Let us now fix a probability 
space ( 5 2 ,  S, P). The next result is a special case of a result of Burkholder, Davis 
and Gundy [6]. 

LEMMA3.2. Let d?, C @, C . . . be a-subalgebras of S ,  and let f,,f,, . . . be 
non-negative measurable functions on 52. Then l12i&if; l l  i p ll2fi'l l  , for all 
1i p < co,where Fi = G$ for all j. 
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We present a simplified version of the proof in [ l l ] .  We first need the 

SUBLEMMA.Let a,, . . . ,a ,  be non-negatiue numbers and 1 5 p < oo. Then 

Proof: Let si = Xi=,ai with so = 0; 0 5 i 5 n.  Then, of course, so 5 s ,  5 s, 
I . . . I S , .  Thus 

since tP-' is increasing, proving the sublemma. 
To prove 3.2, fix n. We recall that by the definition of conditional expecta- 

tions, if g and f are non-negative measurable with g &-measurable, then 

Now fix n. Applying (3.1), we obtain immediately that 

2 Gif; 1 p 2 2 Gif; 1 G kf, pointwise. 
( j = 1  k=l \ i = l  

Integrating this inequality and applyirlg (3.2), we get 

by (3.2), since with k fixed, the fact that the algebras Giincrease implies that 
(8:=lGif;)p-l is &,-measurable. 

by Holder's inequality. 
Combining (3.4) and (3.5), we obtain 

proving Lemma 3.2. 



Let us say that a sequence ( g i )  of a-subalgebras of S is compatible if for all i 
and i, Wi c gi or Wi c Wi. It is evident that Lemma 3.2 holds for compatible 
sequences ( W i )  as well. Indeed, fix n and f,, . . . ,f ,non-negative measurable. Then 
the compatibility of the Wi7s implies that there is a permutation a of ( 1 , .. . ,n )  
with W,(,, c for all 1 5  i 5 i 5 n .  Hence 

LEMMA3.3. Let be a positive integer and 5 , ,  1 . .  , 5 ,  be a~subalgebras of 
S.Suppose there exist sequences ( a , ) ,  (&,), and (W,)of a-subalgebras with the 
following properties for all i ,  1 5 i 5 m .  

(a) Each sequence ( a , ) ,  (&,), and ( W,) is compatible. 
(b) G,,,, G,, and GJJr,commute. 
(c) 5 ,  = 3,n 2,n W,. 

Then I I P&c41f;I I ,a p3 I I Zf; I I for all non-negative measurable functions f,, . . . ,A,, 
l C p < o o .  

Proof: The assumption (b) implies that &,,&,-,&JJr, ,,,, &,,
 .L),, = by (c). 
Lemma 3.3 then follows by our receding remarks, i.e. applying ~ e k m a  3.2 
three times. 

Remark. Of course, the analogous result holds for algebras equal to the 
intersection of a finite number of "commuting" compatible algebras; we only 
have need of the case of three such intersections. However, it seems natural to 
pose the following question: Let W ,,W,, . . . be a-subalgebras of S.Under what 
(combinatorial) conditions on the W,'s, is it true that there exists a constant C, so 
that 1126, 6 l l  ,r C, IIC6 1 1 ,  for all non-negative measurable functions f,, f,, . . .,1 
5 p < o o .$ 

We now require an explicit order-preserving enumeration y of ~,r!.The 
enllmeration between { 1,.. . , 7 )  and U :=,, D, is as follows: 

In general, let n be a positive integer, and let 0 5 k and t , ,  . . . , t k  be the unique 
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choice of 0's and 1's so that 
k 


n = 2, + 2 
i = l  

(Thus the representation of n in dyadic notation is I t ,  . . . t,.) Let y( n )  = 

( t , ,  . . . ,t,). Then y: AT+ "3 is a bijection and y is order-preserving; that is, if 
y( i )  < y(j), then i < j. Now for each j, let 9,denote the family of all measurable 
subsets of {O,l)' depending only on the coordinates { u  E 9:u I y( j ) ) .  (That is, 
L81is the "branch" algebra of sets determined by y(j).) We have arrived at a 
crucial step in the proof of Theorem 3.1. 

SCHOLIUM3.4. 1 1 %  ?f ; 11 ,  a p' llT$ 11,  for all non-negative memurahle 
functions f,, f,, . . ., l  I p < x. 

Proof: Fix k and let m = 2, - 1. We shall show that the hypotheses of 
Lemma 3.3 are valid. For F a subset of q,let B ( F )  denote the a-algebra of 
measurable sets depending only on the coordinates F. It is evident that if A and 
B are subsets of 9 ,  then t;$,,,and t;,(,, commute. Of course, @(A)  n d ( B )  = 

W(A n B). If Yl = { u  E "3: u Iy( j ) ) ,  then, of course, 9,= W(Yl). 
First fix n with 2, 5 n < 2,- (thus y ( n )  is maximal in the partially ordered 

set ?', = {y( i ) :i 1 ~ n ) .  
Let 

Z , =  { u t  9 : u a y ( i )  f o r s o m e i w i t h 2 k i i n ) .  

Let W,,= f o r ~ o m e i w i t h n 5 i < 2 ~ + ~ } .{ u t 9 : u a  y ( i )  

For example, here is a picture, for k = 2, of Z, and WS: 

Then evidently the Z,,'s increase, the W,'s decrease, and 

(3.6) Y,, = Z,, f?W,, for all such n .  

Now for each 15 j 5 m, let X, = {y( i ) :  1 I i 5 j) and let ilj, = & ( X I ) .  
Finally, fix j, 15 j 5 m, and let n( j )  be such that y( i )  5 y(n( i ) )  and 2k 5 n ( i )  
< 2k'1. Thus y (n( j ) )  is a maximal element of our partially ordered set T,  
containing y( j ). 



Then evidently 

(3.7) Y , = Y  ,(,, n ~ , .  

We illustrate for the case k = 2, j = 3 and n ( j )  = 6. 

We thus have by (3.6) and (3.7) that Y, = Xi n Znti,n Wnti,. 
We now simply set 

%, = @ (z,(/,) and 

Thus the hypotheses of 3.3 are satisfied, so Scholium 3.4 is proved. 
We finally need the following crucial martingale theorem of Burkholder [4] 

SCHOLIUM3.5. Let C $73, C . . . be a-algebras, 1 < p < m, and let 
b l , .. . , b,,, . . . be functions in  L b o  that for all j, b, is 93,-measurable with 
I,,,b, = 0 i f  j > 1. There exists a constant K, depending only on p so that 

1 

We are now prepared for the 

Proof of  ?'heorem 3.1. As in the proof of Scholium 3.4, we let 9,denote the 
algebra of measurable sets in {0,1) ' depending only on the coordinates X, = { u  
E ~ 2 :u 5 y( j ) ) .  Also let Cd,, denote the trivial algebra. 

For each j 2 0, we let B, denote the set of all functions f which are 
bii,-measurable and 6 , f = 0 if j < 1. We let Yo = B,, ( =  the set of constant 
functions) and, for 15 

1 I 

j ,  k; = { f E B,: f is 3~,-measurable). Incidentally, (3.7) 
yields that (B,);,, is an unconditional Schauder decomposition of LP({O,1 )  '); in 
reality, it is simply the standard "dyadic martingale" decomposition of LP.We 
next verify that XI: equals [Y , ] ,the closed linear span of the Y,'s in L P .It is trivial 
that 1; C XI: for all i ,  hence [ Y, ] C X?. For the reverse inclusion, suppose n E N 
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is given and let x be %,,-measurable. Then 

and, of course, with 1 5 i 5 n , ( G  - GI,  ) x  E Bl. We need only verify that 
1 I 

( 6,,, - G ,)x is 6J,-measurable for all i with 1 i 5 n .  

If y( j )  and y ( n )  are not comparable with respect to the ordering of 02, then 
43, n = Bl ,n %,,. Hence since x is "?ill-measurable, ( 6 - 6, ) x  = 0. If 

1 1 

y( j ) and y( n ) are comparable, then y( i )  5 y( n ) since y is order-preserving. 
Then ~ : i i ~  ,. Indeed, if i i i and y ( i  ) 5 y( n ), then y( i )  and y( i )  must f? = 

be comparable, whence y( i )  5 y( j )  since y ' is order-preserving. Hence 'A,,n 
L811C ';il, so ( 6 ,  - G ,  ) x  = (G,  - G A  ) 6 > x  = (6 - .l,,)x, which 

1 1 1 - 1  ,i I I 

is ~'4,-measurabk Thus XY,= [ Y ~ ] . '  
We shall prove that orthogonal projection P onto X h i e l d s  a bounded linear 

projection onto X $  for all 1< p < x .  Since P is "self-adjoint", it suffices to 
consider the case p > 2. Let b E L"{O, 1)"). There exists a unique sequence ( h , )  
with h, E B, for all i so that h = C'",,bl. Then 

X 

(3.8) Ph = 2 Fibl, 
1=0 

the series converging in ~ ~ - n o n n .  hl =(We note that with i fixed, Gufil-FLl 
6;6, b = 0; hence 6?h1 indeed belongs to Y1;that is, 6, ( B, is the orthogonal 

I 1-1 1 
projection of B, onto Y,.) 

With n fixed, 

by Scholium 3.4 applied to -P 
2 

Hence I I  PI1 5 KE ( l3l2.This completes the proof of Theorem 3.1. 

Remurks. 1. We are applying Scholium 3.4 to the sequence ( b f )and bf is, 
of course, %j-measurable. The proof of 3.4 then yields the sharper estimate 
I I  P I I  _( p K : / 2 ;  only two intersections need be taken. 



2. It is possible to deduce Theorem 3.1 by using an earlier result due to 
E. Stein; namely, i f  @,,B 2 ,. . . are increasing a-algebras and f,, f, ,  . . . are 
arbitrary nzeasurahle frtnctions, then ll(2GL$,$1 2 )1 / 2  I , A I $1 2 

)
1 / 2  I1 ,for 

all 1 < p < co,where A, depends only on  p. (See Theorem 8, page 108 of [25].) 
The proof of Scholium 3.4 then yields that 

for all measurable functions f,, f,, . . . ,1< p < co.This allows one to prove 3.1 
for all 1 < p < co directly, without passing to the p < 2case by duality. The 
above remark about estimates, however, remains exactly the same, since, in fact, 
A, has order of magnitude p ' 1 2  as p - m. 

3 .  Our proof shows that X!$ has the following structure: there exist sub- 
algebras d,of %/ so that GL,- and &.,, , commute for all i 2 1 and B equals the 
closed linear span in L p  of' { f f is w'i-measurable and f E Bi,  j = 0 , 1 , 2 , .. ) 
where B = the @,i's satisfy the c o ~ ~ c l u s i o ~ ~  X$. Now given any such B, if of 
Lemma 3.3, i.e. the inequality of the remark following 3.3, then B is indeed 
complemented in L" for all 1 < p < co. 

4.  For f E L', let f = 2?=(,bi with hi E Bi for all i and set 1 1  f l l  =, , I  

lI(2h:)1'2 I ,;Hl .- { f E L1: I f I , < } Let XI: denote the closed linear span 
in H '  of the functions depending on the coordinates of some finite branch in q. 
The second-named author has shown that the above orthonormal projection is 
unbounded from H' onto x,';'(in fact, P: H 1  + L' is unbounded). This suggests 
that x!:' is uncomplemented in H1; perhaps it is true that x,':'is not isomorphic 
to a complemented subspace of H'. 

Now let T be a subset of 9.A subset T of T is called a branch of T if it 
contains the predecessors in T of all its elements; i.e. y E T,a E T and a < y = a 
E I',where "< " is the natural order on ~9.W e  define XF as the closed linear 
span in  L"0,l)' over all branches I- of  functions depending only on the 
coordinates of  T.We may and shall regard L"{O, 1 I T )  as equal to the subspace of 
L"0, 1)"' consisting of those measurable functions f depending only on T. 

LEMMA3.6. XF is a contractively complemented subspace of  X?+for all 
l r p < x .  

Proof: Let P = t;,,,,; i.e. P is conditional expectation with respect to the 
algebra of measurable sets depending only on the coordinates T. Now every 
finite branch of T is contained in a finite branch of 9.Indeed, let r be a finite 
non-empty branch of T and let m be its largest element; i.e. m E r and y 5 m for 
all y E r. Now let A = { d  E 9:d 5 m ) .  Hence A > r. Then if f depends only 
on T,f depends only on A; this proves XF C X$; evidently P 1 XF = I I XF. On the 
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other hand, let be a finite branch of 9.Then A n T is a branch of T. But if f 
depends only on A ,  Pf depends only on ,4 f? T, so Pf E X?. This proves 
PX$ = X?. Since I I  P 1 1  = 1, the lemma is proved. 

Now the subsets of 9 in their inherited order may be described in the 
following abstract way: A partially ordered set (T,  <) shall he called a tree 
provided it satisfies the fo1lou;ing properties: 

(a) The set of predecessors of an  element of T is finite and linearly ordered, 
(b) T is countable. 
(The more general definition used by logicians: (b) is not required and (a) is 

replaced by: the set of predecessors of an element is well-ordered. Thus, we are 
really just dealing with "countable trees of finite-ranked elements".) 

Of course, 9is a tree. So is 9(h7),the set of all finite sequences of positive 
integers, under the order ( t , , .  .., t ,)  < ( u , , .  . . ,u,,,) if k < nz, and t ,  = u ,  for all 
15 i 5 k .  Any subset of a tree is also a tree in its inherited order. Given a tree 
T, we again say that I- c T is a branch if r contains the set of predecessors (in 
T )  of all its elements. A tree T is said to be well-founded i f  it has no infinite 
branches. (Of course, a well-founded tree is a special case of a well-founded 
relation discussed in Section 2.) Given a tree T, we define X; in exactly the same 
way we did preceding Lemma 3.6. Evidently X f  is isometrically and distribution- 
ally determined by the order type of T. Now it is a standard rather simple result 
in logic that 4 ( N )  is order isomorphic to a subset of 9and every tree T is order 
isomorphic to a subset of 4 ( N ) .  That is, we have 

LEMMA3.7. Every tree is order isomorphic to a subset of  9. 

THEOREM3.8. For every tree T and p with 1 < p < x , XF is complemented 
i n  LP{O,1IT, 

Proof: By the preceding result, we may assume that T C 9;we regard X; 
as a subspace of X$ as in Lemma 3.6, and also Lp{O,l I T  as a subspace of 
Lp{O,1)"'. Then X$ is complemented in LP{O,1)" by Theorem 3.1. Thus the 
result follows immediately from 3.1 and Lemma 3.6. 

Remark. It is possible to give a direct proof of 3.8, without passing through 
the dyadic tree 9.In particular, if we let y,, y,, . . . be the distinct finite branches 
of T and for each i ,  let U, be the conditional expectation operator with respect to 
the algebra of sets depending only on the coordinates of yi (in (0 ,1ITof course), 
then we obtain again 



for all non-negative f i"~,  15 p < oo,and 

for all measurable A's, 1< p < oo,where CPdepends only on p, by using the 
result of Burkholder, Davis and Gundy [6] for the first inequality and that of 
Stein [25] for the second. The "purist" might thus prefer to cast this entire 
discussion in the language of "tree-martingales", that is, of martingales indexed 
by a partially ordered set. 

We now complete the proof of Theorem B, part (3) of the introduction. 

LEMMA 3.9. Let a < o,. There exists a well-founded tree Ta so that RP, is 
distributionally isomorphic to XFa, 1 Ip < w .  

Remark. It follows immediately that RP, is complemented in LP for all 
1 < p < oo and a < ol. 

Proof of 3.9. We establish the statement by induction on a. It trivially holds 
for a = 0. Suppose 0 < a and the result has been established for all y < a. If a is 
a successor ordinal, let y be such that y + 1 = a. We may, of course, assume that 
RP,= XFy. Let t B T, , set Ta = T, U { t } , and order Ta by { defined as follows: 

t <  u f o r a l l u ~ T , ; i f u , v ~ T , ,  

then u { a if and only if u < v, where "< '' is the order on T,. (Thus t is simply 
a "top" node introduced above all of T,, where u < v is visualized by "a is below 
u".) It is then trivial that Ta is also a well-founded tree. We must show that 
RP,= XF',. By definition, RP,= ( R y e  Ry)P.  Define ei E LP{O,I } ( ' )  by 

e 1 ( e ( t ) )= e ( t ) ,  e, = 1 - e l , fore E { 0 , 1 ) ( ' ) .  

Then 

(3.9) RP, = { b ,8 el + b, 8 e,: b, E RP, for i = 1 ,2 )  

where, of course, ( b ,8 e,)(s ,e )  = for s E e E i 1,2.bi(s)e,(e) ( 0 ,l ) T ~ ,  ( 0 ,l ) ( f i ,= 
Now let f be a function on ( 0 ,  which depends only on the coordinates of 

I-, a branch of Ta. Since Ty is nonempty, we can assume I- n T, = I- - { t ) is 
nonempty (by enlarging I- if necessary). Then, of course, I- n T, is a branch of 
Ty. We may then regard f as a function of two variables, s and e,  for s E {O,l}l'" 
and e E ( 0 ,I ) ( ' ) .  Set 

b l ( s )= f(s,O) and b,(s) = f ( s ,  1 )  for all s E ry. 
Then evidently b, depends only on I- n I-,; hence b,E XFY for i = 1,2 and 
f = b 1 8  el + b,8 e,. Thus by (3.9),we have shown XFa C RP,. On the other 
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hand, if A is a branch of T, and b depends only on A ,  b 63 e, depends only on 
A U { t ) ,a branch of T,; hence b 63 e, E X;" for i = 1,2. Thus in view of (3.9), 
XP = RP 

T" a'  
Now suppose that a is a limit ordinal. We may choose trees T,, such that 

Ry = X; for all y < a;  without loss of generality, we vuly assume thut T, n T,, 
I 

= 0 for all y # y '. W e  then set T, = U ,,,Ty. Letting "<, " be the order 
relation on T,,, we simply set <, = U Y < ,  < Y .  That is, for u ,  v E T,, u <,v if 
and only if u ,  v E T, for some y and u <,u.  ( T ,  may be visualized as simply 
setting the trees Ty "side-by-side".) It is evident that T, is well-founded since any 
branch of T, must be contained in Ty for some y < a. It is also clear that 

Indeed, suppose f depends only on r, r a branch of T,. Then as remarked above, 
r C T,, for some y < a;  thus f E X,P. On the other hand, if r is a branch of Ty for 
some y < a,  then r is already a branch of T,. Thus X;', = [X?"],,,. But the 
disjointness of the T,'s implies [ X ? " ],,, = [2,,,,X;,] ,,,,,, ,. Thus (3.10) holds and 
the proof is complete, since 

by definition. 

Renzarks and open problm~.  1. Let T be a tree. Then there exists a subset 
W T  of the Walsh functions so that X; = [ w ],, in L Pfor all 1 5 p 5 a.That 
is, X ;  is a closed translation invariant subspace of LP(G)  where G = (0 , l )" .  Let 
us see why this is so. Let ,8: N + T be a bijection; we then set 

Here is an alternate description: For each t E T ,  let r, E LP{O, be defined by 
rt(x) = ( - 1)""'. Then W Tequals the union over all branches r of the set of all 
finite products of Rademacher functions belonging to T;i.e. 

k 


w :  thereexis t rabranchandk,withw = IT rt fo r t ,,..., t , r  r 
i = l  ' 

Now if r is a finite branch, then by standard properties of the Walsh functions, 
the span of the set of all products of Rademacher functions belonging to r equals 
LP{O,l I r ;  hence we obtain [W,] = X;. In particular, RP, may thus be regarded 
as a closed translation invariant subspace of LP(G) for all a. By a result of F. 
Lust [18],if a translation-invariant subspace of LP(G)  has the RNP, it is isometric 
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to a dual space for p = 1 or co. Thus, RP, is isometric to a dual space for all a ,  
p = 1 or co. Consequently the proposition of the introduction may be 
strengthened as follows: Let C? denote the class of all subspaces of L1 that are 
isometric to a dual space and let B be separable and universal for C?. Then 
L' -t B. 

2. The following question was suggested by A. Pelczyriski: Let r be an 
infinite compact abelian group and 1< p < co, p # 2. Are there uncountably 
many non-isomorphic complemented translation-invariant subspaces of Lp(T)? 
What if T = II,the circle group? 

3. Let T be a well-founded tree. Is there an a so that X; is isomorphic to RP, 
f o r a l l l < p <  c o , p # 2 ?  

4. Let B be an C, space non-isomorphic to L \  11p < co. Is there an a so 
that B embeds in RP,? 

5. Are the RP, 'S isomorphically distinct over the family of limit ordinals a ?  Is 
it so that setting r ( a )  = o a ,  then R:(,+,, -t R:(,, for all a? What is the explicit 
value of hp(RE) for all a? For a = o ?  

6. Does there exist an a such that RP, contains uncountably many non-
isomorphic e,-spaces, 1< p < m, p # 2? Of course, our results yield that there 
exists an a and a A, such that RP, contains infinitely many non-isomorphic 
C,,,;spaces. 

7. Let W be the class of all separable El-spaces B so that L' -,B and let X 
be separable and universal for W. Does L' -t X?* 

8. Let 15 p < co, p # 2, X, Y be Banach spaces, and suppose L" X X Y. 
Does L P  -t X or L P  -,Y? This problem was posed in [21]; a possible approach to 
the problem: is there a function f,: olX ol+ ol so that h,(X X Y ) 5 

f,(h,(X), h,(Y)) provided L" X and L P  + Y? Can f ,  be chosen to be addi- 
tion? Although the basic problem stated has an affirmative answer for p = 2 or 
p = m, we do not know if such a function f ,  exists for p = 2 or for p = co 
(where one replaces "Lp " by ''C([O, 11)"). 

FIRST AUTHOR: 

UNIVERSITY VI, FRANCE
OF PARIS 

FREE UNIVERSITY BELGIUM
OF BRUSSELS, 

*The first author has answered this iri the affirmative; see "A new class of 1,-spaces" (to 
appear). 
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