# On certain classes of Baire-1 functions with applications to Banach space theory 

R. Haydon, E. Odell and H. Rosenthal


#### Abstract

Certain subclasses of $B_{1}(K)$, the Baire- 1 functions on a compact metric space $K$, are defined and characterized. Some applications to Banach spaces are given.


## 0. Introduction.

Let $X$ be a separable infinite dimensional Banach space and let $K$ denote its dual ball, $B a\left(X^{*}\right)$, with the weak* topology. $K$ is compact metric and $X$ may be naturally identified with a closed subspace of $C(K) . X^{* *}$ may also be identified with a closed subspace of $A_{\infty}(K)$, the Banach space of bounded affine functions on $K$ in the sup norm. Our general objective is to deduce information about the isomorphic structure of $X$ or its subspaces from the topological nature of the functions $F \in X^{* *} \subseteq A_{\infty}(K)$. A classical example of this type of result is: $X$ is reflexive if and only if $X^{* *} \subset C(K)$.

A second example is the following theorem. $\left(B_{1}(K)\right.$ is the class of bounded Baire-1 functions on $K$ and $D B S C(K)$ is the subclass of differences of bounded semicontinuous functions on $K$. The precise definitions appear below in $\S 1$.) We write $Y \hookrightarrow X$ if $Y$ is isomorphic to a subspace of $X$.

Theorem A. Let $X$ be a separable Banach space and let $K=B a\left(X^{*}\right)$ with the weak* topology.
a) $[35] \ell_{1} \hookrightarrow X$ iff $X^{* *} \backslash B_{1}(K) \neq \emptyset$.
b) $[7] c_{0} \hookrightarrow X$ iff $\left[X^{* *} \cap D B S C(K)\right] \backslash C(K) \neq \emptyset$.

Theorem A provides the motivation for this paper: What can be said about $X$ if $X^{* *} \cap\left[B_{1}(K) \backslash D B S C(K)\right] \neq \emptyset$ ? To study this problem we consider various subclasses of Research partially supported by NSF Grant DMS-8601752.
$B_{1}(K)$ for an arbitrary compact metric space $K$. J. Bourgain has also used this approach and some of our results and techniques overlap with those of [8,9,10]. In a different direction, generalizations of $B_{1}(K)$ to spaces where $K$ is not compact metric with ensuing applications to Banach space theory have been developed in [22].

In $\S 1$ we consider two subclasses of $B_{1}(K)$ denoted $B_{1 / 4}(K)$ and $B_{1 / 2}(K)$ satisfying

$$
\begin{equation*}
C(K) \subseteq D B S C(K) \subseteq B_{1 / 4}(K) \subseteq B_{1 / 2}(K) \subseteq B_{1}(K) \tag{0.1}
\end{equation*}
$$

Our interest in these classes stems from Theorem B (which we prove in $\S 3$ ).
Theorem B. Let $K$ be a compact metric space and let $\left(f_{n}\right)$ be a uniformly bounded sequence in $C(K)$ which converges pointwise to $F \in B_{1}(K)$.
a) If $F \notin B_{1 / 2}(K)$, then $\left(f_{n}\right)$ has a subsequence whose spreading model is equivalent to the unit vector basis of $\ell_{1}$.
b) If $F \in B_{1 / 4}(K) \backslash C(K)$, there exists $\left(g_{n}\right)$, a convex block subsequence of $\left(f_{n}\right)$, whose spreading model is equivalent to the summing basis for $c_{0}$.

Theorem B may be regarded as a local version of Theorem A (see Corollary 3.10). In fact the proof is really a localization of the proof of Theorem A. In Theorem 3.7 we show that the converse to a) holds and thus we obtain a characterization of $B_{1}(K) \backslash B_{1 / 2}(K)$ in terms of $\ell_{1}$ spreading models. We do not know if the condition in b) characterizes $B_{1 / 4}(K)$ (see Problem 8.1).

Given that our main objective is to deduce information about the subspaces of $X$ from the nature of $F \in X^{* *} \cap B_{1}(K)$, it is useful to introduce the following definition.

Let $\mathcal{C}$ be a class of separable infinite-dimensional Banach spaces and let $F \in B_{1}(K)$. $F$ is said to govern $\mathcal{C}$ if whenever $\left(f_{n}\right) \subseteq C(K)$ is a uniformly bounded sequence converging pointwise to $F$, then there exists a $Y \in \mathcal{C}$ which embeds into $\left[\left(f_{n}\right)\right]$, the closed linear span of $\left(f_{n}\right)$. We also say that $F$ strictly governs $\mathcal{C}$ if whenever $\left(f_{n}\right) \subseteq C(K)$ is a uniformly bounded sequence converging pointwise to $F$, there exists a convex block subsequence $\left(g_{n}\right)$ of $\left(f_{n}\right)$ and a $Y \in \mathcal{C}$ with $\left[\left(g_{n}\right)\right]$ isomorphic to $Y$.

Theorem A (b) can be more precisely formulated as: if $F \in D B S C(K) \backslash C(K)$, then $F$ governs $\left\{c_{0}\right\}$. (In fact Corollary 3.5 below yields that $F \in B_{1}(K) \backslash C(K)$ strictly
governs $\left\{c_{0}\right\}$ if and only if $F \in D B S C(K)$.) In $\S 4$ we prove that the same result holds if $F \in D S C(K) \backslash C(K)$. (A more general result, with a different proof, has been obtained by Elton [13].) We also note in $\S 4$ that there are functions that govern $\left\{c_{0}\right\}$ but are not in $D S C(K)$.

In $\S 6$ we give a characterization of $B_{1 / 4}(K)$ (Theorem 6.1) and use it to give an example of an $F \in B_{1 / 4}(K) \backslash C(K)$ which does not govern $\left\{c_{0}\right\}$. Thus Theorem $\mathrm{B}(\mathrm{b})$ is best possible.

In $\S 7$ we note that there exists a $K$ and an $F \in B_{1 / 2}(K)$ which governs $\left\{\ell_{1}\right\}$. We also give an example of an $F \in B_{1 / 2}(K)$ which governs $\mathcal{C}=\left\{X: X\right.$ is separable and $X^{*}$ is nonseparable $\}$ but does not govern $\left\{\ell_{1}\right\}$.
$\S 1$ contains the definitions of the classes $\operatorname{DBSC}(K), D S C(K), B_{1 / 2}(K)$ and $B_{1 / 4}(K)$. At the end of $\S 1$ we briefly recall the notion of spreading model. In $\S 2$ we recall some ordinal indices which are used to study $B_{1}(K)$. A detailed study of such indices can be found in [25]. Our use of these indices and many of the results of this paper have been motivated by $[8,9,10]$. Proposition 2.3 precisely characterizes $B_{1 / 2}(K)$ in terms of our index.

In $\S 5$ we show that the inclusions in (0.1) are, in general, proper. We first deduce this from a Banach space perspective. Subsequently, we consider the case where $K$ is countable. Proposition 5.3 specifies precisely how large $K$ must be in order for each separate inclusion in (0.1) to be proper.

In $\S 8$ we summarize some problems raised throughout this paper and raise some new questions regarding $B_{1 / 4}(K)$.

We are hopeful that our approach will shed some light on the central problem: if $X$ is infinite dimensional, does $X$ contain an infinite dimensional reflexive subspace or an isomorph of $c_{0}$ or $\ell_{1}$ ? A different attack has been mounted on this problem in the last few years by Ghoussoub and Maurey. The interested reader should also consult their papers (e.g., $[18,19,20,21]$ ). Another fruitful approach has been via the theory of types ([26], [24], [38]). We wish to thank S. Dilworth and R. Neidinger for useful suggestions.

## 1. Definitions.

In this section we give the basic definitions of the Baire- 1 subclasses in which we are interested. Let $K$ be a compact metric space. $B_{1}(K)$ shall denote the class of bounded Baire-1 functions on $K$, i.e., the pointwise limits of (uniformly bounded) pointwise converging sequences $\left(f_{n}\right) \subseteq C(K)$. $D B S C(K)=\left\{F: K \rightarrow \mathbb{R} \mid\right.$ there exists $\left(f_{n}\right)_{n=0}^{\infty} \subseteq C(K)$ and $C<\infty$ such that $f_{0} \equiv 0,\left(f_{n}\right)$ converges pointwise to $F$ and

$$
\begin{equation*}
\left.\sum_{n=0}^{\infty}\left|f_{n+1}(k)-f_{n}(k)\right| \leq C \text { for all } k \in K\right\} \tag{1.1}
\end{equation*}
$$

If $F \in D B S C(K)$ we set $|F|_{D}=\inf \left\{C \mid\right.$ there exists $\left(f_{n}\right)_{n=0}^{\infty} \subseteq C(K)$ converging pointwise to $F$ satisfying (1.1) with $\left.f_{0} \equiv 0\right\}$. $D B S C(K)$ is thus precisely those $F$ 's which are the "difference of bounded semicontinuous functions on $K$." Indeed if $\left(f_{n}\right)$ satisfies (1.1), then $F=F_{1}-F_{2}$ where $F_{1}(k)=\sum_{n=0}^{\infty}\left(f_{n+1}-f_{n}\right)^{+}(k)$ and $F_{2}(k)=\sum_{n=0}^{\infty}\left(f_{n+1}-f_{n}\right)^{-}(k)$ are both (lower) semicontinuous. The converse is equally trivial.

It is easy to prove that $\left(D B S C(K),|\cdot|_{D}\right)$ is a Banach space by using the series criterion for completeness. The fact that $\|F\|_{\infty} \leq|F|_{D}$ but the two norms are in general not equivalent on $\operatorname{DBSC}(K)$, leads naturally to the following two definitions.

$$
\begin{aligned}
B_{1 / 2}(K)=\{ & F \in B_{1}(K) \mid \text { there exists a sequence } \\
& \left.\left(F_{n}\right) \subseteq D B S C(K) \text { converging uniformly to } F\right\} \text { and } \\
B_{1 / 4}(K)=\{ & F \in B_{1}(K) \mid \text { there exists }\left(F_{n}\right) \\
& \text { converging uniformly to } \left.F \text { with } \sup _{n}\left|F_{n}\right|_{D}<\infty\right\} .
\end{aligned}
$$

It can be shown that $\operatorname{DBSC}(K)$ is a Banach algebra under pointwise multiplication, and hence $B_{1 / 2}(K)$ can be identified with $C(\Omega)$, where $\Omega$ is the "structure space" or "maximal ideal space" of $\Omega$. Thus $B_{1 / 4}(K)$ also has a natural interpretation in the general context of commutative Banach algebras.

There is a natural norm on $B_{1 / 4}(K)$ given by

$$
|F|_{1 / 4}=\inf \left\{C: \text { there exists }\left(F_{n}\right) \text { converging uniformly with } \sup _{n}\left|F_{n}\right|_{D} \leq C\right\}
$$

Furthermore $\left(B_{1 / 4}(K),|\cdot|_{1 / 4}\right)$ is a Banach space. One way to see this is to use the following elementary

Lemma 1.1. Let $\left(M, d_{1}\right)$ be a complete metric space and let $d_{2}$ be a metric on $M$ with $d_{1}(x, y) \leq d_{2}(x, y)$ for all $x, y \in M$. If all $d_{2}$-closed balls in $M$ are also $d_{1}$-closed, then $\left(M, d_{2}\right)$ is complete.

The hypotheses of the lemma apply to $M=\left\{F:|F|_{1 / 4} \leq 1\right\}$ and $d_{1}, d_{2}$ given, respectively, by $\|\cdot\|_{\infty}$ and $|\cdot|_{1 / 4}$.

Remark 1.2. While we shall confine our attention to $B_{1 / 2}$ and $B_{1 / 4}$, one could of course continue the game, defining

$$
\begin{aligned}
B_{1 / 8}(K)= & \left\{F \in B_{1}(K) \mid \text { there exists }\left(F_{n}\right) \subseteq D B S C(K)\right. \\
& \text { with } \left.\left|F_{n}-F\right|_{1 / 4} \rightarrow 0\right\} \text { and } \\
B_{1 / 16}(K)=\{ & F \in B_{1}(K) \mid \text { there exists } F_{n} \\
& \text { with } \left.\sup _{n}\left|F_{n}\right|_{D}<\infty \text { and }\left|F_{n}-F\right|_{1 / 4} \rightarrow 0\right\} .
\end{aligned}
$$

This could be continued obtaining

$$
D B S C(K) \subseteq \cdots \subseteq B_{1 / 2^{2 n}}(K) \subseteq B_{1 / 2^{2 n-1}}(K) \subseteq \cdots \subseteq B_{1 / 2}(K)
$$

with $B_{1 / 2^{2 n}}(K)$ having a norm $|\cdot|_{1 / 2^{2 n}}$ which, using Lemma 1.1 , is easily seen to be complete.

There is another class of Baire- 1 functions that shall interest us, the differences of (not necessarily bounded) semi-continuous functions on $K$.

$$
\begin{aligned}
D S C(K)=\{ & F: K \rightarrow \mathbb{R} \mid \text { there exists a uniformly bounded sequence } \\
& \left(f_{n}\right)_{n=0}^{\infty} \subseteq C(K) \text { converging pointwise to } F \text { with } \\
& \left.\sum_{n=0}^{\infty}\left|f_{n+1}(k)-f(k)\right|<\infty \text { for } k \in K\right\}
\end{aligned}
$$

An interesting subclass of $D S C(K)$, is $P S(K)$, the pointwise limits of pointwise stabilizing (pointwise ultimately constant) sequences.

$$
\begin{aligned}
P S(K)=\{ & F \in B_{1}(K) \mid \text { there exists a uniformly bounded sequence } \\
& \left(f_{n}\right) \subseteq C(K) \text { with the property that for all } k \in K \text { there exists } \\
& \left.m \in \mathbb{N} \text { such that } f_{n}(k)=F(k) \text { for } n \geq m\right\} .
\end{aligned}
$$

Remark 1.3. We discuss $P S(K)$ in Proposition 4.9. Both of these classes were considered in [10], and as noted there, if an indicator function $\mathbf{1}_{A} \in B_{1}(K)$, then $\mathbf{1}_{A} \in P S(K)$. Indeed $A$ must be both $F_{\sigma}$ and $G_{\delta}$ (cf. Proposition 2.1 below) and so we can write $A=\bigcup_{n} F_{n}=$ $\bigcap_{n} G_{n}$ where $F_{1} \subseteq F_{2} \subseteq \cdots$ are closed sets and $G_{1} \supseteq G_{2} \supseteq \cdots$ are open sets. Then by the Tietze extension theorem, for each $n$ choose $f_{n} \in B a(C(K))$ with $f_{n}$ identically 1 on $F_{n}$ and identically 0 on $K \backslash G_{n}$. Thus for all $k \in K,\left(f_{n}(k)\right)_{n}$ is ultimately $\mathbf{1}_{A}(k)$.

The summing basis $\left(s_{n}\right)$ for (an isomorph of) $c_{0}$ is characterized by

$$
\left\|\sum a_{n} s_{n}\right\|=\sup _{k}\left|\sum_{i=1}^{k} a_{i}\right|
$$

Let $\left(x_{n}\right)$ be a seminormalized basic sequence. A basic sequence $\left(e_{n}\right)$ is said to be a spreading model of $\left(x_{n}\right)$ if for all $k \in \mathbb{N}$ and all $\varepsilon>0$ there exist $N$ so that if $N<n_{1}<$ $n_{2}<\cdots<n_{k}$ and $\left(a_{i}\right)_{1}^{k} \subseteq \mathbb{R}$ with $\sup _{i}\left|a_{i}\right| \leq 1$, then

$$
\left|\left\|\sum_{i=1}^{k} a_{i} x_{n_{i}}\right\|-\left\|\sum_{i=1}^{k} a_{i} e_{i}\right\|\right|<\varepsilon .
$$

For further information on spreading models see [4].
We recall that if $\left(f_{n}\right) \subseteq B a(C(K))$ converges pointwise to $F \in B_{1}(K) \backslash C(K)$ then there exists a $C=C(F)$ such that $\left(f_{n}\right)$ has a basic subsequence $\left(f_{n}^{\prime}\right)$ with basis constant $C$ which $C$-dominates $\left(s_{n}\right)$. Thus $C\left\|\sum a_{n} f_{n}^{\prime}\right\| \geq\left\|\sum a_{n} s_{n}\right\|$, for all $\left(a_{n}\right) \subseteq \mathbb{R}$ (see e.g., [31]). Furthermore $\left(f_{n}^{\prime}\right)$ can be taken to have a spreading model [4]. The constant $C$ depends only on $\sup \{\operatorname{osc}(F, k) \mid k \in K\}$ (see $\S 2$ for the definition of $\operatorname{osc}(F, k)$ ).

Finally we recall that a sequence $\left(g_{n}\right)$ in a Banach space is a convex block subsequence of $\left(f_{n}\right)$ if $g_{n}=\sum_{i=p_{n}+1}^{p_{n}} a_{i} f_{i}$ where $\left(p_{n}\right)$ is an increasing sequence of integers, $\left(a_{i}\right) \subseteq \mathbb{R}^{+}$ and for each $n, \sum_{i=p_{n}+1}^{p_{n+1}} a_{i}=1$.

## 2. Ordinal Indices for $B_{1}(K)$.

Let $(K, d)$ be a compact metric space and let $F: K \rightarrow \mathbb{R}$ be a bounded function. The Baire characterization theorem [3] states that $F \in B_{1}(K)$ iff for all closed nonempty $L \subseteq K$, $\left.F\right|_{L}$ has a point of continuity (relative to the compact space $(L, d)$ ). This leads naturally to an ordinal index for Baire-1 functions which we now describe.

For a closed set $L \subseteq K$ and $\ell \in L$ let the oscillation of $\left.F\right|_{L}$ at $\ell$ be given by $\operatorname{osc}_{L}(F, \ell)=\lim _{\varepsilon \downarrow 0} \sup \left\{f\left(\ell_{1}\right)-f\left(\ell_{2}\right) \mid \ell_{i} \in L\right.$ and $d\left(\ell_{i}, \ell\right)<\varepsilon$ for $\left.i=1,2\right\}$. We define the oscillation of $F$ over $L$ by $\operatorname{osc}_{L} F=\sup \left\{F\left(\ell_{1}\right)-F\left(\ell_{2}\right) \mid \ell_{1}, \ell_{2} \in L\right\}$.

For $\delta>0$, let $K_{0}(F, \delta)=K$ and if $\alpha<\omega_{1}$ let

$$
K_{\alpha+1}(F, \delta)=\left\{k \in K_{\alpha}(F, \delta) \mid \operatorname{osc}_{K_{\alpha}(F, \delta)}(F, k) \geq \delta\right\}
$$

For limit ordinals $\alpha$, set

$$
K_{\alpha}(F, \delta)=\bigcap_{\beta<\alpha} K_{\beta}(F, \delta)
$$

Note that $K_{\alpha}(F, \delta)$ is always closed and $K_{\alpha}(F, \delta) \supseteq K_{\beta}(F, \delta)$ if $\alpha<\beta$. The index $\beta(F, \delta)$ is given by

$$
\beta(F, \delta)=\inf \left\{\alpha<\omega_{1} \mid K_{\alpha}(F, \delta)=\emptyset\right\}
$$

provided $K_{\alpha}(F, \delta)=\emptyset$ for some $\alpha<\omega_{1}$ and $\beta(F, \delta)=\omega_{1}$ otherwise. Since $K$ is separable, the transfinite sequence $\left(K_{\alpha}(F, \delta)\right)_{\alpha<\omega_{1}}$ must stabilize: there exists $\beta<\omega_{1}$ so that $K_{\alpha}(F, \delta)=K_{\beta}(F, \delta)$ for $\beta \geq \alpha$.

The Baire characterization theorem yields that $\beta(F, \delta)<\omega_{1}$ for all $\delta>0$ iff $F \in$ $B_{1}(K)$. In fact we have the following proposition. In its statement $\mathcal{A}$ denotes the algebra of ambiguous subsets of $K$. Thus $A \in \mathcal{A}$ iff $A$ is both $F_{\sigma}$ and $G_{\delta}$. Also we write $[F \leq a]$ for the set $\{k \in K \mid F(k) \leq a\}$.

Proposition 2.1. Let $F: K \rightarrow \mathbb{R}$ be a bounded function on the compact metric space $K$. The following are equivalent.

1) $F \in B_{1}(K)$.
2) $\beta(F, \delta)<\omega_{1}$ for all $\delta>0$.
3) For $a$ and $b$ real, $[F \leq a]$ and $[F \geq b]$ are both $G_{\delta}$ subsets of $K$.
4) For $U$ an open subset of $\mathbb{R}, F^{-1}(U)$ is an $F_{\sigma}$ subset of $K$.
5) For $a<b,[F \leq a]$ and $[F \geq b]$ may be separated by disjoint sets in $\mathcal{A}$. Equivalently, there exists $A \in \mathcal{A}$ with $[F \leq a] \subseteq A$ and $A \cap[F \geq b]=\emptyset$.
6) $F$ is the uniform limit of a sequence of $\mathcal{A}$-simple functions ( $\mathcal{A}$-measurable functions with finite range).
7) $F$ is the uniform limit of a sequence $\left(g_{n}\right) \subseteq D S C(K)$.
8) $F$ is the uniform limit of a sequence $\left(g_{n}\right) \subseteq P S(K)$.

The proof is standard and can be compiled from [23]. We are more interested in an analogous characterization of $B_{1 / 2}(K)$. Before stating that proposition we need a few more definitions.
$\mathcal{D}$ shall denote the algebra of all finite unions of differences of closed subsets of $K . \mathcal{D}$ is easily seen to be a subalgebra of $\mathcal{A}$.

One of the statements in our next proposition involves another ordinal index for Baire1 functions, $\alpha(F ; a, b)$, which as we shall see is closely related to our index. For $a<b$, let $K_{0}(F ; a, b)=K$ and for any ordinal $\alpha$, let

$$
\begin{aligned}
K_{\alpha+1}(F ; a, b)= & \left\{k \in K_{\alpha}(F ; a, b) \mid \text { for all } \varepsilon>0 \text { and } i=1,2,\right. \\
& \text { there exist } k_{i} \in K_{\alpha}(F ; a, b) \text { with } d\left(k_{i}, k\right) \leq \varepsilon, \\
& \left.F\left(k_{1}\right) \geq b \text { and } F\left(k_{2}\right) \leq a\right\} .
\end{aligned}
$$

Equivalently, $K_{\alpha+1}=\overline{K_{\alpha} \cap[F \leq a]} \cap \overline{K_{\alpha} \cap[F \geq b]}$. At limit ordinals $\alpha$ we set

$$
K_{\alpha}(F ; a, b)=\bigcap_{\beta<\alpha} K_{\beta}(F ; a, b) .
$$

As before these sets are closed and decreasing. We let $\alpha(F ; a, b)=\inf \left\{\gamma<\omega_{1} \mid K_{\gamma}(F ; a, b)=\right.$ $\emptyset\}$ if $K_{\gamma}(F ; a, b)=\emptyset$ for some $\gamma<\omega_{1}$ and let $\alpha(F ; a, b)=\omega_{1}$ otherwise.

Remark 2.2. The index $\alpha(F ; a, b)$ is only very slightly different from the index $L(F, a, b)$ considered by Bourgain [8]. $L(F ; a, b)=\inf \left\{\eta<\omega_{1} \mid\right.$ there exists a transfinite increasing sequence of open sets $\left(G_{\alpha}\right)_{\alpha \leq \eta}$ with $G_{0}=\emptyset, G_{\eta}=K, G_{\alpha+1} \backslash G_{\alpha}$ is disjoint from either $[F \leq a]$ or $[F \geq b]$ for all $\alpha<\eta$ and $G_{\gamma}=\bigcup_{\alpha<\gamma} G_{\alpha}$ if $\gamma \leq \eta$ is a limit ordinal $\}$. In fact one can show that if $\alpha(F ; a, b)=\eta+n$ where $\eta$ is a limit ordinal and $n \in \mathbb{N}$, then
$L(F, a, b) \in\{\eta+2 n, \eta+2 n-1\}$. In Proposition 2.3 we shall show that $\alpha(F ; a, b)<\omega$ for all $a<b$ iff $\beta(F, \delta)<\omega$ for all $\delta>0$. We note that a more general result has subsequently been obtained in [25]. Indeed if we define $\beta(F)=\sup \{\beta(F ; \delta) \mid \delta>0\}$ and $\alpha(F)=\sup \{\alpha(F ; a, b) \mid a<b$ rational $\}$ then Kechris and Louveau have shown that $\beta(F) \leq \omega^{\xi}$ iff $\alpha(F) \leq \omega^{\xi}$.

Also we note that the following result follows from [8]. Let $X$ be a separable Banach space not containing $\ell_{1}$. Let $K=B a\left(X^{*}\right)$ in its weak* topology. Then

$$
\sup \left\{\beta\left(\left.x^{* *}\right|_{K}\right): x^{* *} \in X^{* *}\right\}<\omega_{1} .
$$

Proposition 2.3. Let $F: K \rightarrow \mathbb{R}$ be a bounded function on the compact metric space $K$. The following are equivalent

1) $F \in B_{1 / 2}(K)$.
2) $F$ is the uniform limit of $\mathcal{D}$-simple functions on $K$.
3) For $a<b,[F \leq a]$ and $[F \geq b]$ may be separated by disjoint sets in $\mathcal{D}$.
4) $\beta(F) \leq \omega$.
5) $\alpha(F ; a, b)<\omega$ for all $a<b$.

## Proof.

$4) \Rightarrow 5)$. This follows from the elementary observation that for all ordinals $\alpha$ and reals $a<b, K_{\alpha}(F ; a, b) \subseteq K_{\alpha}(F, b-a)$, and the fact that 4) holds if and only if $\beta(F, \delta)<\omega$ for all $\delta>0$.
5) $\Rightarrow 3)$. Let $K_{i}=K_{i}(F ; a, b)$. Thus $K=K_{0} \supseteq K_{1} \supseteq \cdots \supseteq K_{n}=\emptyset$ where $n=\alpha(F ; a, b)$. Let

$$
D=\bigcup_{i=1}^{n} \overline{\left(F \leq a \cap K_{i-1}\right)} \backslash \overline{\left([F \geq b] \cap K_{i-1}\right)} \in \mathcal{D}
$$

Since $K_{i}=\overline{\left([F \leq a] \cap K_{i-1}\right)} \cap \overline{\left([F \geq b] \cap K_{i-1}\right)}$,

$$
\begin{aligned}
D & =\bigcup_{i=1}^{n}\left(\overline{[F \leq a] \cap K_{i-1}} \backslash K_{i}\right) \\
& \supseteq \bigcup_{i=1}^{n}\left[\left([F \leq a] \cap K_{i-1}\right) \backslash K_{i}\right] \\
& =\bigcup_{i=1}^{n}\left([F \leq a] \cap\left(K_{i-1} \backslash K_{i}\right)\right)=[F \leq a] .
\end{aligned}
$$

Since $K_{i-1}$ is closed,

$$
\begin{aligned}
D & \subseteq \bigcup_{i=1}^{n}\left(K_{i-1} \backslash \overline{[F \geq b] \cap K_{i-1}}\right) \\
& \subseteq \bigcup_{i=1}^{n}\left[K_{i-1} \backslash\left([F \geq b] \cap K_{i-1}\right)\right] \\
& =\bigcup_{i=1}^{n}\left(K_{i-1} \backslash[F \geq b]\right)=K \backslash[F \geq b] .
\end{aligned}
$$

$3) \Rightarrow 2$ ). This is a standard exercise in real analysis.
$2) \Rightarrow 1$ ). Since every $\mathcal{D}$-simple function can be expressed in the form $\sum_{i=1}^{k} a_{i} \mathbf{1}_{L_{i}}$ where the $L_{i}$ 's are closed sets and $D B S C(K)$ is a linear space it suffices to recall that $\mathbf{1}_{L} \in D B S C(K)$ whenever $L$ is closed. In fact $\mathbf{1}_{L}$ is upper semicontinuous.
$1) \Rightarrow 4)$. Let $F$ be the uniform limit of $\left(F_{n}\right) \subseteq D B S C(K)$. For $\delta>0$ and $n$ sufficiently large, $\beta(F, 2 \delta) \leq \beta\left(F_{n}, \delta\right)$ and thus is suffices to prove that for $G \in D B S C(K), \beta(G, \delta)<\omega$ for $\delta>0$. This is immediate from the following

Lemma 2.4. If $m \in \mathbb{N}, \delta>0$ and $G: K \rightarrow \mathbb{R}$ is such that $K_{m}(G, \delta) \neq \emptyset$, then $|G|_{D} \geq m \delta / 4$.

Proof. Let $\left(g_{n}\right) \subseteq C(K)$ converge pointwise to $G$. It suffices to show that there exist integers $n_{1}<n_{2}<\cdots<n_{m+1}$ and $k \in K$ such that $\left|g_{n_{i+1}}(k)-g_{n_{i}}(k)\right|>\delta / 4$ for $1 \leq i \leq m$.

Let $n_{1}=1, k_{0} \in K_{m}(G, \delta)$ and let $U_{0}$ be a neighborhood of $k_{0}$ for which $\operatorname{osc}_{U_{0}} g_{n_{1}}<$ $\delta / 8$. Choose $k_{0}^{1}$ and $k_{0}^{2}$ in $U_{0} \cap K_{m-1}(G, \delta)$ with $G\left(k_{0}^{1}\right)-G\left(k_{0}^{2}\right)>3 \delta / 4$. Then choose
$n_{2}>n_{1}$ such that $g_{n_{2}}\left(k_{0}^{1}\right)-g_{n_{2}}\left(k_{0}^{2}\right)>3 \delta / 4$. Thus there is a nonempty neighborhood $U_{1} \subset U_{0}$ of either $k_{0}^{1}$ or $k_{0}^{2}$ such that for $k \in U_{1},\left|g_{n_{2}}(k)-g_{n_{1}}(k)\right|>\delta / 4$.

Similarly we can find a neighborhood $U_{2} \subseteq U_{1}$ of a point in $K_{m-1}(G, \delta)$ and $n_{3}>n_{2}$ so that for $k \in U_{2},\left|g_{n_{3}}(k)-g_{n_{2}}(k)\right|>\delta / 4$, etc.

Remarks 2.5. 1. Of course by using a bit more care one can show that $|G|_{D} \geq m \delta / 2$ whenever $K_{m}(G, \delta) \neq \emptyset$.
2. Following [25] we say that for $F \in B_{1}(K), F \in B_{1}^{\xi}(K)$ iff $\beta(F) \leq \omega^{\xi}$. Thus $B_{1 / 2}(K) \equiv B_{1}^{1}(K)$ by Proposition 2.3, a result also observed in [25].
3. We do not yet have an index characterization of $B_{1 / 4}(K)$, however we have a necessary condition (which may be sufficient). To describe this we first must generalize our index above. Let $F: K \rightarrow \mathbb{R}$ and let $\left(\delta_{i}\right)_{i=1}^{\infty}$ be positive numbers. Set $K_{0}\left(F,\left(\delta_{i}\right)\right)=K$ and for $0 \leq i$ set

$$
K_{i+1}\left(F,\left(\delta_{j}\right)\right)=\left\{k \in K_{i}\left(F,\left(\delta_{j}\right)\right) \mid \operatorname{osc}_{K_{i}\left(F,\left(\delta_{j}\right)\right)}(F, k) \geq \delta_{i+1}\right\}
$$

Proposition 2.6. Let $F \in B_{1 / 4}(K)$. Then there exists an $M<\infty$ so that if $K_{n}\left(F,\left(\delta_{i}\right)\right) \neq$ $\emptyset$, then $\sum_{i=1}^{n} \delta_{i} \leq M$.

Proof. Let $F$ be the uniform limit of $\left(G_{n}\right)$ with $\left|G_{n}\right|_{D} \leq C<\infty$ for all $n$. Suppose that $K_{n}\left(F,\left(\delta_{i}\right)\right) \neq \emptyset$ for some sequence $\left(\delta_{i}\right)_{i=1}^{\infty} \subseteq \mathbb{R}^{+}$. Since $K_{n}\left(F,\left(\delta_{i}\right)\right) \subseteq K_{n}\left(G_{m},\left(\delta_{i} / 2\right)\right)$ for large $m$, the latter set is non-empty as well. The proof of Lemma 2.4 yields

$$
\left\{\begin{array}{l}
\text { If } G: K \rightarrow \mathbb{R} \text { and }\left(\delta_{i}\right)_{i=1}^{\infty} \subseteq \mathbb{R}^{+} \text {is such that } K_{n}\left(G,\left(\delta_{i}\right)\right) \neq \emptyset  \tag{2.1}\\
\text { then }|G|_{D} \geq 4^{-1} \sum_{i=1}^{n} \delta_{i} .
\end{array}\right.
$$

Thus by (2.1) we have, for large $m, C \geq\left|G_{m}\right|_{D} \geq 4^{-1} \sum_{i=1}^{n} \delta_{i}$ and so $\sum_{i=1}^{n} \delta_{i} \leq 4 C$.

We shall explore in greater detail in $\S 3$ and $\S 8$ some questions related to the problem of an index characterization of Baire-1/4. The following proposition gives a sufficient index criterion for a function to be Baire-1/4. It also shows (via Proposition 2.3) that if $F \in B_{1 / 2}(K) \backslash B_{1 / 4}(K)$, then $\beta(F)=\omega$.

Proposition 2.7. Let $F \in B_{1}(K)$. If $\beta(F)<\omega$, then $F \in B_{1 / 4}(K)$.
Proof. Without loss of generality let $F: K \rightarrow[0,1]$ with $\beta(F) \leq n$. Thus $\alpha(F ; a, b) \leq n$ for all $a<b$. It follows from the proof of 5) $\Rightarrow 3$ ) in Proposition 2.3 that for all $0<$ $a<b<1$ there exists a $D \in \mathcal{D}$ with $\left|\mathbf{1}_{D}\right|_{D} \leq 2 n,[F \leq a] \subseteq D$ and $[F \geq b] \cap D=\emptyset$. Thus for all $m<\infty$ there exist sets $D_{1} \supseteq D_{2} \supseteq \cdots \supseteq D_{m}$ in $\mathcal{D}$ with $[F \geq i / m] \subseteq D_{i}$, $[F \leq(i-1) / m] \cap D_{i}=\emptyset$ and $\left|\mathbf{1}_{D_{i}}\right|_{D} \leq 2 n$ for $i \leq m$. In particular if $G=\sum_{i=1}^{m} m^{-1} \mathbf{1}_{D_{i}}$, then $\|F-G\|_{\infty} \leq m^{-1}$ and $|G|_{D} \leq 2 n$.

The following proposition is related to work of A. Sersouri [39]. It is of interest to us because it shows that a separable Banach space $X$ can have functions of large index in $X^{* *}$ and yet be quite nice. In fact it shows there are Baire-1 functions of arbitrarily large index which strictly govern the class of quasireflexive (order 1) Banach spaces. Our proof was motivated by discussions with A. Pełczyński.

Proposition 2.8. For all $\gamma<\omega_{1}$ there exists a quasireflexive (of order 1) Banach space $Q_{\gamma}$ such that $Q_{\gamma}^{* *}=Q_{\gamma} \oplus\left\langle F_{\gamma}\right\rangle$ where $\beta\left(F_{\gamma}\right)>\gamma$.
(The index $\beta\left(F_{\gamma}\right)$ is computed with respect to $B a\left(Q_{\gamma}^{*}\right)$.)
Remark 2.9. In $\S 6$ we shall show the existence of a quasireflexive space whose new functional (in the second dual) is Baire-1/4.

Proof of Proposition 2.8. We use interpolation, namely the method of [12]. (This has also been used in [19] in a slightly different manner to produce a quasireflexive space from a weak* convergent sequence.)

To begin let $\gamma<\omega_{1}$ be any ordinal and choose a compact metric space $K$ containing an ambiguous set $A_{\gamma}$ with $\alpha\left(\mathbf{1}_{A_{\gamma}} ; \frac{1}{4}, \frac{3}{4}\right)>\gamma$. (For example $\mathbf{1}_{A_{\alpha}}$ could be taken to be one of the functions $F_{\delta}$ described in $\S 5$ with $\delta>\omega^{\gamma}+$.) Choose a sequence $\left(f_{n}\right) \subseteq B a(C(K))$ converging pointwise to $\mathbf{1}_{A_{\gamma}}$ such that $\left(\mathbf{1}_{A_{\gamma}}, f_{1}, f_{2}, \ldots\right)$ is basic in $C(K)^{* *}$. Let $W$ be the closed convex hull of $\left\{ \pm f_{n}\right\}_{n=1}^{\infty}$ in $C(K)$. Let $Q_{\gamma}$ be the Banach space obtained from $W \subseteq B a(C(K))$ by [DFJP]-interpolation. Thus for all $n \in \mathbb{N},\|\cdot\|_{n}$ is the gauge of $U_{n}=2^{n} W+2^{-n} B a(C(K))$, and $Q_{\gamma}=\left\{x \in C(K):\|x\| \equiv\left(\sum_{n}\|x\|_{n}^{2}\right)^{1 / 2}<\infty\right\}$. Following the notation of [12], we let $C=B a\left(Q_{\gamma}\right)=\{x \in C(K):\|x\| \leq 1\}$ and let
$j: Q_{\gamma} \rightarrow C(K)$ be the natural semiembedding.
We first observe that $Q_{\gamma}$ is quasireflexive of order 1. Indeed it is easy to check that $\widetilde{W}$, the weak* closure of $W$ in $C(K)^{* *}$ is just

$$
\widetilde{W}=\left\{\sum_{i=1}^{\infty} a_{i} f_{i}+a_{\infty} \mathbf{1}_{A_{\gamma}}:\left|a_{\infty}\right|+\sum_{i=1}^{\infty}\left|a_{i}\right| \leq 1\right\}
$$

Furthermore $\widetilde{C} \subseteq[\widetilde{W}]$ ([12], Lemma $1(\mathrm{v}))$ which has the basis $\left(\mathbf{1}_{A_{\gamma}}, f_{1}, f_{2}, \ldots\right)$. Now $j^{* *}: Q_{\gamma}^{* *} \rightarrow C(K)^{* *}$ is one-to-one and $\left(j^{* *}\right)^{-1}(C(K))=Q_{\gamma}($ Lemma $1($ iii $)$. Thus if $F_{\gamma} \in Q_{\gamma}^{* *}$ satisfies $j^{* *} F_{\gamma}=\mathbf{1}_{A_{\gamma}}$, then $Q_{\gamma}^{* *}=Q_{\gamma} \oplus\left\langle F_{\gamma}\right\rangle$. Of course $F_{\gamma}$ must be the weak* limit of $\left(j^{-1}\left(f_{n}\right)\right)_{n}$ in $Q_{\gamma}^{* *}$.

It remains to show that $\beta\left(F_{\gamma}\right) \geq \gamma$. We shall prove

$$
\begin{equation*}
\bar{\alpha}\left(F_{\gamma} ; \frac{1}{4}, \frac{3}{4}\right) \geq \alpha\left(\mathbf{1}_{A_{\gamma}} ; \frac{1}{4}, \frac{3}{4}\right) \tag{2.2}
\end{equation*}
$$

where $\bar{\beta}$ is the index computed with respect to $F_{\gamma} \in B_{1}\left(3 B a\left(Q_{\gamma}^{*}\right)\right)$. Since $\beta\left(F_{\gamma}\right) \geq$ $\alpha\left(F_{\gamma} ; \frac{1}{12}, \frac{1}{4}\right) \geq \bar{\alpha}\left(F_{\gamma} ; \frac{1}{4}, \frac{3}{4}\right)$, the result follows.

Since $\|j\| \leq 3$, if $K_{0}=3 B a\left(Q_{\gamma}^{*}\right)$ and $H_{0}=B a\left(C(K)^{*}\right)$, then $j^{*} H_{0} \subseteq K_{0}$. More generally if $K_{\beta+1}=\left\{y^{*} \in K_{\beta} \mid\right.$ for all non-empty relative weak* neighborhoods $U$ of $y^{*}$ in $K_{\beta}$ there exists $y_{1}^{*}, y_{2}^{*} \in U$ with $F_{\gamma}\left(y_{1}^{*}\right) \geq \frac{3}{4}$ and $\left.F_{\gamma}\left(y_{2}^{*}\right) \leq \frac{1}{4}\right\}$ and $H_{\beta+1}$ is defined similarly in terms of $\mathbf{1}_{A_{\gamma}}$, then $j^{*} H_{\beta+1} \subseteq K_{\beta+1}$ for all $\beta$, since $j^{*}$ is $\omega^{*}$-continuous and $F_{\gamma}\left(j^{*} x^{*}\right)=\left(j^{* *} F_{\gamma}\right) x^{*}=\mathbf{1}_{A_{\gamma}}\left(x^{*}\right)$. This proves $(2.2)$.

## 3. Theorem B.

For the proof of Theorem (B) (a) we need a lemma. Recall that a collection of pairs of subsets of $K,\left(A_{i}, B_{i}\right)_{i=1}^{n}$, is said to be (Boolean) independent if for all $I \subseteq\{1, \ldots, n\}$, $\bigcap_{i \in I} A_{i} \cap \bigcap_{i \notin I} B_{i} \neq \emptyset$.

Lemma 3.1. Let $F: K \rightarrow \mathbb{R}$ be the pointwise limit of $\left(f_{n}\right) \subseteq C(K)$. If $K_{m}(F ; a, b) \neq \emptyset$ for some $m \in \mathbb{N}$ and $a<b$, then for $a<a^{\prime}<b^{\prime}<b$ there exists a subsequence $\left(f_{n}^{\prime}\right)$ of $\left(f_{n}\right)$ so that if $n_{1}<\cdots<n_{m}$, then $\left(A_{n_{i}}^{\prime}, B_{n_{i}}^{\prime}\right)_{i=1}^{m}$ are independent where $A_{n_{i}}^{\prime}=\left[f_{n_{i}}^{\prime} \leq a^{\prime}\right]$ and $B_{n_{i}}^{\prime}=\left[f_{n_{i}}^{\prime} \geq b^{\prime}\right]$.

Proof. The proof is similar to that of Lemma 2.4 and is actually a local version of the proof of the main result of [35] (see [8] for a more general discussion of the consequences of $\left.K_{\beta}(F ; a, b) \neq \emptyset\right)$.

We first show how to choose a finite subsequence $\left(f_{n_{i}}\right)_{n=1}^{m}$ of $\left(f_{n}\right)$ so that $\left(A_{n_{i}}, B_{n_{i}}\right)_{i=1}^{m}$ is independent, where $A_{n_{i}}=\left[f_{n_{i}} \leq a^{\prime}\right]$ and $B_{n_{i}}=\left[f_{n_{i}} \geq b^{\prime}\right]$. Let $k_{\phi} \in K_{m}(F ; a, b)$. Thus there exist $k_{0}$ and $k_{1}$ in $K_{m-1}(F ; a, b)$ with $F\left(k_{0}\right) \leq a$ and $F\left(k_{1}\right) \geq b$. Choose $n_{1}$ and neighborhoods $U_{0}$ and $U_{1}$ of $k_{0}$ and $k_{1}$, respectively, so that $f_{n_{1}}<a^{\prime}$ on $U_{0}$ and $f_{n_{1}}>b^{\prime}$ on $U_{1}$. Let $k_{\varepsilon_{1}, \varepsilon_{2}} \in U_{\varepsilon_{1}} \cap K_{m-2}(F ; a, b)$ for $\varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$ with $F\left(k_{\varepsilon_{1}, 0}\right) \leq a$ and $F\left(k_{\varepsilon_{1}, 1}\right) \geq b$ for $\varepsilon_{1} \in\{0,1\}$. Choose $n_{2}>n_{1}$ and neighborhoods $U_{\varepsilon_{1}, \varepsilon_{2}} \subseteq U_{\varepsilon_{1}}$ of $k_{\varepsilon_{1}, \varepsilon_{2}}$ so that $f_{n_{2}}<a^{\prime}$ on $U_{\varepsilon_{1}, 0}$ and $f_{n_{2}}>b^{\prime}$ on $U_{\varepsilon_{1}, 1}$ (for $\varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$ ). Continue up to $f_{n_{m}}$. The sets $\left(A_{n_{i}}, B_{n_{i}}\right)_{1}^{m}$ are then independent since for $I \subseteq\{1, \ldots, m\}, \bigcap_{i \in I} A_{n_{i}} \cap \bigcap_{i \notin I} B_{n_{i}} \supseteq$ $U_{\varepsilon_{1}, \ldots, \varepsilon_{m}} \neq \emptyset$ where $\varepsilon_{i}=0$ if $i \in I$ and $\varepsilon_{i}=1$ if $i \notin I$.

Now the existence of an infinite subsequence $\left(f_{n}^{\prime}\right)$ satisfying the conclusion of 3.1 follows immediately from Ramsey's theorem. Indeed, by the latter, there exists $\left(f_{n}^{\prime}\right) \mathrm{a}$ subsequence of $\left(f_{n}\right)$ so that $\left(f_{n}^{\prime}\right)$ satisfies the conclusion, or such that for all $n_{1}<\cdots<n_{m}$, $\left(A_{n_{i}}^{\prime}, B_{n_{i}}^{\prime}\right)_{i=1}^{m}$ is not independent. But we have proved that the second alternative is impossible.

Proof of Theorem $B(a) .\left(f_{n}\right)$ is a bounded sequence in $C(K)$ converging pointwise to $F \notin B_{1 / 2}(K)$. By Proposition 2.3 there exists $a<b$ so that $K_{m}(F ; a, b) \neq \emptyset$ for all $m \in \mathbb{N}$. By passing to a subsequence we may assume $\left(f_{n}\right)$ has a spreading model. Furthermore by Lemma 3.1, passing to subsequences and diagonalization we may assume that for some
$a<a^{\prime}<b^{\prime}<b,\left(A_{n_{i}}, B_{n_{i}}\right)_{i=1}^{m}$ is independent whenever $m \leq n_{1}<n_{2}<\cdots<n_{m}$ and $A_{n_{i}}=\left[f_{n_{i}} \leq a^{\prime}\right], B_{n_{i}}=\left[f_{n_{i}} \geq b^{\prime}\right]$. By Proposition 4 of [36] it follows that there exists $C<\infty$ so that $\left(f_{n_{i}}\right)_{i=1}^{m}$ is $C$-equivalent to the unit vector basis of $\ell_{1}^{m}$ whenever $m \leq n_{1}<\cdots<n_{m}$.

The proof of Theorem $B(b)$ will require a more precise version of Theorem $A(b)$ and the following elementary lemma (which follows easily from the Hahn-Banach theorem). If $C$ is a subset of a Banach space $X, \widetilde{C}$ denotes the $w^{*}$-closure of $C$ in $X^{* *}$.

Lemma 3.3. Let $C$ and $D$ be convex subsets of $X$. Then $m d(C, D)=m d(\widetilde{C}, \widetilde{D})$. By $m d(C, D)$ we mean the minimum distance,

$$
\inf \{\|c-d\| \mid c \in C, d \in D\}
$$

The variant of Theorem $A(b)$ which we need is
Lemma 3.4. Let $F: K \rightarrow \mathbb{R}$ be bounded and let $\left(f_{n}\right) \subseteq C(K)$ converge pointwise to $F$ with $\sum_{n=0}^{\infty}\left|f_{n+1}(k)-f_{n}(k)\right| \leq M$ for all $k \in K\left(f_{0} \equiv 0\right)$. Suppose $\operatorname{osc}(F, k)>\delta$ for some $\delta>0$. Then there exists a subsequence $\left(f_{n}^{\prime}\right)$ of $\left(f_{n}\right)$ which is $C=C(M, \delta)$ equivalent to the summing basis.

Let $F \in B_{1}(K) \backslash C(K)$. It is evident that if $F$ strictly governs $\left\{c_{0}\right\}$, then $F \in$ $D B S C(K)$. The next result shows that the converse is true.

Corollary 3.5. Let $F \in D B S C(K)$ and let $\left(f_{n}\right), M$ and $\delta$ be as in the hypothesis of Lemma 3.4. Let $\left(g_{n}\right) \subseteq C(K)$ converge pointwise to $F$ with $\sup _{n}\left\|g_{n}\right\|_{\infty}<\infty$. Then there exists $\left(h_{n}\right)$, a convex block subsequence of $\left(g_{n}\right)$, which is $C(M, \delta)$-equivalent to the summing basis.

The proof is straightforward from Lemmas 3.3 and 3.4.
Proof of Theorem $B(b)$. Let $F \in B_{1 / 4}(K) \backslash C(K)$ and let $\left(f_{n}\right) \subseteq C(K)$ be a bounded sequence converging pointwise to $F$. Choose $\left(F_{n}\right) \subseteq D B S C(K)$ which converges uniformly to $F$ so that $\sup _{n}\left|F_{n}\right|_{D}<M<\infty$. For each $n \in \mathbb{N}$, choose $\left(f_{i}^{n}\right)_{i=0}^{\infty} \subseteq C(K), f_{0}^{n} \equiv 0$, which converges pointwise to $F_{n}$ and satisfies $\sum_{i=0}^{\infty}\left|f_{i+1}^{n}(k)-f_{i}^{n}(k)\right| \leq M$ for $k \in K$.

Since $F \notin C(K)$ we may assume there exists $\delta>0$ so that for all $n, \operatorname{osc}_{K}\left(F_{n}, k\right)>\delta>$ 0 for some $k \in K$. Thus, by Lemma 3.4, we may suppose for all $n,\left(f_{i}^{n}\right)_{i=1}^{\infty}$ is $C=C(M, \delta)$ equivalent to the summing basis. We may also assume $\left\|F_{n}-F_{n+1}\right\|_{\infty}<\varepsilon_{n}$ where $\varepsilon_{n} \downarrow 0$ and for all $n \in \mathbb{N}, \sum_{i=n+1}^{\infty} \varepsilon_{i}<\varepsilon_{n}$.

By induction and Lemma 3.3 we may replace each sequence $\left(f_{i}^{n}\right)_{i=1}^{\infty}$ by a convex block subsequence $\left(g_{i}^{n}\right)_{i=1}^{\infty}$ such that for $n>1$,

$$
\left\{\begin{array}{l}
\text { there exists a convex block subsequence }\left(h_{i}^{n}\right)_{i=1}^{\infty} \text { of }\left(g_{i}^{n-1}\right)_{i=1}^{\infty}  \tag{*}\\
\text { with }\left\|g_{i}^{n}-h_{i}^{n}\right\|_{\infty}<\varepsilon_{n-1} \text { for } i \in \mathbb{N} .
\end{array}\right.
$$

Let $\left(g_{n}^{n}\right)_{n=1}^{\infty}$ be the diagonal sequence. Clearly $\left(g_{n}^{n}\right)$ converges pointwise to $F$. Also by $(*)$ for $n>k, \operatorname{md}\left(g_{n}^{n}, \operatorname{co}\left(g_{j}^{k}\right)_{j=1}^{\infty}\right)<\sum_{j=k}^{n} \varepsilon_{j}<\varepsilon_{k-1}$. In fact for $k$ fixed, there exists a convex block subsequence $\left(d_{n}^{k}\right)_{n>k}$ of $\left(g_{j}^{k}\right)_{j=1}^{\infty}$ with $\left\|g_{n}^{n}-d_{n}^{k}\right\|_{\infty}<\varepsilon_{k-1}$ for $n>k$. Thus for any $k,\left(g_{n}^{n}\right)_{n>k}$ is an $\varepsilon_{k-1}$-perturbation of a sequence $\left(d_{n}^{k}\right)_{n>k}$ which is $C^{\prime}$-equivalent to the summing basis where $C^{\prime}$ depends solely on $C$.

By Lemma 3.3 applied to $\operatorname{co}\left(f_{n}\right)$ and $\operatorname{co}\left(g_{n}^{n}\right)$, there are convex block subsequences $\left(g_{n}\right)$ of $\left(f_{n}\right)$ and $\left(\bar{g}_{n}\right)$ of $\left(g_{n}^{n}\right)$ with $\left\|g_{n}-\bar{g}_{n}\right\|_{\infty} \rightarrow 0$. Since $\left(\bar{g}_{n}\right)_{n>i}$ is an $\varepsilon_{i-1}$-perturbation of a sequence which is $C^{\prime}$-equivalent to the summing basis, $\left(\bar{g}_{n}\right)$ and hence $\left(g_{n}\right)$ has a subsequence which has spreading model equivalent to the summing basis.

Remark 3.6. The constant of equivalence of the spreading model of $\left(g_{n}\right)$ with the summing basis depends solely upon $\sup _{k \in K} \operatorname{osc}_{K}(F, k)$ and $|F|_{1 / 4}$.

Our next theorem is a converse to Theorem B(a).
Theorem 3.7. Let $F \in B_{1}(K)$. Assume that whenever $\left(f_{n}\right) \subseteq C(K)$ is a uniformly bounded sequence converging pointwise to $F$, then any spreading model of $\left(f_{n}\right)$ is equivalent to the unit vector basis of $\ell_{1}$. Then $F \notin B_{1 / 2}(K)$.

Lemma 3.8. Let $F \in B_{1 / 2}(K) \backslash C(K),\|F\|_{\infty} \leq 1$. Then there exists $\left(f_{n}\right) \subseteq C(K)$ converging pointwise to $F$ with spreading model $\left(e_{n}\right)$ and a function $M: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ satisfying

$$
\begin{equation*}
\left\|\sum a_{n} e_{n}\right\| \leq M(\varepsilon)\left\|\sum a_{n} s_{n}\right\|+\varepsilon \sum\left|a_{n}\right| \tag{3.1}
\end{equation*}
$$

for all $\left(a_{n}\right) \subseteq \mathbb{R}$ and $\varepsilon>0$.
Proof. Let $\left(g_{n}\right) \subseteq B a(C(K))$ converge pointwise to $F$ and let $\varepsilon_{n} \downarrow 0$. By the proof of Theorem $\mathrm{B}(\mathrm{b})$ we can choose $\left(f_{n}\right)$, a convex block subsequence of $\left(g_{n}\right)$ such that for all $m$, $\left(f_{n}\right)_{n=m}^{\infty}$ is an $\varepsilon_{m}$-perturbation of a sequence which is $M\left(\varepsilon_{m}, F\right)$-equivalent to the summing basis.

Proof of Theorem 3.7. This is immediate from Lemma 3.8, since if $\left(e_{n}\right)$ satisfies (3.1), then

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\sum_{i=1}^{n}(-1)^{i} e_{i}\right\|=0
$$

In particular $\left(e_{i}\right)$ is not equivalent to the unit vector basis of $\ell_{1}$.
The proof of Theorem 3.7 combined with Theorem $\mathrm{B}(\mathrm{a})$ yields the following result. Let $F \in B_{1}(K)$. Then $F \notin B_{1 / 2}(K)$ if and only if there exists $\left(f_{n}\right) \subseteq C(K)$, a uniformly bounded sequence converging pointwise to $F$, so that if $\left(g_{n}\right)$ is a convex block subsequence of $\left(f_{n}\right)$, then some subsequence of $\left(g_{n}\right)$ has the unit vector basis of $\ell^{1}$ as a spreading model.

We do not know if the converse to Theorem $\mathrm{B}(\mathrm{b})$ is valid.
Problem 3.9. Let $F \in B_{1}(K)$ and $C<\infty$ be such that whenever $\left(f_{n}\right)$ is a uniformly bounded sequence in $C(K)$ converging pointwise to $F$, then there exists $\left(g_{n}\right)$, a convex block subsequence of $\left(f_{n}\right)$ with spreading model $C$-equivalent to the summing basis. Is $F \in B_{1 / 4}(K) ?$

We now turn to the Banach space implications of Theorem B. Let $K$ be compact metric and let $X$ be a closed subspace of $C(K)$. For example, $K$ could be $B a\left(X^{*}\right)$ but we do not require this. $X^{* *}$ is naturally isometric to $X^{\perp \perp} \subseteq C(K)^{* *}$. In this setting it can be shown (see [35]) that if $B_{1}(X)=\left\{x^{* *} \in X^{* *}\right.$ : there exists $\left(x_{n}\right) \subseteq X$ with $\left(x_{n}\right)$ converging weak* in $X^{* *}$ to $\left.x^{* *}\right\}$, then $B_{1}(X) \subseteq B_{1}(C(K))$ and $B_{1}(C(K))$ is naturally identified with $B_{1}(K)$.

Corollary 3.10. Let $K$ be compact metric and let $X$ be a closed subspace of $C(K)$.
a) If $X^{* *} \cap\left[B_{1}(K) \backslash B_{1 / 2}(K)\right] \neq \emptyset$, then $X$ contains a basic sequence with spreading model equivalent to the unit vector basis of $\ell_{1}$.
b) If $\left[X^{* *} \cap B_{1 / 4}(K)\right] \backslash X \neq \emptyset$ then $X$ contains a basic sequence with spreading model equivalent to the summing basis.

Remark 3.11. This corollary has immediate purely local consequences. Thus if $X$ and $K$ are as above and $X$ does not contain $\ell_{n}^{\infty}$ 's uniformly, then $X^{* *} \cap B_{1 / 4}(K) \subset X$. Moreover if $X$ is $B$-convex, i.e., does not contain $\ell_{n}^{1}$ 's uniformly, then $X^{* *} \backslash X \subset B_{1 / 2}(K) \backslash B_{1 / 4}(K)$.
4. $D S C(K)$.

Theorem 4.1. Let $K$ be compact metric and let $F \in D S C(K) \backslash C(K)$. Then $F$ governs $\left\{c_{0}\right\}$.

Remark 4.2. If $X$ is a separable Banach space, $K=B a\left(X^{*}\right)$ in its weak* topology and $F \in X^{* *}$, then if $F \in D S C(K), F \in D B S C(K)$ (and hence for such functions Theorem 4.1 follows from Theorem A). To see this assertion, first choose ( $f_{n}$ ) uniformly bounded in $C(K)$ so that $f_{n} \rightarrow F$ pointwise and $\sum_{n=1}^{\infty}\left|f_{n+1}(k)-f_{n}(k)\right|<\infty$ for all $k \in K$. Now since $F \in B_{1}(X)$, we may choose $\left(g_{j}\right)$ a convex block subsequence of $\left(f_{j}\right)$ and $\left(x_{j}\right)$ a sequence in $X$ with $\left\|g_{j}-x_{j}\right\|<2^{-j}$ for all $j$. But then it follows that $x_{j} \rightarrow F$ pointwise and moreover $\sum_{j=1}^{\infty}\left|x_{j+1}(k)-x_{j}(k)\right|<\infty$ for all $k \in K$. Thus by the uniform boundedness principle,

$$
\sup _{k \in K} \sum_{j=1}^{\infty}\left|x_{j+1}(k)-x_{j}(k)\right|<\infty
$$

so $F \in D B S C(K)$.
Theorem 4.1 follows from the stronger result of Elton [13] which was motivated by work of Fonf [16].

Theorem. [13]. Let $X$ be a Banach space and let $\mathcal{E}$ be the set of extreme points of $B a\left(X^{*}\right)$. Let $\left(x_{i}\right)$ be a normalized basic sequence in $X$ such that $\sum_{i=1}^{\infty}\left|x^{*}\left(x_{i}\right)\right|<\infty$ for all $x^{*} \in \mathcal{E}$. Then $c_{0} \hookrightarrow\left[\left(x_{i}\right)\right]$.

Theorem 4.1. can be phrased in this way provided $\mathcal{E}$ is replaced by $\overline{\mathcal{E}}$. However we wish to present a separate proof of our weaker result which seems to be of interest in its own right. The main step is given by the following lemma. If $Y$ is a subspace of $C(K)$, $U \subseteq K$ and $r>0$, we say $U$-norms $Y$ if $\left\|\left.y\right|_{U}\right\|_{\infty} \geq r\|y\|$ for all $y \in Y$.

Lemma 4.3. Let $L$ be a compact metric space and let $\left(f_{i}\right)$ be a normalized basic sequence in $C(L)$. If $c_{0} \nprec\left[\left(f_{i}\right)\right]$, then there exists a nonempty compact set $K \subseteq L$ and a normalized block basis $\left(g_{i}\right)$ of $\left(f_{i}\right)$ so that

$$
\left\{\begin{array}{l}
\text { for any nonempty relatively open subset } U \text { of } K \text { there are an }  \tag{4.1}\\
r>0 \text { and an } n_{0} \in \mathbb{N} \text { such that } U \text { r-norms }\left[\left(g_{n}\right)_{n=n_{0}}^{\infty}\right]
\end{array}\right.
$$

Remark 4.4. It can be deduced from [36] that $\left[\left(x_{n}\right)\right]$ contains an isomorph of $\ell_{1}$ iff there exists a compact set $K \subseteq L$ such that (4.1) holds for some fixed $r>0$ independent of $U$.

Proof of Lemma 4.3. Let $\left(U_{m}\right)_{m=1}^{\infty}$ be a base of open sets for $L$. We inductively construct for each $m$ a normalized block basis $\left(f_{i}^{m}\right)_{i=1}^{\infty}$ of $\left(f_{i}\right)$ and a certain subsequence $M$ of $\mathbb{N}$.

Let $\left(f_{i}^{0}\right)=\left(f_{i}\right)$ and suppose $\left(f_{i}^{m}\right)_{i=1}^{\infty}$ has been chosen. There are two possibilities.
(i) There is a normalized block basis $\left(g_{i}\right)$ of $\left(f_{i}^{m}\right)_{i=1}^{\infty}$ with $\left\|\left.g_{i}\right|_{U_{m}}\right\|_{\infty} \rightarrow 0$ as $i \rightarrow \infty$.
(ii) There exists no such sequence.

If (i) holds, choose $\left(f_{i}^{m+1}\right)_{i=1}^{\infty}$ to be a normalized block basis of $\left(f_{i}^{m}\right)_{i=1}^{\infty}$ with

$$
\begin{equation*}
\left\|\left.f\right|_{U_{m}}\right\|_{\infty}<2^{-k}\|f\|_{\infty} \text { for all } f \in\left[\left(f_{i}^{m+1}\right)_{i=k}^{\infty}\right] \tag{4.2}
\end{equation*}
$$

and put $m$ in $M$. If (ii) holds let $\left(f_{i}^{m+1}\right)_{i=1}^{\infty}=\left(f_{i}^{m}\right)_{i=1}^{\infty}$ and put $m$ in $\mathbb{N} \backslash M$. Let $K=$ $L \backslash \bigcup_{m \in M} U_{m}$ and for all $n \in M$ let $g_{n}=f_{n+1}^{n+1}$. We may assume $M$ is infinite or else the conclusion of the lemma is satisfied with $K=L$ and $g_{i}=f_{i}^{m}(m=\max M$ or 0 if $M=\emptyset)$.

First we check that $K \neq \emptyset$. If $K=\emptyset$, then $L \subseteq \bigcup_{n \in M} U_{n}$. By compactness there exists $n_{1} \in M$ so that $L \subseteq \bigcup_{n \in M, n \leq n_{1}} U_{n}$. But then since $\left\|\left.g_{n_{1}}\right|_{U_{n}}\right\|_{\infty}<2^{-\left(n_{1}+1\right)}$ for $n \in M$ with $n \leq n_{1}$, we have $\left\|g_{n_{1}}\right\|_{\infty}<1$, a contradiction.

We claim that $K$ and $\left(g_{n}\right)$ satisfy (4.1). If not there exist $\left(h_{n}\right)$, a normalized block basis of $\left(g_{n}\right)$ and a $U_{m}$ such that $K \cap U_{m} \neq \emptyset$ and so $m \notin M$ yet $\left\|\left.h_{i}\right|_{K \cap \bar{U}_{m}}\right\|<2^{-i}$ for all $i$. Indeed there must exist $m^{\prime} \in M$ with $K \cap U_{m^{\prime}} \neq \emptyset$ and $\left(h_{i}\right)$, a normalized block basis of $\left(g_{n}\right)$, with $\left\|\left.h_{i}\right|_{K \cap U_{m^{\prime}}}\right\|<2^{-i}$. Then choose $m \in \mathbb{N}$ so that $\bar{U}_{m} \subseteq U_{m^{\prime}}$ and $K \cap U_{m} \neq \emptyset$. Let $j_{0}=m$ and if $j_{i}$ is defined choose $j_{i+1}>j_{i}$ so that

$$
\bar{U}_{m} \cap\left[h_{j_{i}} \geq 2^{-i}\right] \subseteq \bigcup_{\substack{n \in M \\ n \leq j_{i+1}}} U_{n}
$$

This can be done since $\bar{U}_{m} \cap\left[h_{j_{i}} \geq 2^{-i}\right] \subseteq \bar{U}_{m} \cap\left[h_{j_{i}} \geq 2^{-j_{i}}\right] \subseteq L \backslash K=\bigcup_{n \in M} U_{n}$. This completes the definition of $j_{1}, j_{2}, \ldots$. Now for $t \in U_{m},\left|h_{j_{i}}(t)\right| \geq 2^{-i}$ for at most one $i$. Indeed let $i_{0}$ be the first integer such that $\left|h_{j_{i_{0}}}(t)\right| \geq 2^{-i_{0}}$ (if such an $i_{0}$ exists). Then $t \in \bigcup_{n \in M,}{ }_{n \leq j_{i_{0}+1}} U_{n}$ and for $i>i_{0}, h_{j_{i}}$ is a normalized element in $\left[\left(g_{j}\right)_{j \geq j_{i}, j \in M}\right]=$ $\left[\left(f_{j+1}^{j+1}\right)_{j \geq j_{i}, j \in M}\right] \subseteq\left[\left(f_{p}^{j_{i}+1}\right)_{p \geq j_{i}+1}\right]$. Thus if $t \in U_{n}$ with $n \leq j_{i_{0}+1}, n \in M$, then $h_{j_{i}} \in$ $\left[\left(f_{p}^{n+1}\right)_{p \geq j_{i}+1}\right]$ and so by (4.2), $\left|h_{j_{i}}(t)\right| \leq\left\|\left.h_{j_{i}}\right|_{U_{n}}\right\|<2^{-j_{i}} \leq 2^{-i}$.

Thus $\sum_{i=1}^{\infty}\left|h_{j_{i}}(t)\right| \leq 2$ for all $t \in \bar{U}_{m}$. Since $\bar{U}_{m}$ norms $\left[h_{j_{i}}\right]$, it follows from [7] that $c_{0} \hookrightarrow\left[h_{j_{i}}\right]$, a contradiction.

Proof of Theorem 4.1. Let $\left(f_{n}\right)$ be a bounded sequence in $C(K)$ converging pointwise to $F$. By Lemma 3.3 and passing to a convex block subsequence of $\left(f_{n}\right)$, if necessary, we may suppose that $\sum_{n=1}^{\infty}\left|f_{n+1}(k)-f_{n}(k)\right|<\infty$ for all $k \in K$. Also since $F \notin C(K)$, by passing to a subsequence $\left(f_{n}^{\prime}\right) \subseteq\left(f_{n}\right)$ we may assume that $\left(h_{n}\right) \equiv\left(f_{2 n}^{\prime}-f_{2 n+1}^{\prime}\right)$ is a seminormalized basic sequence satisfying $\sum_{n=1}^{\infty}\left|h_{n}(k)\right|<\infty$ for all $k \in K$. If $c_{0} \nLeftarrow\left[\left(h_{n}\right)\right]$, then by Lemma 4.3 there exist $\left(g_{n}\right)$, a normalized block basis of $\left(h_{n}\right)$, and a closed nonempty set $K_{0} \subseteq K$ satisfying (4.1) (with $K$ replaced by $K_{0}$ ).

For $m \in \mathbb{N}$ set $K_{m}=\left\{k \in K_{0}: \sum_{n=1}^{\infty}\left|g_{n}(k)\right| \leq m\right\}$. Since $\left(g_{n}\right)$ is a normalized block basis of $\left(h_{n}\right), \sum_{n=1}^{\infty}\left|g_{n}(k)\right|<\infty$ for all $k \in K$ and thus $\bigcup_{m=1}^{\infty} K_{m}=K_{0}$. By the Baire category theorem there exists $m_{0}$ so that $K_{m_{0}}$ has nonempty interior $U$ (relative to $\left.K_{0}\right)$. Choose $n_{0}$ and $r>0$ so that $U r$-norms $\left[\left(g_{n}\right)_{n \geq n_{0}}\right]$. Since $\sum\left|g_{n}\right| \leq m_{0}$ on $U,\left(g_{n}\right)$ is equivalent to the unit vector basis of $c_{0}[7]$, a contradiction.

A natural problem is to classify those functions $F \in B_{1}(K)$ which govern $\left\{c_{0}\right\}$. We do not know how to do this, but it is easy to see that this class is strictly larger than $D S C(K)$.

Example 4.5. Let $L$ be a countable compact metric space, large enough so that there exists an $F \in B_{1}(L) \backslash D B S C(L)$ (see Proposition 5.3). Choose a bounded sequence $\left(f_{n}\right) \subseteq C(L)$ which converges pointwise to $F$ and let $X=\left[\left(f_{n}\right)\right] . C(L)$ is $c_{0}$-saturated (every infinite dimensional subspace of $C(L)$ contains $c_{0}$ isomorphically) and thus $X$ is $c_{0}$-saturated. Thus $F$ governs $\left\{c_{0}\right\}$ by Lemma 3.3. Let $K=B a\left(X^{*}\right) . F \notin D S C(K)$ or otherwise (Remark 4.2) $F \in D B S C(K)$ and hence $F \in D B S C(L)$. Using this example, it can be shown that if
$K$ is any uncountable compact metric space, there exists an $F \in B_{1}(K) \backslash D S C(K)$ which governs $\left\{c_{0}\right\}$.

Question 4.6. Let $F \in B_{1}(K)$. If $F$ governs $\left\{c_{0}\right\}$ does there exist a bounded sequence $\left(f_{n}\right) \subseteq C(K)$ converging pointwise to $F$ and a $w^{*}$-closed set $L \subseteq B a\left[\left(f_{n}\right)\right]^{*}$ such that $L$ norms $\left[\left(f_{n}\right)\right]$ and $\left.F\right|_{L} \in D S C(L)$ ? (Could $L$ be taken to be countable?)

Question 4.7. Let $F \in B_{1}(K)$. Suppose there exists $\left(f_{n}\right) \subseteq C(K)$, a bounded sequence converging pointwise to $F$ and satisfying $\sum_{n=1}^{\infty}\left|f_{n+1}(k)-f_{n}(k)\right|<\infty$ for all $k$ in some residual set (complement of a first category set). Does $F$ govern $\left\{c_{0}\right\}$ ?

We should also mention the following result of Bourgain which gives some global information about the class $D S C(K)$.

Proposition 4.8. [10] Let $F \in D S C(K) \backslash C(K)$ and let $\left(f_{n}\right)$ be a bounded sequence in $C(K)$ converging pointwise to $F$ with $\sum\left|f_{n+1}(k)-f(k)\right|<\infty$ for all $k \in K$. Then there exists a subsequence $\left(f_{n}^{\prime}\right)$ of $\left(f_{n}\right)$ with $\left[\left(f_{n}^{\prime}\right)\right]^{*}$ separable.

It follows that if $F \in D S C(K) \backslash C(K)$, then $F$ strictly governs the class $\mathcal{C}$ of infinite dimensional Banach spaces with separable duals. However we don't know that if $F$ governs $\left\{c_{0}\right\}$, then $F$ strictly governs $\mathcal{C}$. (A negative answer, of course, would give a negative answer to 4.6.)

We give a somewhat different proof than that of [10].
Proof. We may assume that $\left\|f_{n}\right\|=1$ for all $n$. As mentioned in the introduction there exists a subsequence $\left(f_{n}^{\prime}\right)$ of $\left(f_{n}\right)$ which is basic and $C_{1}$-dominates the summing basis for some $C_{1}<\infty$. It follows that $\left(h_{n}\right)_{1}^{\infty}$ is seminormalized basic where $h_{1}=f_{1}^{\prime}$ and $h_{n}=$ $f_{n}^{\prime}-f_{n-1}^{\prime}$ for $n>1$. [Indeed let $\left(a_{i}\right)_{1}^{m}$ be given and let $1 \leq n<m$ with $\left\|\sum_{1}^{n} a_{i} h_{i}\right\|=1$. $\sum_{i=1}^{n} a_{i} h_{i}=\left(a_{1}-a_{2}\right) f_{1}^{\prime}+\cdots+\left(a_{n-1}-a_{n}\right) f_{n-1}^{\prime}+a_{n} f_{n}^{\prime} \equiv f+a_{n} f_{n}^{\prime}$. If $\|f\| \geq \frac{1}{2}$, then $\left\|\sum_{1}^{m} a_{i} h_{i}\right\| \geq C_{2}^{-1}\|f\| \geq 2^{-1} C_{2}^{-1}$ where $C_{2}$ is the basis constant of $\left(f_{n}^{\prime}\right)$. Otherwise
$\left|a_{n}\right| \geq \frac{1}{2}$ and so

$$
\begin{aligned}
\left\|\sum_{i=1}^{m} a_{i} h_{i}\right\| & =\left\|\sum_{i=1}^{m-1}\left(a_{i}-a_{i+1}\right) f_{i}^{\prime}+a_{m} f_{m}^{\prime}\right\| \\
& \geq\left(C_{2}+1\right)^{-1}\left\|\sum_{i=n}^{m-1}\left(a_{i}-a_{i+1}\right) f_{i}^{\prime}+a_{m} f_{m}^{\prime}\right\| \\
& \geq\left(C_{2}+1\right)^{-1} C_{1}^{-1}\left\|\sum_{i=n}^{m-1}\left(a_{i}-a_{i+1}\right) s_{i}+a_{m} s_{m}\right\| \\
& \geq\left(C_{2}+1\right)^{-1} C_{1}^{-1}\left|\sum_{i=n}^{m-1}\left(a_{i}-a_{i+1}\right)+a_{m}\right| \\
& \left.=\left(C_{2}+1\right)^{-1} C_{1}^{-1}\left|a_{n}\right| \geq 2^{-1}\left(C_{2}+1\right)^{-1} C_{1}^{-1} .\right]
\end{aligned}
$$

Also for $k \in K, \sum_{n=1}^{\infty}\left|h_{n}(k)\right|<\infty$. Thus $\left(h_{n}\right)$ is shrinking. Indeed if $\left(h_{n}\right)$ has basis constant $C$ and $g_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i} h_{i}$ is a normalized block basis, then for $k \in K$

$$
\begin{aligned}
\left|g_{n}(k)\right| & \leq\left(\max _{p_{n}+1 \leq i \leq p_{n+1}}\left|a_{i}\right|\right) \sum_{i=p_{n}+1}^{p_{n+1}}\left|h_{i}(k)\right| \\
& \leq(C+1) \min _{i}\left\|h_{i}\right\|^{-1} \sum_{i=p_{n}+1}^{p_{n+1}}\left|h_{i}(k)\right|
\end{aligned}
$$

which goes to 0 as $n \rightarrow \infty$.
The following proposition characterizes the subclass $P S(K)$ of $D S C(K)$ which was defined in §1.

Proposition 4.9. Let $F \in B_{1}(K)$. The following are equivalent.
a) $F \in P S(K)$.
b) For all closed $L \subseteq K,\left.F\right|_{L}$ is continuous on a relatively open dense subset of $L$.
c) There exists $\eta<w_{1}$ and a family $\left(K_{\alpha}\right)_{\alpha \leq \eta}$ of closed subsets of $K$ with $K_{0}=K$, $K_{\eta}=\emptyset, K_{\gamma}=\bigcap_{\alpha<\gamma} K_{\alpha}$ if $\gamma$ is a limit ordinal and $K_{\alpha} \supseteq K_{\beta}$ if $\alpha<\beta$, such that $\left.F\right|_{K_{\alpha} \backslash K_{\alpha+1}}$ is continuous for all $\alpha$.
d) There exists a sequence $\left(K_{n}\right)$ of closed subsets of $K$ with $K_{n} \subseteq K_{n+1}$ for all $n$ such that $K=\bigcup_{n} K_{n}$ and $\left.F\right|_{K_{n}}$ is continuous for all $n$.

Remark 4.10. Property (c) suggests the following index for $P S(K)$ :

$$
I(F)=\inf \left\{\eta<w_{1}: \exists\left(K_{\alpha}\right)_{\alpha \leq \eta} \text { satisfying }(\mathrm{c})\right\}
$$

Proof of 4.9. d) $\Rightarrow \mathrm{a})$ : Let $\left(K_{n}\right)$ be as in d) and for $n \in \mathbb{N}$ let $f_{n} \in C\left(K_{n}\right)$ be given by $f_{n}=\left.F\right|_{K_{n}}$. By the Tietze extension theorem there exists an extension of $f_{n}, \widetilde{f}_{n} \in C(K)$, with $\left\|\tilde{f}_{n}\right\|_{\infty} \leq\|F\|_{\infty}$. Clearly $\left(\tilde{f}_{n}\right)$ is pointwise stabilizing and has limit $F$.
a) $\Rightarrow \mathrm{b})$ : For $n \in \mathbb{N}$ set

$$
L_{n}=\left\{k \in L: f_{m}(k)=F(k) \text { for } m \geq n\right\}
$$

where $\left(f_{n}\right) \subseteq C(K),\left\|f_{n}\right\| \leq\|F\|$ and $\left(f_{n}\right)$ is pointwise stabilizing with limit $F$. Let $G=\bigcup_{n} \operatorname{int}\left(L_{n}\right)$. Thus $G$ is open in $L$. Also by the Baire Category theorem, $G$ is dense in $L$.
b) $\Rightarrow$ c): Let $K_{0}=K$ and let $K_{1}=\sim G_{0}$ where $G_{0}$ is a dense open subset of $K$ and $F$ is continuous on $G_{0}$. Now if $K_{\alpha}$ is defined choose $G_{\alpha}$, a dense open subset of $K_{\alpha}$, so that $\left.F\right|_{K_{\alpha}}$ is continuous on $G_{\alpha}$ and set $K_{\alpha+1}=K_{\alpha} \backslash G_{\alpha}$. At limit ordinals $\gamma$, set $K_{\gamma}=\bigcap_{\alpha<\gamma} K_{\alpha}$. Since $K$ is a separable metric space, $K_{\eta}=\emptyset$ for some $\eta<w_{1}$.
c) $\Rightarrow \mathrm{d})$ : Let $\left(K_{\alpha}\right)_{\alpha \leq \eta}$ be as in c). Let $\mathcal{E}_{n} \downarrow 0$ and for each $n$ set $K_{\alpha, n}=\left\{k \in K_{\alpha}\right.$ : $\left.d\left(k, K_{\alpha+1}\right) \geq \mathcal{E}_{n}\right\}$ where $d$ is the metric on $K$. Let $K_{n}=\bigcup_{\alpha<\eta} K_{\alpha, n}$. We note that $K_{n}$ is closed. Indeed let $\left(k_{i}\right) \subseteq K_{n}$ converge to $k$. Then there exists $\alpha<\eta$ so that $k \in K_{\alpha}$ but $k \notin K_{\alpha+1}$. We claim that $k_{i} \in K_{\alpha, n}$ for sufficiently large $i$ and thus $k \in K_{\alpha, n}$ since $K_{\alpha, n}$ is closed. To see this note first that if $k_{i} \notin K_{\alpha}$, then $d\left(k_{i}, k\right) \geq \mathcal{E}_{n}$. Thus for large $i$, $k_{i} \in K_{\alpha}$ and (since $k \notin K_{\alpha+1}$ ) $k_{i} \notin K_{\alpha+1}$. Hence $k_{i} \in K_{\alpha, n}$ for large $i$ (since the $K_{\alpha, n}$ 's are disjoint in $n$ ).

Finally $\left.F\right|_{K_{n}}$ is continuous, for if $\left(k_{i}\right) \subseteq K_{n}$ and $\left(k_{i}\right)$ converges to $k \in K_{\alpha, n}$, then by the above argument $k_{i} \in K_{\alpha, n}$ for large $i$ and $\left.F\right|_{K_{\alpha, n}}$ is continuous.

We end this section with an improvement of Proposition 4.8 in a special case.
Proposition 4.11. Let $K$ be a compact metric space and let $F$ be a simple Baire-1 function on $K$. Then there exists $\left(f_{n}\right) \subseteq C(K)$ converging pointwise to $F$ such that $\left[\left(f_{n}\right)\right]$ embeds into $C(L)$ for some countable compact space $L$.

Proof. First we consider the case where $K$ is totally disconnected. Choose $\mathcal{E}_{0}>0$ so that if $F\left(k_{1}\right) \neq F\left(k_{2}\right)$, then $\left|F\left(k_{1}\right)-F\left(k_{2}\right)\right|>\mathcal{E}_{0}$. Let $K_{\alpha}=K_{\alpha}\left(F, \mathcal{E}_{0}\right)$ for $\alpha \leq \eta$ with $K_{\eta}=\emptyset$. By our choice of $\mathcal{E}_{0},\left.F\right|_{K_{\alpha} \backslash K_{\alpha+1}}$ is continuous (with respect to $K_{\alpha}$ ) for all $\alpha<\eta$.

Choose a countable partition $\left(D_{j}\right)$ of $K$ into closed sets with the following properties.
a) $\operatorname{diam} D_{j} \rightarrow 0$
b) for each $j, D_{j}$ is a relatively clopen subset of $K_{\alpha} \backslash K_{\alpha+1}$ for some $\alpha<\eta$ such that $\left.F\right|_{D_{j}}$ is constant.

This can be done as follows. For each $\alpha$ choose a finite partition of relatively clopen subsets of $K_{\alpha} \backslash K_{\alpha+1}$ such that $F$ is constant on each set of the partition. Each such set is relatively open in $K_{\alpha}$ and thus may be in turn partitioned into a countable number of relatively clopen subsets of $K_{\alpha}$. List all the sets thus obtained for all $\alpha<\eta$ as $\left(C_{i}\right)_{i=1}^{\infty}$. Each $C_{i}$ is closed in $K$ and thus may in turn be partitioned into a finite number of closed subsets of diameter not exceeding $1 / i$. We list all these sets as $\left(D_{j}\right)_{j=1}^{\infty}$.

Let $L=K /\left\{D_{j}\right\}$ be the quotient space of $K$. Since each $D_{j}$ is closed and diam $D_{j} \rightarrow 0$, $L$ is compact metric. For $n \in \mathbb{N}$ choose $\hat{f}_{n} \in C(L)$ with $\left\|\hat{f}_{n}\right\|_{\infty} \leq\|F\|_{\infty}$ and $\hat{f}_{n}\left(D_{j}\right)$ equal to the constant value of $\left.F\right|_{D_{j}}$ for $j \leq n$. Let $\phi: K \rightarrow L$ denote the quotient map and let $f_{n}=\hat{f}_{n} \circ \phi$. Clearly $f_{n} \in C(K),\left\|f_{n}\right\| \leq\|F\|$ and $\left(f_{n}\right)$ converges pointwise to $F$. Also $\left[\left(f_{n}\right)\right]$ is isometric to $\left[\left(\hat{f}_{n}\right)\right] \subseteq C(L)$.

For the general case let $\phi: \Delta \rightarrow K$ be a continuous surjection and let $F$ be a simple Baire-1 function on $K$. By the first part of the proof there exist $\left(f_{n}\right) \subseteq C(\Delta)$ converging pointwise to $F \circ \phi$ and a countable compact metric space $L$ such that $\left[\left(f_{n}\right)\right] \hookrightarrow C(L)$. Let $\left(g_{n}\right)$ be a bounded sequence in $C(K)$ converging pointwise to $F$. By Lemma 3.3 there exist convex block subsequences $\left(h_{n}\right)$ and $\left(d_{n}\right)$ of $\left(g_{n}\right)$ and $\left(f_{n}\right)$, respectively, such that $\sum\left\|g_{n} \circ \phi-d_{n}\right\|<\infty$. Thus $\left[\left(g_{n}\right)\right] \cong\left[\left(g_{n} \circ \phi\right)\right] \hookrightarrow C(L)$.

Question 4.12. Does Proposition 4.11 remain true if we only assume $F \in P S(K)$ or even $F \in D S C(K)$ ? Note that if $F$ satisfies the conclusion of $4.11, F$ strictly governs the class of $c_{0}$-saturated spaces, while it is not clear that $D S C$ functions have this property.

## 5. The Baire-1 Solar System.

In this section we shall examine the relationships between the various classes of Baire1 functions which we have defined. We begin with a result which follows easily from the Banach space theory - that developed above and some examples presented in later sections.

Proposition 5.1. Let $K$ be an uncountable compact metric space. Then

$$
\begin{equation*}
C(K) \varsubsetneqq D B S C(K) \nsubseteq B_{1 / 4}(K) \nsubseteq B_{1 / 2}(K) \nsubseteq B_{1}(K) . \tag{5.1}
\end{equation*}
$$

Proof. Since $C(K)$ and $C\left(K^{\prime}\right)$ are isomorphic whenever $K$ and $K^{\prime}$ are both uncountable compact metric spaces [29], it suffices to separately consider each of the inclusions in (5.1). Thus if we show $C\left(K^{\prime}\right) \neq D B S C\left(K^{\prime}\right)$ for some uncountable compact metric space $K^{\prime}$, then $C(K) \neq D B S C(K)$ as well. Indeed if $j: C(K) \rightarrow C\left(K^{\prime}\right)$ is an onto isomorphism, then $\widetilde{\jmath}=\left.j^{* *}\right|_{B_{1}(K)}: B_{1}(K) \rightarrow B_{1}\left(K^{\prime}\right)$. is an onto isomorphism satisfying $\widetilde{\jmath}(D B S C(K))=$ $\operatorname{DBSC}\left(K^{\prime}\right), \widetilde{\jmath}\left(B_{1 / 4}(K)\right)=B_{1 / 4}\left(K^{\prime}\right)$ and $\widetilde{\jmath}\left(B_{1 / 2}(K)\right)=B_{1 / 2}\left(K^{\prime}\right)$.

For the first inclusion, $C(K) \nsubseteq D B S C(K)$, let $X=c_{0}$. Then $K=\left(B a\left(X^{*}\right), w^{*}\right)$ is uncountable compact metric and, as is well known, $X^{* *} \subseteq D B S C(K)$. In particular if $F \in X^{* *} \backslash X$, then $F \in D B S C(K) \backslash C(K)$.

The fact that $B_{1 / 4}(K) \supsetneqq D B S C(K)$ follows from Theorem $\mathrm{A}(\mathrm{b})$ and our example in $\S 6$ where we produce a nonreflexive separable Banach space $X$ not containing $c_{0}$ such that $X^{* *} \subseteq B_{1 / 4}(K)$, where $K=B a\left(X^{*}\right)$.

For the next inclusion let $X=J$, the James space. $J$ is not reflexive and has no spreading model isomorphic to $c_{0}$ or $\ell_{1}[1]$. Thus if $K=\left(B a\left(J^{*}\right), w^{*}\right)$, then $X^{* *} \backslash X \subseteq$ $B_{1 / 2}(K) \backslash B_{1 / 4}(K)$ by virtue of Theorem B.

For the last inclusion let $Y$ be the quasi-reflexive space of order 1 (see the proof of Proposition 6.3) whose dual is $J\left(e_{i}\right)$, where $\left(e_{i}\right)$ is the unit vector basis of Tsirelson's space. It is proved in [32] that the only spreading models of $Y$ are isomorphic to $\ell_{1}$. Thus by Theorem 3.7, if $Y^{* *}=Y \oplus\langle F\rangle$ and $K=B a\left(Y^{*}\right)$, then $F \notin B_{1 / 2}(K)$. An alternative method would be to consider the quasi-reflexive spaces $Q_{\gamma}$ constructed in Proposition 2.8.

Remark 5.2. How does the class $D S C(K)$ relate to the classes in (5.1)? Of course we always have $D B S C(K) \subseteq D S C(K)$ and in fact for $K$ an uncountable compact metric
space we have the following diagram.

Thus $D S C(K)$ is an asteroid in the Baire-1 solar system. Indeed our proof of Proposition 5.1 along with Theorem 4.1 yields that $B_{1 / 4}(K) \backslash D S C(K) \neq \emptyset, B_{1 / 2}(K) \backslash[D S C(K) \cup$ $\left.B_{1 / 4}(K)\right] \neq \emptyset$ and $B_{1}(K) \backslash\left[D S C(K) \cup B_{1 / 2}(K)\right] \neq \emptyset$. The fact that $D S C(K) \cap B_{1}(K) \backslash$ $B_{1 / 2}(K), D S C(K) \cap B_{1 / 2}(K) \backslash B_{1 / 4}(K)$ and $D S C(K) \cap B_{1 / 4}(K) \backslash D B S C(K)$ are all nonempty follows from Proposition 5.3 below.

We now turn to the case where $K$ is a countable compact metric space. In this setting we have, of course, $D S C(K)=B_{1}(K)$. However if $K$ is large enough, the classes in (5.1) are still distinct. Since every countable compact metric space is homeomorphic to some countable ordinal, given the order topology [30], we confine ourselves to this setting.

## Proposition 5.3.

a) If $K=\omega^{\omega^{2}}+$, then $B_{1 / 4}(K) \backslash D B S C(K) \neq \emptyset$.
b) If $K=\omega^{\omega}+$, then $B_{1 / 2}(K) \backslash B_{1 / 4}(K) \neq \emptyset$.
c) If $K=\omega^{\omega}+$, then $B_{1}(K) \backslash B_{1 / 2}(K) \neq \emptyset$.
d) If $K=\omega^{+}$, then $D B S C(K) \backslash C(K) \neq \emptyset$.

Before proving this proposition we need some terminology. Recall that an indicator function $1_{A}$ is Baire- 1 iff $A$ is ambiguous (simultaneously $F_{\sigma}$ and $G_{\delta}$ ). Thus if $A \subseteq K$ where $K$ is countable compact metric, then $\mathbf{1}_{A} \in B_{1}(K)$. We begin with a discussion of such functions.

Let $\delta$ be a countable compact ordinal space (in its order topology). Recursively we define $I_{0}=\emptyset, I_{1}=\{x \in \delta: x$ is an isolated point of $\delta\}$, and for $\alpha>1, I_{\alpha}=$
$\left\{x \in \delta \backslash \bigcup_{\beta<\alpha} I_{\beta}: x\right.$ is an isolated point of $\left.\delta \backslash \bigcup_{\beta<\alpha} I_{\beta}\right\}$. The $I_{\alpha}$ 's are just the relative complements of the usual derived sets.

Let us say an ordinal is even if it is of the form $\gamma+2 n$ for some $n \in \mathbb{N}$ where $\gamma=0$ or $\gamma$ is a limit ordinal. Let $F_{\delta}=\mathbf{1}_{A_{\delta}}$ where $A_{\delta}=\bigcup_{\alpha \text { even }} I_{\alpha}$. We have
${ }^{\circ}$ 1) $\left\|F_{\omega^{n}+}\right\|_{\infty}=1$ and $\left|F_{\omega^{n}+}\right|_{D}=n$.
${ }^{\circ}$ 2) $\left|F_{\delta}\right|_{D}=\infty$ if $\delta \geq \omega^{\omega}+$.
${ }^{\circ} 1$ ) implies ${ }^{\circ} 2$ ) trivially. To see ${ }^{\circ} 1$ ), one first notes that $K_{n}\left(F_{\omega^{n}+}, 1\right) \neq \emptyset$. Indeed, $K_{\alpha}\left(F_{\delta}, 1\right)$ is just the $\alpha^{t h}$ derived set of $\delta$. Hence $\left|F_{\omega^{n}+}\right|_{D} \geq n$ by the proof of Lemma 2.4. We leave the reverse inequality to the reader.

Definition. We say that a function $F: \omega^{n}+\rightarrow \mathbb{R}$ is of type 0 if $F=n^{-1} F_{\omega^{n}+}$. The domain of $F, \omega^{n}+$, is called a space of type 0 .

Thus if $F$ is a function of type 0 with domain $\omega^{n}+,|F|_{D}=1$ and $\|F\|_{\infty}=n^{-1}$.
More generally for $n \in \mathbb{N}$ we have the
Definition. A class of real valued functions $\mathcal{F}_{n}$ defined on countable compact metric spaces is said to be of type $n$ if
a) For $F \in \mathcal{F}_{n},|F|_{D} \geq n$.
b) For $F \in \mathcal{F}_{n}, F$ is the uniform limit of $\left(F_{m}\right)$ with $\sup _{m}\left|F_{m}\right|_{D} \leq 1$.
c) For each $\varepsilon>0$, there is an $F \in \mathcal{F}_{n}$ with $\|F\|_{\infty}<\varepsilon$.

The domain of $F \in \mathcal{F}_{n}$ is called a space of type $n$.
Lemma 5.4. For $n \in \mathbb{N} \cup\{0\}$ there exists a class $\mathcal{F}_{n}$ of functions of type $n$.
Proof. We have seen that $\mathcal{F}_{0}$ exists. Suppose $\mathcal{F}_{n}$ exists. To obtain functions $F \in \mathcal{F}_{n+1}$ we begin with a function $G \in \mathcal{F}_{0}$ defined on a set $K$. Let $\left(t_{i}\right)_{i=1}^{\infty}$ be a list of the isolated points of $K$. We enlarge $K$ as follows. To each $t_{i}$ we adjoin a sequence of disjoint clopen sets $K_{1}^{i}, K_{2}^{i}, \ldots$ clustering only at $t_{i}$. Each of the $K_{j}^{i}$ 's is a space of type $n$ supporting a function $F_{j}^{i}$ of type $n$ with $\left\|F_{j}^{i}\right\|_{\infty} \leq(i+j+m)^{-1}$. Here $m \in \mathbb{N}$ is arbitrary but fixed. $K_{n+1}$, the new space of type $n+1$, is this enlarged space. Set

$$
F(t)= \begin{cases}G(t), & t \in K \\ F_{j}^{i}(t), & t \in K_{i j}\end{cases}
$$

Let $\mathcal{F}_{n+1}$ be the set of all such $F$ 's thusly obtained. We must check that $\mathcal{F}_{n+1}$ satisfies a) and b) with $n$ replaced by $n+1$ (c) is immediate). b) holds since $F$ is the uniform limit of $\left(F_{k}\right)$ where

$$
F_{k}(t)= \begin{cases}G(t), & t \in K \\ F_{j}^{i}(t), & t \in K_{j}^{i} \text { with } i+j \leq k \\ 0, & \text { otherwise }\end{cases}
$$

and each $F_{k}$ is the uniform limit of $\left(F_{k, n}\right)_{n=1}^{\infty}$ where $\left|F_{k, n}\right|_{D} \leq 1$ for all $n$.
Finally we check a). Let $\left(f_{m}\right)_{0}^{\infty} \subseteq C\left(K_{n+1}\right), f_{0} \equiv 0$, converge pointwise to $F$. Since $\left.F\right|_{K}=G$ and $|G|_{D}=1$, for $\varepsilon>0$ there exist $t_{i_{0}} \in K$ and $k \in \mathbb{N}$ with $\sum_{i=0}^{k-1} \mid f_{i+1}\left(t_{i_{0}}\right)-$ $f_{i}\left(t_{i_{0}}\right) \mid>1-\varepsilon$. Moreover by the nature of $G$ we may assume $\left|G\left(t_{i_{0}}\right)\right|<\varepsilon$. Since the $K_{j}^{i_{0}}$ 's cluster at $t_{i_{0}}$ and each $f_{i}$ is continuous there exists $j_{0} \in \mathbb{N}$ so that for $t \in K_{j_{0}}^{i_{0}}$, $\sum_{i=0}^{k-1}\left|f_{i+1}(t)-f_{i}(t)\right|>1-\varepsilon$ and $\left|f_{k}(t)\right|<\varepsilon$. But on $K_{j_{0}}^{i_{0}},\left(f_{m}\right)$ converges pointwise to $F_{j_{0}}^{i_{0}}$ and $\left|F_{j_{0}}^{i_{0}}\right|_{D} \geq n$. Thus there exists $t \in K_{j_{0}}^{i_{0}}$ with

$$
\left|f_{k+1}(t)\right|+\sum_{i>k}\left|f_{i+1}(t)-f_{i}(t)\right|>n-\varepsilon .
$$

It follows that

$$
\sum_{i=0}^{\infty}\left|f_{i+1}(t)-f_{i}(t)\right|>n+1-3 \varepsilon
$$

which proves a).
Remark 5.4. Our proof yields that the spaces of type- $n$ can be constructed within $\omega^{\omega \cdot(n+1)}+$.

Proof of Proposition 5.3. a) Let $K=\omega^{\omega^{2}}+$ and choose (by Remark 5.4) a sequence $\left(K_{n}\right)_{n=0}^{\infty}$ of disjoint clopen subspaces of $K$ with $K_{n}$ of type- $n$. Let $F_{n}$ be a function of type- $n$ supported on $K_{n}$ with $\left\|F_{n}\right\|_{\infty} \rightarrow 0$ and let $F$ be the sum of the $F_{n}$ 's. Clearly $|F|_{D}=\infty$ since $\left|F_{n}\right|_{D} \geq n$. Yet $F$ is the uniform limit of a sequence of functions with $|\cdot|_{D}$ not exceeding 1 .
b) Let $\left(K_{n}\right)_{n \in \mathbb{N}}$ be a sequence of disjoint clopen subspaces of type-0 of $\omega^{\omega}+=K$ such that $K_{n}$ supports a function $F_{n}$, which is a multiple of a function of type-0, with $\left\|F_{n}\right\|_{\infty} \leq n^{-1}$ and $\left|F_{n}\right|_{D} \geq n$. Define

$$
F(t)= \begin{cases}F_{n}(t) & \text { if } t \in K_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $F \in B_{1 / 2}(K) \backslash B_{1 / 4}(K)$.
c) The type-0 function $F_{\omega^{\omega}+}$ is not Baire-1/2.
d) $F_{\omega^{+}}$is $D B S C$.

It is easy to check that the results of Proposition 5.3 are best possible.

## 6. A Characterization of $B_{1 / 4}(K)$ and an Example.

In this section we give an example which shows that functions of class Baire- $1 / 4$ need not govern $\left\{c_{0}\right\}$. Thus Theorem $\mathrm{B}(\mathrm{b})$ is best possible. Before giving the example we give a sufficient (and necessary) criterion for a function to be Baire- $1 / 4$.

Theorem 6.1. Let $K$ be a compact metric space and let $F \in B_{1}(K)$. Then $F \in B_{1 / 4}(K)$ iff there exists a $C<\infty$ such that for all $\varepsilon>0$ there exists a sequence $\left(S_{n}\right)_{n=0}^{\infty} \subseteq C(K)$, $S_{0} \equiv 0$, with $S_{n}(k) \rightarrow F(k)$ for all $k \in K$ and such that for all subsequences $\left(n_{i}\right)$ of $\{0\} \cup \mathbb{N}$ and $k \in K$,

$$
\begin{equation*}
\sum_{j \in B\left(\left(n_{i}\right), k\right)}\left|S_{n_{j+1}}(k)-S_{n_{j}}(k)\right| \leq C \tag{6.1}
\end{equation*}
$$

Here $B\left(\left(n_{i}\right), k\right)=\left\{j:\left|S_{n_{j+1}}(k)-S_{n_{j}}(k)\right| \geq \varepsilon\right\}$.
Proof. First assume $F \in B_{1 / 4}(K)$, let $\varepsilon>0$ and let $\varepsilon_{n} \downarrow 0$. By the proof of Theorem $\mathrm{B}(\mathrm{b})$ there exists $\left(f_{n}\right)_{n=0}^{\infty} \subseteq C(K), f_{0} \equiv 0$, converging pointwise to $F$ with the following property. For each $m \in \mathbb{N}$, there exists $\left(h_{j}^{m}\right)_{j=0}^{\infty} \subseteq C(K)$ with $h_{0}^{m} \equiv 0$ and

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left|h_{j+1}^{m}(k)-h_{j}^{m}(k)\right| \leq M \equiv 2|F|_{1 / 4}, \quad \text { for } \quad k \in K \tag{6.2}
\end{equation*}
$$

Furthermore $\left\|h_{j}^{m}-f_{j}\right\|_{\infty} \leq \varepsilon_{m}$ for $j \geq m$.
Let $\varepsilon>0$ and fix $m$ with $4 \varepsilon_{m}<\varepsilon$. Let $\left(S_{n}\right)_{n=0}^{\infty}=\left(0, f_{m}, f_{m+1}, \ldots\right)$, and let $\left(n_{i}\right)$ be a subsequence of $\{0\} \cup \mathbb{N}$ and let $k \in K$ be fixed. Then

$$
\begin{equation*}
\sum_{j \in B\left(\left(n_{i}\right), k\right)}\left|S_{n_{j+1}}(k)-S_{n_{j}}(k)\right| \leq \sum_{j=0}^{\infty}\left|h_{j+1}^{m}(k)-h_{j}^{m}(k)\right|+2 \varepsilon_{m} \# B\left(\left(n_{i}\right), k\right) \tag{6.3}
\end{equation*}
$$

Since $\left|f_{p}(k)-f_{q}(k)\right| \geq \varepsilon$ implies for $p>q \geq m$ or $q=0$ that $\left|h_{p}^{m}(k)-h_{q}^{m}(k)\right| \geq \varepsilon-2 \varepsilon_{m}>$ $\varepsilon / 2,(6.2)$ yields that $\# B\left(\left(n_{i}\right), k\right) \leq 2 M / \varepsilon$. Thus (6.3) yields (6.1) with $C=2 M=4|F|_{1 / 4}$.

For the converse, let $C>\varepsilon>0$ and let $\left(S_{n}\right)_{0}^{\infty} \subseteq C(K), S_{0} \equiv 0$, converge pointwise to $F$ and satisfy (6.1) for any subsequence $\left(n_{i}\right)$ of $\{0,1,2, \ldots\}$ and any $k \in K$. For $k \in K$ we linearly extend the sequence $\left(S_{n}(k)\right)_{n=0}^{\infty}$ to $\left(S_{r}(k)\right)_{r \geq 0}$. Precisely, if $r=\lambda n+(1-\lambda)(n+1)$ we set $S_{r}(k)=\lambda S_{n}(k)+(1-\lambda) S_{n+1}(k)$. Since the $S_{n}$ 's are continuous, $S_{r} \in C(K)$ as well. Furthermore, if $0 \leq r_{1}<r_{2}<r_{3}<\cdots, k \in K$ and $B=B\left(\left(r_{i}\right), k\right)=\{j$ : $\left.\left|S_{r_{j+1}}(k)-S_{r_{j}}(k)\right| \geq \varepsilon\right\}$, then

$$
\begin{equation*}
\sum_{j \in B}\left|S_{r_{j+1}}(k)-S_{r_{j}}(k)\right| \leq 3 C \tag{6.4}
\end{equation*}
$$

Indeed if $J_{n}=\left\{j \in B: n \leq r_{j}<r_{j+1} \leq n+1\right\} \neq \emptyset$, then $\varepsilon \leq \sum_{j \in J_{n}}\left|S_{r_{j+1}}(k)-S_{r_{j}}(k)\right| \leq$ $\left|S_{n+1}(k)-S_{n}(k)\right|$. If $j \in B \backslash \bigcup_{n} J_{n}$, there exists integers $\ell_{j}$ and $m_{j}$ with $\ell_{j}-1 \leq r_{j}<$ $\ell_{j} \leq m_{j}<r_{j+1} \leq m_{j+1}$. Thus by linearity for some choice of $p_{j} \in\left\{\ell_{j}-1, \ell_{j}\right\}$ and $q_{j} \in\left\{m_{j}, m_{j}+1\right\}$ we have $\varepsilon \leq\left|S_{r_{j+1}}(k)-S_{r_{j}}(k)\right| \leq\left|S_{q_{j}}(k)-S_{p_{j}}(k)\right|$. Thus

$$
\begin{aligned}
& \sum_{j \in B}\left|S_{r_{j+1}}(k)-S_{r_{j}}(k)\right| \leq \sum_{\left\{n: J_{n} \neq \emptyset\right\}}\left|S_{n+1}(k)-S_{n}(k)\right| \\
& \quad+\sum_{2 j \in B \backslash \bigcup_{n} J_{n}}\left|S_{q_{2 j}}(k)-S_{p_{2 j}}(k)\right|+\sum_{2 j+1 \in B \backslash \bigcup_{n} J_{n}}\left|S_{q_{2 j+1}}(k)-S_{p_{2 j+1}}(k)\right| \leq 3 C .
\end{aligned}
$$

We shall construct a sequence $\left(f_{n}\right)_{n=0}^{\infty} \subseteq C(K), f_{0} \equiv 0$, such that for $k \in K$,

$$
\begin{align*}
& \sum_{n=0}^{\infty}\left|f_{n+1}(k)-f_{n}(k)\right| \leq 4 C \text { and }  \tag{6.5}\\
& \text { if } H \text { is the pointwise limit of }\left(f_{n}\right) \text { then }\|H-F\|_{\infty} \leq 5 \varepsilon . \tag{6.6}
\end{align*}
$$

This will complete the proof.
Each $f_{n}$ shall be an average of functions $S_{t}$ where $t: K \rightarrow[0, \infty)$ is continuous and $S_{t}(k) \equiv S_{t(k)}(k)$ for $k \in K$. Let $f_{0}=S_{0} \equiv 0$. Let $\alpha_{1}^{1}:[0, \infty) \rightarrow[0,1]$ be identically 0 on $[0, \varepsilon]$, identically 1 on $[3 \varepsilon / 2, \infty)$ and linear on $[\varepsilon, 3 \varepsilon / 2]$. Let $\alpha_{2}^{1}:[0, \infty) \rightarrow[0,1]$ be identically 0 on $[0,3 \varepsilon / 2]$, identically 1 on $[2 \varepsilon, \infty)$ and linear on $[3 \varepsilon / 2, \varepsilon]$. For $i=1,2$ let $t_{i}(k)=\alpha_{i}^{1}\left(\left|S_{1}(k)\right|\right)$. Let $f_{1}=2^{-1}\left(S_{t_{1}}+S_{t_{2}}\right)$. We next define continuous functions $t_{i, j}$ for $i=1,2$ and $j=1,2,3,4$ by $t_{i, j}(k)=t_{i}(k)+\alpha_{j}^{2}\left(\left|S_{2}(k)-S_{t_{i}}(k)\right|\right)\left(2-t_{i}(k)\right)$. Here $\alpha_{j}^{2}:[0, \infty) \rightarrow[0,1]$ is identically 0 on $[0,(4+j-1) \varepsilon / 4]$, identically 1 on $[(4+j) \varepsilon / 4, \infty)$ and linear on $[(4+j-1) \varepsilon / 4,(4+j) \varepsilon / 4]$. Set $f_{2}=8^{-1} \sum_{i=1}^{2} \sum_{j=1}^{4} S_{t_{i, j}}$.

In general if $f_{n}=2^{-1} 2^{-2} \cdots 2^{-n} \sum S_{t_{i_{1}, \ldots, i_{n}}}$, where the indices of summation range over $\left\{\left(i_{1}, \ldots, i_{n}\right): 1 \leq i_{j} \leq 2^{j}\right\}$. We define $t_{i_{1}, \ldots, i_{n}}$ for $1 \leq i_{n+1} \leq 2^{n+1}$ by

$$
\begin{aligned}
& t_{i_{1}, \ldots, i_{n+1}}(k)=t_{i_{1}, \ldots, i_{n}}(k) \\
& \quad+\alpha_{i_{n+1}}^{n+1}\left(\left|S_{n+1}(k)-S_{t_{i_{1}, \ldots, i_{n}}}(k)\right|\right)\left(n+1-t_{i_{1}, \ldots, i_{n}}(k)\right)
\end{aligned}
$$

The functions $\alpha_{j}^{n+1}$ for $1 \leq j \leq 2^{n+1}$ are defined as before to be identically 0 on $[0, \varepsilon+(j-$ 1) $\left.\varepsilon 2^{-n-1}\right]$, identically 1 on $\left[\varepsilon+j \varepsilon 2^{-n-1}\right]$ and linear on $\left[\varepsilon+(j-1) \varepsilon 2^{-n-1}, \varepsilon+j \varepsilon 2^{-n-1}\right]$.

The point of the construction is this. For $k \in K$ and $\left(i_{1}, \ldots, i_{n}\right)$ fixed, $\mid S_{t_{i_{1}, \ldots, i_{n+1}}}(k)-$ $S_{t_{i_{1}, \ldots, i_{n}}}(k) \mid$ is either 0 or a number exceeding $\varepsilon$ for all but perhaps one choice of $i_{n+1}$. [This is because the nonconstant parts of the $\alpha_{j}^{n+1}$,s are disjointly supported.] Also except for at most one value of $i_{n+1}$, if $\left|S_{t_{i_{1}, \ldots, i_{n+1}}}(k)-S_{t_{i_{1}, \ldots, i_{n}}}(k)\right| \geq \varepsilon$ then $S_{t_{i_{1}, \ldots, i_{n+1}}}(k)=S_{n+1}(k)$.

We next check (6.5). Fix $k \in K$ and $m \in \mathbb{N}$. A simple calculation using the triangle inequality shows that

$$
\begin{equation*}
\sum_{n=0}^{m}\left|f_{n+1}(k)-f_{n}(k)\right| \leq \operatorname{AVE} \sum_{n=0}^{m}\left|S_{t_{i_{1}}, \ldots, i_{n+1}}(k)-S_{t_{i_{1}, \ldots, i_{n}}}(k)\right| \tag{6.7}
\end{equation*}
$$

where the average is taken over $\left\{\left(i_{1}, \ldots, i_{m}\right): 1 \leq i_{j} \leq 2^{j}\right.$ for all $\left.j\right\}$. If we fix $\left(i_{1}, \ldots, i_{m}\right)$ and let

$$
B=\left\{n \leq m| | S_{t_{i_{1}, \ldots, i_{n+1}}}(k)-S_{t_{i_{1}, \ldots, i_{n}}}(k) \mid \geq \varepsilon\right\}
$$

then

$$
\sum_{n \in B}\left|S_{t_{i_{1}, \ldots, i_{n+1}}}(k)-S_{t_{i_{1}, \ldots, i_{n}}}(k)\right| \leq 3 C
$$

by (6.4).
Now for $1 \leq n \leq m$ fixed, the percentage of terms in the "AVE" of (6.7) for which $0<\left|S_{t_{i_{1}, \ldots, i_{n+1}}}(k)-S_{t_{i_{1}, \ldots, i_{n}}}(k)\right|<\varepsilon$ is at most $2^{-n-1}$. It follows that

$$
\operatorname{AVE} \sum_{n=0}^{m}\left|S_{t_{i_{1}, \ldots, i_{n+1}}}(k)-S_{t_{i_{1}, \ldots, i_{n}}}(k)\right| \leq 3 C+2^{-1} \varepsilon+\cdots+2^{-m-1} \varepsilon
$$

and (6.5) follows from this since $\varepsilon<C$.
(6.5) implies $\left(f_{n}\right)$ is pointwise convergent to some function $H$. For fixed $k \in K$ choose $m \in \mathbb{N}$ so that $2^{-m} C<\varepsilon,\left|S_{m}(k)-F(k)\right|<\varepsilon$ and $\left|f_{m}(k)-H(k)\right|<\varepsilon$. We claim that $\left|f_{m}(k)-S_{m}(k)\right|<3 \varepsilon$, which proves (6.6). Indeed

$$
f_{m}(k)=\operatorname{AVE} S_{t_{i_{1}}, \ldots, i_{m}}(k) \text { and } C \geq\left|S_{t_{i_{1}}, \ldots, i_{m}}(k)-S_{m}(k)\right| \geq 2 \varepsilon
$$

for at most $2^{-m} \#\left\{\left(i_{1}, \ldots, i_{m}\right): i_{j} \leq 2^{j}\right\}$ choices of $\left(i_{1}, \ldots, i_{m}\right)$. Thus $\left|f_{m}(k)-S_{m}(k)\right| \leq$ $2 \varepsilon+2^{-m} C<3 \varepsilon$.

Remark 6.2. Let $F \in B_{1}(K)$. Our proof shows that $F \in B_{1 / 4}(K)$ iff there exists $C<\infty$ and $\left(S_{n}\right)_{n=0}^{\infty} \subseteq C(K), S_{0} \equiv 0$, converging pointwise to $F$ such that for all $\varepsilon>0$ there exists $m \in \mathbb{N}$ such that if $\left(n_{i}\right)$ is any subsequence of $\{0, m, m+1, \ldots\}$ then (6.1) holds.

Proposition 6.3. There exists a compact metric space $K$ and $F \in B_{1 / 4}(K)$ which does not govern $\left\{c_{0}\right\}$.

Proof. Let $\left(e_{i}\right)$ be the unit vector basis of the Tsirelson space $T$ constructed in [17] (see also [11]) and let $X=J\left(e_{i}\right)$ be its "Jamesification" as described in [6]. For completeness we recall the definition of $X$. Let $c_{o o}$ be the linear space of all finitely supported functions $x: \mathbb{N} \rightarrow \mathbb{R}$ and for $n \in \mathbb{N}$ define $S_{n}: c_{o o} \rightarrow \mathbb{R}$ by $S_{n}(x)=\sum_{i=1}^{n} x(i)$. Let $S_{0} \equiv 0$. For $x \in c_{o o}$ let

$$
\|x\|=\sup \left\{\left\|\sum_{i=1}^{m}\left(S_{n_{i}}-S_{p_{i}-1}\right)(x) e_{p_{i}}\right\|_{T} \mid 1 \leq p_{1} \leq n_{1}<p_{2} \leq n_{2}<\cdots<p_{m} \leq n_{m}\right\}
$$

Let $X$ be the completion of $\left(c_{o o},\|\cdot\|\right)$.
As shown in [6], the unit vectors $\left(u_{i}\right)$ form a boundedly complete normalized basis for $X$. Thus $X=Y^{*}$ (where $Y=\left[\left(u_{i}^{*}\right)\right] \subseteq X^{*}$ ). Furthermore it was shown that $Y$ is quasi-reflexive and $Y^{* *}$ has a basis given by $\left\{S, u_{1}^{*}, u_{2}^{*}, \ldots\right\}$, where

$$
S\left(\sum a_{i} u_{i}\right)=\sum_{1}^{\infty} a_{i}
$$

Of course $\left(u_{i}^{*}\right)$ are the biorthogonal functionals to $\left(u_{i}\right)$ and $S$ is the weak ${ }^{*}$ limit in $Y^{* *}$ of $\left(S_{n}\right)$.

Let $K=B a(X)=B a\left(Y^{*}\right)$ in the weak* topology (of $Y^{*}$ ). Since $Y$ does not contain $c_{0}$, our example will be complete if we can prove that $S \in B_{1 / 4}(K)$. By Theorem 6.1 it suffices to prove that if $\varepsilon>0$ then for $m \in \mathbb{N}$ with $m>2 / \varepsilon$, if $x \in B a(X)$ and $\left(n_{i}\right)$ is a subsequence of $\{m, m+1, m+2, \ldots\}$, then

$$
\sum_{j \in B}\left|S_{n_{j+1}}(x)-S_{n_{j}}(x)\right| \leq 2
$$

where

$$
B=\left\{j:\left|S_{n_{j+1}}(x)-S_{n_{j}}(x)\right| \geq \varepsilon\right\} .
$$

We first note that $\# B<m$. Indeed if $\# B \geq m$, then by the properties of $T$,

$$
\begin{aligned}
1 & \geq\|x\| \geq\left\|\sum_{j \in B}\left(S_{n_{j+1}}(x)-S_{n_{j}}(x)\right) e_{n_{j}}\right\|_{T} \\
& \geq 2^{-1} m \varepsilon
\end{aligned}
$$

a contradiction. The last inequality is due to the fact that $\left\|\sum_{A} a_{i} e_{i}\right\|_{T} \geq 2^{-1} \sum_{A}\left|a_{i}\right|$ provided $\min A \leq \# A$.

Thus $m \leq \min B \leq \# B$ and so

$$
\begin{aligned}
\sum_{j \in B}\left|S_{n_{j+1}}(x)-S_{n_{j}}(x)\right| & \leq 2\left\|\sum_{j \in B}\left(S_{n_{j+1}}(x)-S_{n_{j}}(x)\right) e_{n_{j}}\right\| \\
& \leq 2\|x\| \leq 2 .
\end{aligned}
$$

Remark 6.4. Our proof of Proposition 6.3 shows that there exists a quasi-reflexive (of order one) Banach space $Y$ such that if $K=B a\left(Y^{*}\right)$ then $Y^{* *} \backslash Y \subseteq B_{1 / 4}(K)$. In particular, it follows that there exists an $F \in B_{1 / 4}(K) \backslash C(K)$ which strictly governs the class of quasi-reflexive Banach spaces.

## 7. Some Bad Baire-1/2 Functions.

In this section we show that functions of class Baire- $1 / 2$ need not be that nice.

Proposition 7.1. There exists a compact metric space $K$ and $F \in B_{1 / 2}(K)$ which governs $\left\{\ell_{1}\right\}$.

Remark 7.2. The first example of an $F \in B_{1}(K)$ which governs $\left\{\ell_{1}\right\}$ was due to Bourgain [ 9,10$]$. His ingenious construction forms the motivation behind our next example (Proposition 7.3). Another example of such an $F$ appears in [2]. While the example of [2] can be shown to be Baire-1/2, we prefer to present a very slight modification.

Proof. Let $\left(e_{n}\right)$ be the unit vector basis of a Lorentz sequence space $d_{w, 1}$ (see e.g., [27]). Let $J\left(e_{i}\right)$ be the Jamesification of $\left(e_{n}\right)$ (see [6]) and let $\left(u_{i}\right)$ be the unit vector basis of $J\left(e_{i}\right)$. Thus

$$
\left\|\sum_{i=1}^{k} a_{i} u_{i}\right\|=\sup \left\{\left\|\sum_{i=1}^{p}\left(\sum_{j=n_{i}}^{m_{i}} a_{j}\right) e_{i}\right\|_{d_{w, 1}} \mid 1 \leq n_{1} \leq m_{1}<n_{2} \leq m_{2}<\cdots<n_{p} \leq m_{p}\right\}
$$

$\left(u_{i}\right)$ is a normalized spreading basis for $J\left(e_{i}\right)$ which is not equivalent to the unit vector basis of $\ell_{1}$ and thus by [36], $\left(u_{i}\right)$ is weak Cauchy. Furthermore by standard block basis arguments one can show that $J\left(e_{i}\right)$ is hereditarily $\ell_{1}$. Also if $F$ is defined by $u_{i} \rightarrow F$ weak* then $F \in B_{1 / 2}(K)$ where $K=B a\left(J\left(e_{i}\right)^{*}\right)$. But this is immediate by Theorem $\mathrm{B}(\mathrm{a})$ since $\left(u_{i}\right)$, being its own spreading model, does not have $\ell_{1}$ as a spreading model. The fact that $F$ governs $\ell_{1}$ follows from Lemma 3.3. Indeed if $\left(f_{n}\right)$ is a bounded sequence in $C(K)$ converging pointwise to $F$, then some convex block subsequence of $\left(f_{n}\right)$ is a basic sequence equivalent to some convex block subsequence of $\left(u_{i}\right)$. Since $\left[\left(u_{i}\right)\right]$ is hereditarily $\ell_{1}, \ell_{1} \hookrightarrow\left[\left(f_{n}\right)\right]$.

Proposition 7.3. There exists a compact metric space $K$ and $F \in B_{1 / 2}(K)$ such that $F$ does not govern $\left\{\ell_{1}\right\}$ yet $F$ strictly governs $\left\{X: X\right.$ is separable and $X^{*}$ is not separable $\}$.

Remark 7.4. In [33] a function $F \in B_{1}(K) \backslash B_{1 / 2}(K)$ was constructed satisfying the conclusion of Proposition 7.3. The construction we now present will be a modification of that example.

Proof of Proposition 7.3. We begin by defining a Banach space $Y$. (The space $Y$ was first defined in [34]) Let $\mathcal{D}=\{\phi\} \cup \bigcup_{n}\{0,1\}^{n}$ be the dyadic tree with its natural order (see Remark 4.2) and let $\left(K_{\alpha}\right)_{\alpha \in \mathcal{D}}$ be the natural clopen base for the Cantor set $\Delta$. For $f \in C\left(K_{\alpha}\right)$ we let $\widetilde{f} \in C(\Delta)$ be given by $\widetilde{f}(t)=f(t)$ for $t \in K_{\alpha}$ and $\widetilde{f}(t)=0$ otherwise. Let

$$
\begin{aligned}
& Y=\left\{\left(f_{\alpha}\right)_{\alpha \in \mathcal{D}} \mid f_{\alpha} \in C\left(K_{\alpha}\right) \text { for all } \alpha \in \mathcal{D}\right. \text { and } \\
& \left.\left\|\left(f_{\alpha}\right)\right\|_{Y} \equiv \sup \left\{\left(\sum_{k=1}^{\ell}\left\|\sum_{\alpha \in S_{k}} \widetilde{f}_{\alpha}\right\|_{\infty}^{2}\right)^{1 / 2}:\left(S_{k}\right)_{k=1}^{\ell} \text { are disjoint segments in } \mathcal{D}\right\}<\infty\right\}
\end{aligned}
$$

$Y$ is a Banach space under the given norm.
We shall construct a weak Cauchy sequence $\left(g_{n}\right) \subseteq Y$ with weak* limit $F$ such that

$$
\begin{align*}
& \ell_{1} \nprec\left[\left(g_{n}\right)\right]  \tag{7.1}\\
& \left\{\begin{array}{c}
{\left[\left(h_{n}\right)\right]^{*} \text { is nonseparable for every convex block }} \\
\text { subsequence }\left(h_{n}\right) \text { of }\left(g_{n}\right) \text { and }
\end{array}\right.  \tag{7.2}\\
& \left\{\begin{array}{r}
\text { there exists a weak* closed set } K \subseteq B a\left(Y^{*}\right) \text { such that } \\
K \text { norms }\left[\left(g_{n}\right)\right] \text { and }\left.F\right|_{K} \in B_{1 / 2}(K) .
\end{array}\right. \tag{7.3}
\end{align*}
$$

The proposition follows immediately from (7.1)-(7.3). Indeed to see that $F$ governs $\{X: X$ is separable and $X^{*}$ is nonseparable $\}$, let $\left(f_{n}\right)$ be a bounded sequence in $C(K)$ converging pointwise to $F$. By Lemma 3.3 there exist convex block subsequences $\left(d_{n}\right)$ and $\left(h_{n}\right)$ of $\left(f_{n}\right)$ and $\left(g_{n}\right)$, respectively, such that $\left\|d_{n}-h_{n}\right\|_{C(K)} \rightarrow 0$. Since $\left[\left(h_{n}\right)\right]^{*}$ is nonseparable, so is $\left[\left(d_{n}\right)\right]^{*}$.

Our construction of $\left(g_{n}\right)$ depends upon the following (which in turn follows from our discussion of functions of type-0 in $\S 5)$ : for $n \in \mathbb{N}$ there exists $F_{n} \in B_{1}(\Delta)$ such that

$$
\begin{equation*}
\left\|F_{n}\right\|_{\infty}=1 \text { and } \tag{7.4}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\left|F_{n}\right|_{D}=n . \text { Moreover if }\left(h_{i}\right) \subseteq C(\Delta) \text { converges pointwise to } F_{n} \text { then }  \tag{7.5}\\
\text { there exists } k \in \Delta, \text { integers } \ell_{1}<\ell_{2}<\cdots \ell_{n+1} \text { and } \varepsilon_{i}= \pm 1(1 \leq i \leq n) \\
\text { such that } \sum_{i=1}^{n} \varepsilon_{i}\left(h_{\ell_{i+1}}-h_{\ell_{i}}\right)(k)>n-1 .
\end{array}\right.
$$

Actually our $F_{n}$ 's are indicator functions whose domains are countable compact metric spaces $K$. Of course one can embed $K$ into $\Delta$ and the corresponding extended indicator functions have the desired properties (7.4) and (7.5).

We use " $<_{L}$ " for the natural linear order on $\mathcal{D}$. Thus $\phi<0<1<00<01<10<$ $11<000<\cdots$. For each $\alpha \in \mathcal{D}$ choose $n_{\alpha} \in \mathbb{N}$ and $c_{\alpha} \in \mathbb{R}^{+}$satisfying the following seven properties:
i) $\sum_{\beta \in \mathcal{D}} c_{\beta} \leq 1$.
ii) $c_{\alpha}^{-1} n_{\alpha}^{-1} \sum_{\beta<\alpha} n_{\beta}<1 / 10$.
iii) $2 c_{\alpha}^{-1} \sum_{\beta>\alpha} c_{\beta}<1 / 10$.
iv) $1-n_{\alpha}^{-1}>9 / 10$.
v) $2 c_{\alpha_{0}} c_{\alpha}^{-1}<1 / 10$ if $\alpha<_{L} \alpha_{0}$.
vi) $c_{\alpha_{0}} c_{\alpha}^{-1} n_{\alpha_{0}} n_{\alpha}^{-1}<1 / 10$ if $\alpha_{0}<_{L} \alpha$.
vii) $\sum_{\beta \in \mathcal{D}} b_{\beta}^{2}<\infty$ where $b_{\beta}=\sum_{\gamma \geq_{L} \beta} c_{\gamma}$.

Of course we could trim this list somewhat, but we prefer to list the properties in the form in which they are used. The $c_{\alpha}$ 's and $n_{\alpha}$ 's can be chosen as follows. Let $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right\}$ be a listing of $\mathcal{D}$ in the linear order. Let $c_{\alpha_{j}}=(22)^{-j}$. It is quickly checked that properties i), iii), v) and vii) hold. We then choose $n_{\alpha_{j}}$ inductively to be an increasing sequence of positive integers with $n_{\alpha_{1}}=11$ (so that iv) holds). If $n_{\alpha_{j}}$ is picked, choose $n_{\alpha_{j+1}}$ to satisfy ii) and vi) for $\alpha=\alpha_{j+1}$. For each $\alpha \in \mathcal{D}$, let $F_{n_{\alpha}} \in B_{1}\left(K_{\alpha}\right)$ satisfy (7.4) and (7.5) (with $\Delta$ replaced by $K_{\alpha}$ and $n$ replaced by $n_{\alpha}$ ).

For each $\alpha \in \mathcal{D}$ choose $\left(f_{\alpha}^{n}\right)_{n=1}^{\infty} \subseteq C\left(K_{\alpha}\right), f_{\alpha}^{n} \geq 0$ and $\left\|f_{\alpha}^{n}\right\|=1$, so that $\left(f_{\alpha}^{n}\right)_{n=1}^{\infty}$ converges pointwise to $F_{n_{\alpha}}$ and is equivalent to $\left(s_{n}\right)$ with

$$
\begin{equation*}
\left|f_{\alpha}^{1}(k)\right|+\sum_{n=1}^{\infty}\left|f_{\alpha}^{n+1}(k)-f_{\alpha}^{n}(k)\right| \leq n_{\alpha} \quad \text { for all } k \in K_{\alpha} \tag{7.6}
\end{equation*}
$$

Let $g_{n}=\left(c_{\alpha} f_{\alpha}^{n}\right)_{\alpha \in \mathcal{D}}$. Clearly $g_{n} \in Y$ since $\left\|g_{n}\right\| \leq \sum_{\alpha \in \mathcal{D}} c_{\alpha} \leq 1$ by i). Furthermore $\ell_{1} \nLeftarrow\left[\left(g_{n}\right)\right]$ by the following lemma and the fact that for all $\alpha, \ell_{1} \nLeftarrow\left[f_{\alpha}^{n}: n \in \mathbb{N}\right]$.

Lemma 7.5. For all $\alpha \in \mathcal{D}$, let $Y_{\alpha}$ be a closed subspace of $C\left(K_{\alpha}\right)$ which does not contain $\ell_{1}$. Let

$$
\widetilde{Y}_{\alpha}=\left\{\left(h_{\beta}\right)_{\beta \in \mathcal{D}} \in Y: h_{\alpha} \in Y_{\alpha} \text { and } h_{\beta} \equiv 0 \text { if } \alpha \neq \beta\right\} .
$$

Let $Z$ be the closed linear span of $\left\{\tilde{Y}_{\alpha}: \alpha \in \mathcal{D}\right\}$. Then $Z$ does not contain $\ell_{1}$.
Proof. It is shown in [34] that $Y$ does not contain a sequence $\left(h_{n}\right)_{n=1}^{\infty}=\left(\left(h_{\alpha}^{n}\right)_{\alpha \in \mathcal{D}}\right)_{n=1}^{\infty}$ which is both equivalent to the unit vector basis of $\ell_{1}$ and has the following property: for all $\alpha_{0} \in \mathcal{D}$ there exists $m_{0} \in \mathbb{N}$ so that for $m \geq m_{0}$ and $\alpha \leq_{L} \alpha_{0}, h_{\alpha}^{m} \equiv 0$.

But if $Z$ contains $\ell_{1}$, then $Y$ must contain such a sequence $\left(h_{n}\right)$. This follows easily from the fact that if $\left(f_{n}\right)_{n=1}^{\infty}$ is an $\ell_{1}$-basis in $Z$, then for all $\varepsilon>0$ and $\alpha_{0} \in \mathcal{D}$, there exists a normalized block basis $\left(d_{n}\right)_{n=1}^{\infty}=\left(\left(d_{\alpha}^{n}\right)_{\alpha \in \mathcal{D}}\right)_{n=1}^{\infty}$ of $\left(f_{n}\right)$ with $\left\|d_{\alpha_{0}}^{n}\right\|_{C\left(K_{\alpha_{0}}\right)}<\varepsilon$ for all $n$.

Thus by [36] we may pass to a subsequence of $\left(g_{n}\right)$ which is weak Cauchy. By relabeling we assume that $\left(g_{n}\right)$ itself is weak Cauchy and converges weak* to $F \in Y^{* *}$.

We next verify (7.2). Let $\left(h_{n}\right)$ be a convex block subsequence of $\left(g_{n}\right)$. For $k \in \Delta$ and $h=\left(h_{\alpha}\right)_{\alpha \in \mathcal{D}} \in Y$, define $\delta_{k}(h)=\sum_{\alpha \in \gamma_{k}} \widetilde{h}_{\alpha}(k)$ where $\gamma_{k}=\left\{\alpha \in \mathcal{D}: k \in K_{\alpha}\right\}$. Clearly $\delta_{k}$ is a normalized element of $Y^{*}$. We shall show that

$$
\left\{\begin{array}{l}
\text { for all } \alpha \in \mathcal{D} \text { there exists } k_{\alpha} \in K_{\alpha} \text { and } h=\left(h_{\beta}\right) \in B a\left[\left(h_{n}\right)\right]  \tag{7.7}\\
\text { such that } \delta_{k_{\alpha}}(h)>7 / 10 \text { and } \delta_{k}(h)<3 / 10 \text { if } k \in \Delta \backslash K_{\alpha}
\end{array}\right.
$$

As in [33] this implies $\left[\left(h_{n}\right)\right]^{*}$ is nonseparable. Indeed by (7.7) we can choose $\left(h^{\alpha}\right)_{\alpha \in \mathcal{D}} \subseteq$ $B a\left[\left(h_{n}\right)\right]$ and a collection of basic clopen sets $\left(K_{\alpha}^{\prime}\right)_{\alpha \in \mathcal{D}}$ in $\Delta$ such that for all $\alpha \in \mathcal{D}$,
a) $K_{\alpha, 0}^{\prime} \cap K_{\alpha, 1}^{\prime}=\emptyset$,
b) $K_{\alpha, \varepsilon}^{\prime} \subseteq K_{\alpha}^{\prime}$ for $\varepsilon=0,1$ and
c) $\delta_{k}\left(h_{\alpha}\right)>7 / 10$ for $k \in K_{\alpha}^{\prime}$ and $\delta_{k}\left(h_{\alpha}\right)<3 / 10$ for $k \notin K_{\alpha}^{\prime}$.

For each branch (a maximal subset linearly ordered by $<$ ) $\gamma$ in $\mathcal{D}$ choose $k_{\gamma} \in \bigcap_{\alpha \in \gamma} K_{\alpha}^{\prime}$. By a) and b) $k_{\gamma}$ is well defined and $k_{\gamma} \neq k_{\gamma^{\prime}}$ if $\gamma \neq \gamma^{\prime}$. By c), $\left\|\left.\left(\delta_{k_{\gamma}}-\delta_{k_{\gamma^{\prime}}}\right)\right|_{\left[\left(h_{n}\right)\right]}\right\|>2 / 5$ if $\gamma \neq \gamma^{\prime}$.

We return to the proof of (7.7). Fix $\alpha \in \mathcal{D}$ and set $h_{n}=\left(h_{\beta}^{n}\right)_{\beta \in \mathcal{D}}$. Since $\left(h_{\alpha}^{n}\right)_{n=1}^{\infty}$ is a convex block subsequence of $\left(c_{\alpha} f_{\alpha}^{n}\right)_{n=1}^{\infty},\left(h_{\alpha}^{n}\right)_{n=1}^{\infty}$ converges pointwise to $c_{\alpha} F_{n_{\alpha}}$. Thus by (7.5) and (7.6) we may assume (by passing to a subsequence and relabeling, if necessary) that there exist $\varepsilon_{i}= \pm 1\left(1 \leq i \leq n_{\alpha}\right)$ and $k_{\alpha} \in K_{\alpha}$ such that

$$
n_{\alpha} \geq \sum_{i=1}^{n_{\alpha}} c_{\alpha}^{-1} \varepsilon_{i}\left(h_{\alpha}^{i+1}-h_{\alpha}^{i}\right)\left(k_{\alpha}\right)>n_{\alpha}-1
$$

Let $h=n_{\alpha}^{-1} c_{\alpha}^{-1} \sum_{i=1}^{n_{\alpha}} \varepsilon_{i}\left(h_{i+1}-h_{i}\right) \equiv\left(h_{\beta}\right)_{\beta \in \mathcal{D}}$. Thus $1 \geq h_{\alpha}\left(k_{\alpha}\right)>1-n_{\alpha}^{-1}>9 / 10$ by iv $)$.
Furthermore by applying (7.6) to each $\beta<\alpha$ we have from ii)

$$
\begin{aligned}
\sum_{\beta<\alpha} \tilde{h}_{\beta}\left(k_{\alpha}\right) & \leq \sum_{\beta<\alpha} n_{\alpha}^{-1} c_{\alpha}^{-1} c_{\beta} n_{\beta} \\
& \leq c_{\alpha}^{-1} n_{\alpha}^{-1} \sum_{\beta<\alpha} n_{\beta}<1 / 10
\end{aligned}
$$

By the triangle inequality and the definition of $h$,

$$
\begin{aligned}
\sum_{\beta>\alpha} \tilde{h}_{\beta}\left(k_{\alpha}\right) & \leq c_{\alpha}^{-1} n_{\alpha}^{-1} \sum_{\beta>\alpha} 2 c_{\beta} n_{\alpha} \\
& \left.=2 c_{\alpha}^{-1} \sum_{\beta>\alpha} c_{\beta}<1 / 10 \quad \text { (by iii) }\right) .
\end{aligned}
$$

Thus $\delta_{k_{\alpha}}(h)>9 / 10-2 / 10=7 / 10$ which proves the first part of (7.7).
Let $k \in \Delta \backslash K_{\alpha}$ be fixed. There exists a unique $\alpha_{0} \in \mathcal{D}\left(\alpha_{0} \neq \alpha\right)$ with the same length as $\alpha_{0},|\alpha|=\left|\alpha_{0}\right|$, such that $k \in K_{\alpha_{0}}$. The calculations above yield $\sum_{\beta<\alpha_{0}} \tilde{h}_{\beta}(k)+$ $\sum_{\beta>\alpha_{0}} \tilde{h}_{\beta}(k)<2 / 10$. If $\alpha_{0}<_{L} \alpha$ then by (7.6)

$$
\begin{aligned}
0 \leq h_{\alpha_{0}}(k) & =n_{\alpha}^{-1} c_{\alpha}^{-1} \sum_{i=1}^{n_{\alpha}} \varepsilon_{i}\left(h_{\alpha_{0}}^{i+1}-h_{\alpha_{0}}^{i}\right)(k) \\
& \left.\leq n_{\alpha}^{-1} c_{\alpha}^{-1} c_{\alpha_{0}} n_{\alpha_{0}} \leq 1 / 10 \quad(\text { by vi })\right)
\end{aligned}
$$

If $\alpha<_{L} \alpha_{0}$ then we have (from the equality above) that

$$
0 \leq h_{\alpha_{0}}(k) \leq n_{\alpha}^{-1} c_{\alpha}^{-1} c_{\alpha_{0}} 2 n_{\alpha}=2 c_{\alpha_{0}} c_{\alpha}^{-1}<1 / 10
$$

by v) ). It follows that $\delta_{k}(h)<3 / 10$ which completes the proof of (7.7).
Finally, we verify (7.3). Let $S=[\alpha, \beta] \equiv\{\gamma \in \mathcal{D} \mid \alpha \leq \gamma \leq \beta\}$ be a finite segment in $\mathcal{D}$. For $k \in K_{\beta}$ and $f \in Y$ we set $\delta_{S, k}(f)=\sum_{\gamma \in S} \tilde{f}_{\gamma}(k) . \delta_{S, k}(f)$ is defined similarly if $S=[\alpha, \infty) \equiv\{\gamma \in \mathcal{D}: \alpha \leq \gamma\}$ is an infinite segment and $k \in \bigcap_{\beta \in S} K_{\beta}$. Define

$$
\begin{aligned}
K=\{ & \sum_{i=1}^{\infty} a_{i} \delta_{S_{i}, k_{i}}:\left(a_{i}\right)_{1}^{\infty} \in B a\left(\ell_{2}\right),\left(S_{i}\right)_{1}^{\infty} \text { are disjoint segments and } \\
& \left.k_{i} \in \bigcap_{\beta \in S_{i}} K_{\beta} \text { for every } i\right\} .
\end{aligned}
$$

From the definition of the norm in $Y$ it is clear that $K \subseteq B a\left(Y^{*}\right)$. Furthermore it is easy to check that $K$ is weak* closed and $K$ 1-norms $Y$.

It remains to show that $\left.F\right|_{K} \in B_{1 / 2}(K)$. For $m, n \in \mathbb{N}$ let $g(n, m) \in Y$ be given by $g(n, m)=\left(g(n, m)_{\beta}\right)_{\beta \in \mathcal{D}}$ where

$$
g(n, m)_{\beta}=\left\{\begin{array}{lc}
g_{\beta}^{n} & \text { if }|\beta| \leq m \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $y^{*}=\sum_{i=1}^{\infty} a_{i} \delta_{S_{i}, k_{i}} \in K$. Then for $m$ fixed,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|[g(n+1, m)-g(n, m)]\left(y^{*}\right)\right| & =\sum_{n=1}^{\infty}\left|\sum_{i=1}^{\infty} a_{i} \sum_{\substack{\gamma \in S_{i} \\
|\gamma| \leq m}}\left[\tilde{g}_{\gamma}^{n+1}\left(k_{i}\right)-\tilde{g}_{\gamma}^{n}\left(k_{i}\right)\right]\right| \\
& \leq \sum_{i=1}^{\infty}\left|a_{i}\right| \sum_{\substack{\gamma \in S_{i} \\
|\gamma| \leq m}} \sum_{n=1}^{\infty}\left|\tilde{g}_{\gamma}^{n+1}\left(k_{i}\right)-\tilde{g}_{\gamma}^{n+1}\left(k_{i}\right)\right| \\
& \leq \sum_{i=1}^{\infty}\left|a_{i}\right| \sum_{\substack{\gamma \in S_{i} \\
|\gamma| \leq m}} c_{\gamma} n_{\gamma} \quad(\text { by }(7.6)) \\
& \leq \sum_{|\gamma| \leq m} c_{\gamma} n_{\gamma}<\infty
\end{aligned}
$$

In particular $(g(n, m))_{n=1}^{\infty}$ converges pointwise on $K$ to a function $G_{m} \in D B S C(K)$.
All that remains is to show that $\left\|G_{m}-\left.F\right|_{K}\right\|_{C(K)} \rightarrow 0$ as $m \rightarrow \infty$. Let $m \in \mathbb{N}$ be fixed and let $y^{*}=\sum_{i=1}^{\infty} a_{i} \delta_{S_{i}, k_{i}} \in K$. Then

$$
\begin{aligned}
\left|G_{m}\left(y^{*}\right)-F\left(y^{*}\right)\right| & =\left|\sum_{i=1}^{\infty} a_{i} \sum_{\substack{\gamma \in S_{i} \\
|\gamma|>m}} c_{\gamma} \tilde{F}_{n_{\gamma}}\left(k_{i}\right)\right| \\
& \leq \sum_{i=1}^{\infty}\left|a_{i}\right|\left(\sum_{\substack{\gamma \in S_{i} \\
|\gamma|>m}} c_{\gamma}\right)
\end{aligned}
$$

For each $i$ set

$$
b_{i}^{m}=\sum_{\substack{\gamma \in S_{i} \\|\gamma|>m}} c_{\gamma} .
$$

Thus

$$
\left|G_{m}\left(y^{*}\right)-F\left(y^{*}\right)\right| \leq\left(\sum_{i=1}^{\infty}\left(b_{i}^{m}\right)^{2}\right)^{1 / 2}
$$

by Hölder's inequality. The latter goes to 0 as $m \rightarrow \infty$ by vii).

## 8. Problems.

We have previously raised two problems concerning $B_{1 / 4}(K)$.
Problem 8.1. Let $F \in B_{1}(K)$ and $C<\infty$ be such that if $\left(f_{n}\right) \subseteq C(K)$ is a bounded sequence converging pointwise to $F$, then there exists $\left(g_{n}\right)$, a convex block subsequence of $\left(f_{n}\right)$, with spreading model $C$-equivalent to the summing basis. Is $F \in B_{1 / 4}(K)$ ?

Problem 8.2. Let $F \in B_{1}(K)$ and assume there exists a $C<\infty$ such that if $\left(\varepsilon_{i}\right) \subseteq \mathbb{R}^{+}$ and $K_{n}\left(F,\left(\varepsilon_{i}\right)\right) \neq \emptyset$, then $\sum_{1}^{n} \varepsilon_{i} \leq C$. Is $F \in B_{1 / 4}(K)$ ?

These problems lead naturally to the following definitions. Let $F \in B_{1}(K)$.

$$
\begin{aligned}
|F|_{I}= & \max \left\{\sup \left\{\sum_{i=1}^{m} \delta_{i}: K_{m}\left(F,\left(\delta_{i}\right)\right) \neq \emptyset\right\},\|F\|_{\infty}\right\} . \\
|F|_{I^{\prime}}= & \max \left\{\sup \left\{m \delta: K_{m}(F, \delta) \neq \emptyset\right\},\|F\|_{\infty}\right\} . \\
|F|_{S}= & \inf \left\{C: \text { there exist }\left(f_{n}\right) \subseteq C(K) \text { converging pointwise to } F\right. \\
& \left.\quad \text { with for all }\left(a_{i}\right)_{1}^{k} \subseteq \mathbb{R}, \lim _{\substack{n_{1} \rightarrow \infty \\
n_{1}<\cdots<n_{k}}}\left\|\sum_{i=1}^{k} a_{i} f_{n_{i}}\right\| \leq C\left\|\sum_{1}^{k} a_{i} s_{i}\right\|\right\} .
\end{aligned}
$$

Remark 8.3. We do not know if $|F|_{I}$ or $|F|_{I^{\prime}}$ are norms. It is clear that $|F|_{S}$ is a norm and also that

$$
\|F\|_{\infty} \leq|F|_{I^{\prime}} \leq|F|_{I} \leq|F|_{S} \leq|F|_{1 / 4} \leq|F|_{D}
$$

$\left(|F|_{S} \leq|F|_{1 / 4}\right.$ follows from the proof of Theorem B.) Furthermore, using the series criterion for completeness, it is easy to show that $\left(\left\{F \in B_{1}(K):|F|_{S}<\infty\right\},|\cdot|_{S}\right)$ is a Banach space.

Problem 8.4. Are $|\cdot|_{I}$ and $|\cdot|_{S}$ equivalent? Are $|\cdot|_{S}$ and $|\cdot|_{1 / 4}$ equivalent?
The solution of Problem 8.4 would of course solve Problems 8.1 and 8.2. Furthermore an affirmative answer to Problem 8.2 would yield an affirmative answer to Problems 8.1 and 8.4.

Proposition 8.5. $|\cdot|_{I}$ and $|\cdot|_{I^{\prime}}$ are not (in general) equivalent.
Proof. Define $F:[0,1]^{\omega} \rightarrow \mathbb{R}$ as follows:

If $t_{0} \neq 0$ let

$$
F\left(t_{0}, t_{1}, \ldots\right)=\sin t_{0}^{-1}
$$

If $t_{0}=t_{1}=\cdots=t_{r}=0 \neq t_{r+1}$, set

$$
F\left(t_{0}, t_{1}, \ldots\right)=\frac{1}{r+2} \sin t_{r}^{-1}
$$

It's easy to see that $\operatorname{osc}\left(F ;\left(0, t_{1}, t_{2}, \ldots\right)\right)=2$ for all $t_{1}, t_{2}, \ldots \in[0,1]$ and so

$$
K_{1}(F, \varepsilon)=\{0\} \times[0,1]^{\omega \backslash\{0\}}
$$

whenever $0<\delta<2$. Similar calculations show that if $r=\llbracket \frac{2}{\varepsilon} \rrbracket$ then

$$
K_{r}(F, \varepsilon)=\{0\}^{r} \times[0,1]^{\omega \backslash r}
$$

and $K_{r+1}(F, \varepsilon)=\emptyset$. Thus $K_{m}(F, \varepsilon) \neq \emptyset$ implies $m \varepsilon \leq 2$. On the other hand, for $m \geq 1$,

$$
K_{m}\left(F,\left(2,1, \frac{2}{3}, \cdots, \frac{2}{m}\right)\right)=\{0\}^{m} \times[0,1]^{\omega \backslash m}
$$

We conclude by mentioning some further problems for study, some of which have been raised above.

Problem 8.6. Classify (or give useful sufficient conditions) for a function $F \in B_{1}(K)$ to govern $\left\{X: X^{*}\right.$ is separable and $\left.\operatorname{dim} X=\infty\right\}$. In particular is $F \in B_{1 / 4}(K) \backslash C(K)$ a sufficient condition?

Problem 8.7. Classify those $F \in B_{1}(K)$ which govern $\left\{\ell_{1}\right\}$, which govern $\left\{c_{0}\right\}$, which govern $\{X: X$ is reflexive $\}$ or which govern $\{X: X$ is quasi-reflexive $\}$.

We note that if $X$ is a Polish Banach space (i.e., $B a(X)$ is Polish in the weak topology) then Edgar and Wheeler [14] have shown that $X$ is hereditarily reflexive (see also [37] and [18]). Bellenot [5] and Finet [15] have independently extended this result by showing that whenever $X$ is Polish, if $x^{* *} \in X^{* *} \backslash X$ then $\left.x^{* *}\right|_{B a\left(X^{*}\right)}$ strictly governs the class of quasi-reflexive spaces of order 1.

## References

1. A. Andrew, Spreading basic sequences and subspaces of James' quasi-reflexive space, Math. Scand. 48 (1981), 109-118.
2. P. Azimi and J.N. Hagler, Examples of hereditarily $\ell^{1}$ Banach spaces failing the Schur property, Pacific J. Math. 122 (1986), 287-297.
3. R. Baire, Sur les Fonctions des Variables Réelles, Ann. di Mat. 3 (1899), 1-123.
4. B. Beauzamy and J.-T. Lapresté, Modèles étalés des espaces de Banach, Travaux en Cours, Hermann, Paris (1984).
5. S. Bellenot, More quasi-reflexive subspaces, Proc. AMS 101 (1987), 693-696.
6. S. Bellenot, R. Haydon and E. Odell, Quasi-reflexive and tree spaces constructed in the spirit of R.C. James, Contemporary Math. 85 (1989), 19-43.
7. C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Stud. Math. 17 (1958), 151-164.
8. J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Bel. 32 (1980), 235-249.
9. J. Bourgain, Remarks on the double dual of a Banach space, Bull. Soc. Math. Bel. 32 (1980), 171-178.
10. J. Bourgain, unpublished notes.
11. P.G. Casazza and T.J. Shura, Tsirelson's Space, Springer-Verlag Lecture Notes in Mathematics, 1363 (1989).
12. W.J. Davis, T. Figiel, W.B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
13. J. Elton, Extremely weakly unconditionally convergent series, Israel J. Math. 40 (1981), 255-258.
14. G.A. Edgar and R.F. Wheeler, Topological properties of Banach spaces, Pacific J. Math. 115 (1984), 317-350.
15. C. Finet, Subspaces of Asplund Banach spaces with the point of continuity property, Israel J. Math. 60 (1987), 191-198.
16. V. Fonf, One property of Lindenstrauss-Phelps spaces, Funct. Anal. Appl. (English trans.) $\mathbf{1 3}$ (1979), 66-67.
17. T. Figiel and W.B. Johnson, A uniformly convex Banach space which contains no $\ell_{p}$, Comp. Math. 29 (1974), 179-190.
18. N. Ghoussoub and B. Maurey, $G_{\delta}$-embeddings in Hilbert space, J. Funct. Anal. 61 (1985), 72-97.
19. $\qquad$ , $G_{\delta}$-embeddings in Hilbert space II, J. Funct. Anal. 78 (1988), 271305.
20. _ , $H_{\delta}$-embeddings in Hilbert space and optimization on $G_{\delta}$ sets, Memoirs Amer. Math. Soc. 62 (1986), number 349.
21. $\qquad$ , A non-linear method for constructing certain basic sequences in Banach spaces, preprint.
22. N. Ghoussoub, G. Godefroy, B. Maurey and W. Schachermayer, Some topological and geometrical structures in Banach spaces, preprint.
23. F. Hausdorff, "Set Theory", Chelsea, New York (1962).
24. R. Haydon and B. Maurey, On Banach spaces with strongly separable types, J. London Math. Soc. 33 (1986), 484-498.
25. A.S. Kechris and A. Louveau, A classification of Baire class 1 functions, preprint.
26. J.L. Krivine and B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), 273-295.
27. J. Lindenstrauss and L. Tzafriri, "Classical Banach spaces", Springer-Verlag Lecture Notes in Math. 338, Berlin (1973).
28. $\qquad$ , "Classical Banach spaces II", Springer-Verlag, Berlin (1977).
29. A.A. Milutin, Isomorphisms of spaces of continuous functions on compacta of power continuum, Tieoria Funct. (1966), 150-166 (Russian).
30. S. Mazurkiewicz and W. Sierpinski, Contribution à la topologie des ensembles dé nombrales, Fund. Math. 1 (1920), 17-27.
31. A. Pełczyński, A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1962), 371-374.
32. E. Odell, A nonseparable Banach space not containing a subsymmetric basic sequence, Israel J. Math. 52 (1985), 97-109.
33. _ Remarks on the separable dual problem, Proceedings of Research Workshop on Banach Space Theory (ed. by B.-L.Lin), The University of Iowa (1981), 129-138.
34. , A normalized weakly null sequence with no shrinking subsequence in a Banach space not containing $\ell_{1}$, Comp. Math. 41 (1980), 287-295.
35. E. Odell and H. Rosenthal, A double-dual characterization of separable Banach spaces not containing $\ell_{1}$, Israel J. Math. 20 (1975), 375-384.
36. H. Rosenthal, A characterization of Banach spaces containing $\ell_{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.
37. $\qquad$ , Weak*-Polish Banach spaces, J. Funct. Anal. 76 (1988), 267-316.
38. , Some remarks concerning unconditional basic sequences, Longhorn Notes, University of Texas, (1982-83), 15-48.
39. A. Sersouri, A note on the Lavrientiev index for the quasi-reflexive Banach spaces, Contemporary Math. 85 (1989), 497-508.

| R. Haydon | E. Odell | H. Rosenthal |
| :--- | :--- | :--- |
| Brasenose College | The University of Texas at Austin | The University of Texas at Austin |
| Oxford OX1 4AJ | Austin, Texas 78712 | Austin, Texas 78712 |
| England | U.S.A. | U.S.A. |

September 6, 1990

