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In 1974, the following subsequence dichotomy was established by the author 
for real scalars [Rl], and refined by L.E. Dor to cover the case of complex scalars 
[Do] (cf. also [R2] for a general exposition). 

Theorem 1.0. Every bounded sequence in a real or complex Banach space has 
either a weak-Cauchy subsequence, or a subsequence equivalent to the standard 
e '-basis. 

In this article, I obtain a subsequence principle characterizing spaces contain- 
ing co , in the same spirit as the above e l  -Theorem. The principle requires the 
following new concept: 

Definition 1.1. A sequence (b,) in a Banach space is called strongly summing 
(s.~.) if (b,) is a weak-Cauchy basic sequence so that whenever scalars (cj) 
satisfy sup, 1 1  z=,c,b, 11  < cc , then Cc, converges. 

The following result is the main concern of this article. (A weak-Cauchy 
sequence is called non-trivial if it is non-weakly convergent.) 
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Theorem 1.1. Every non-trivial weak-Cauchy sequence in a (real or complex) 
Banach space has either a strongly summing subsequence or a convex block basis 
equivalent to the summing basis. 

To prove this result, I develop various permanence properties of strongly 
summing sequences. I also give some new invariants for general discontinu- 
ous functions, namely their transfinite oscillations. These are similar to some 
previous invariants given by A.S. Kechris and A. Louveau [KL].They are used 
(in a manner similar to the earlier work in [KL])to characterize differences 
of bounded semi-continuous functions, which enter into the demonstration of 
Theorem 1.1 in an essential way. The core of the proof is then a real-variables 
theorem for obtaining subsequences of a sequence of continuous functions con- 
verging pointwise to a function which is not such a difference. 

I have attempted to write the rest of this section so as to be accessible to 
the general mathematical public. Afterwards, I shall freely use standard Banach 
space facts and terminology. Here is a quick review of some necessary concepts: 
co denotes the Banach space of sequences tending to zero, under the sup norm; 
e ' the Banach space of absolutely summable sequences, under the norm given by 
the sum of the absolute-values of the coordinates. A sequence (b,) of elements 
of a Banach space B is called a weak-Cauchy sequence if it is a Cauchy sequence 
in B endowed with the weak topology; equivalently, if limj+m b*(b,) exists 
for all b* E B* , the dual of B .  (b,) is called a basic sequence if it is a 
basis for its closed linear span [b,] ; that is, for every b in [b,], there is a 
unique sequence of scalars (c,) so that b = C c j b j .  Given (b,) a sequence 
in a Banach space B ,  a sequence (u,) of non-zero elements of B is called 
a block basis of (b,) if there exist integers 0 5 n ,  < n2 < . . . and scalars 

c , c ,  . . . so that u, = ~ ~ ~ ~ , + ,= 1 2 ,  . . . ; (u,)c,bi for all j is called a 

convex block basis if the ci 's satisfy: c, 2 0 for all i and c:LL:,+,= 1c, 
for all j . A standard elementary result yields that if (b,) is a basic sequence, 
so is any block basis (u,) . It is evident that if (b,) is a non-trivial weak- 
Cauchy sequence, then so is any convex block basis (u,) of (b,). Another 
standard result (reproved in Section 2) asserts that any non-trivial weak-Cauchy 
sequence contains a basic subsequence. Given X and Y Banach spaces, a 
bounded linear operator T : X + Y is called an isomorphism between X and 
Y if T is invertible; equivalently (by the open mapping theorem), if T is one- 
to-one and onto. If (x i )  and (y,) are sequences in Banach spaces X and Y 
respectively, (x,) and (y,) are called equivalent if there exists an isomorphism 
T between [x,] and [y,] with Tx,  = y, for all j .  Finally, we let Se denote 
the Banach space of all convergent series, i.e., all sequences (c,) with C c ,  

= sup, I C:=,C, I ; the summing basis refers 
to the unit-vector basis for (Se) , i.e., the sequence (b,) with b j ( i )= di, for all 
i and j . It is easily seen that Se is isomorphic to co; indeed, if (e,) denotes 

the standard (i.e., unit-vector basis) for co, then setting b, = C:=,ei for all j , 
(b,) is equivalent to the summing basis. 

11, (c,)11convergent, under the norm 
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For the remainder of this section, let B denote a real or complex Banach 
space; we shall take B to be infinite-dimensional, for the formulated results are 
trivial otherwise. We begin with several motivating corollaries and remarks. 

We first observe that the two alternatives of Theorem 1.1 are mutually ex-
clusive. Indeed, the summing basis is obviously not (s.~.), and it is evident 
that every convex block basis of the summing basis is equivalent to it; on the 
other hand, it is an easy permanence property of (s.s.)-sequences(as we show 
in Proposition 2.5) that every convex block basis of an (s.s.)-sequence is also 
(s.~.). Now suppose to the contrary, that (f,) is a non-trivial weak-Cauchy 
sequence, and we had (g,) and (h,) convex block bases of ( f , )  with (g,) an 
(s.s.)-sequenceand (h,) equivalent to the summing basis. 

It follows (since (g,) and (h,) converge weak* to the same element of B** ) 
that (g, - h,) is weakly null. But then there exist convex block bases (g,) 
of (g,) and (h,) of (h,) with llg, - h,ll < 112" for all n (since there is a 
convex block basis of (g, - h,) tending to zero in norm). But then a standard 
perturbation result yields that (g,) and (h,) are equivalent basic sequences, 
and hence (g,) is an (s.s.)-sequencewhich is equivalent to the summing basis; 
this contradiction proves the assertion. 

Now of course Theorem 1.0 (and in fact the author's original work in [Rl]) 
yields immediately that B contains no isomorph of C 1  if and only if every 
bounded sequence in B has a weak-Cauchy subsequence. The next result yields 
the analogous characterization of spaces not containing co. It follows immedi-
ately from Theorem 1.1, since the summing basis spans Se ,a space isomorphic 
to co. 

Corollary 1.2. B contains no isomorph of co if and only if every non-trivial 
weak-Cauchy sequence in B has an (s.s.)-subsequence. 

Remark. Corollary 1.2 and known results yield the following "dual" charac-
terization of Banach spaces containing e 1  : B contains no isomorph of e 1  if 
and only 8 for every linear subspace X of B ,  every non-trivial weak-Cauchy 
sequence in X* has an (s.s.)-subsequence. Since the summing basis has no 
(s.s.)-subsequence,one direction is completely trivial. For the other, suppose 
X is a linear subspace of B and there is a non-trivial weak-Cauchy sequence 
in X* with no (s.s.)-subsequence. Then co embeds in X* , by Corollary 1.2, 
so e 1  embeds in X by a result of Bessaga-Pelczynski [Bes-PI. 

In order to discuss the next corollary, we recall the following Banach space 
construct: 

Definition 1.2(a). A sequence (x,) in B is called (WUC) (Weakly Uncondi-
tionally Cauchy) if C 1 b*(x,) 1 < oo for all b* E B* . 

(In the literature, (WUC)-sequencesare also termed (wus),for weakly uncon-
ditionally summing). Evidently if (x,) is (WUC),then setting f ,  = C:=, x, for 
all n , (f,) is weak-Cauchy. We crystallize this class of weak-Cauchy sequences 
as follows. 

Definition 1.2(b). A sequence (f,) in B is called (DUC) (for Difference 
(Weakly)Unconditionally Cauchy) if (f,,, -f,)zlis (WUC). 
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We now consider a notion introduced by A. Pelczynski [Pl]. 

Definition 1.3. B has property (u) if for every weak-Cauchy sequence (x,) in 
B ythere exists a (DUC)-sequence (4)in B so that (x, -A):, is weakly null. 

Of course it is trivial that, in the definition, we may restrict ourselves to 
non-trivial weak-Cauchy sequences. 

The next result provides one of the main motivations for Theorem 1.1. 

Corollary 1.3. If B is non-reJlexive and X* is weakly sequentially completefor 
all linear subspaces X of B ,  then co embeds in B;  in fact, B has property 
(u) .  

To see this, we use the following simple permanence property of (s.s.)-
sequences, proved in Section 2 (Proposition 2.4). 

Proposition 1.4. Let (b,) be an (s.s.)-sequencein B , and (bj) the biorthogonal 
functionals for (b,) in [bj]*. Then (C:=,b;) is a non-trivial weak-Cauchy 
sequence; hence [bj]* is not weakly sequentially complete. 

Proof of Corollary 1.3. The second assertion implies the first by general princi-
ples, but it's easierjust to prove the claims in turn, directly. Now the hypotheses 
imply that e 1  doesn't embed in B , for after all co embeds in (el)'  = em and 
co is not weakly sequentially complete. Since B is non-reflexive, it follows 
by the el- heo or em (i.e., Theorem 1.0) that B has a non-trivial weak-Cauchy 
sequence (xi) . But (x,) cannot have an (s.s.)-subsequenceby Proposition 1.4, 
so (xi) has a convex block basis equivalence to the summing basis by our main 
result, Theorem 1.1. Thus co embeds in B . Again, if (x,) is a non-trivial 
weak-Cauchy sequence in B ythen letting (4)be a convex block basis equiva-
lence to the summing basis, (xi - A):, is weakly null, and of course (4)is 
(DUC), so B has property (u).  

The above reasoning, together with standard results, yields the following 
equivalence. 

Corollary 1.5. Let B be given. Thefollowing are equivalent. 
( I )  X* is weakly sequentially completefor all linear subspaces X of B . 
(2) B has property (u) and e does not embed in B . 

Proof. (1) + (2) follows immediately from Corollary 1.3. 
(2) + (1).  Suppose X is a linear subspace of B ,  yet X* is not weakly 

sequentially complete. Then as we show in Section 2 (cf. Proposition 2.6), 
since e1 does not embed in X , X contains an (s.s.)-sequence (x,) . Suppose 
there were a (DUC)-sequence (4)with (x, - A):, weakly null. But now 
it follows that (4)has a subsequence (g,) equivalent to the summing basis. 
(See Section 3, Corollary 3.3.) But then (x, - g,) is again weakly null, so as in 
the argument proving the mutual exclusivity of the alternatives of Theorem 1.1, 
we finally obtain a convex block basis (y,) of (xi) which is equivalent to the 
summing basis and (s.~.),a contradiction. 



711 A CHARACTERIZATION OF BANACH SPACES CONTAINING c,, 

Remark. A crystallization of known arguments yields the fact (proved here in 
Proposition 3.2 for the sake of completeness): If (4) is a DUC sequence, 
then so is every convex block basis (y,) of Thus we see immediately the (4). 
standard result that property (u) is hereditary. On the other hand, it follows 
by the results in [P2] and the el- heo or em that if X has property (u) and 
4 '  does not embed in X ,  then X* is weakly sequentially complete. Thus 
(2) + ( I )  of 1.5 may instead be proved using these old results. We also note 
the various properties (V) and (v*)introduced in [P2], where it is shown that 
for a particular space X , 

(u) + (V) + (v*)+X* is weakly sequentially complete. 

Thus we obtain that B has any of these properties hereditarily if and only if 
B satisfies (2) of Corollary 1.5. In particular, this answers a question posed in 
[R4] in the affirmative (cf. the end of Section 3 of [R4]). 

The criterion for embedding co in a given B ,given by Corollary 1.3, involves 
"checking" all the linear subspaces X of B . The next result gives a stronger 
criterion, for fewer subspaces need to be checked. 

Corollary 1.6. Suppose B is a non-reflexive space with a basis (b,) ,so that every 
block basis of (b,) spans a space with weakly sequentially complete dual. Then 
co embeds in B . 
Proof. Suppose, to the contrary, that co does not embed in B . Then we have 
that 

(1)  (b,) is shrinking. 

That is, [b,'] = B* , where (b,') denotes the biorthogonal functionals to (b,) . 
An equivalent formulation: every normalized block basis (u,) of (b,) is weakly 
null. So, suppose we had (u,) a normalized block basis which is not weakly 
null. Now standard results show that (u,) has a subsequence (u;) with no 

further weakly convergent subsequences. Then (u;) could not have an e l -

subsequence (uy) , for then [uy]* would not be weakly sequentially complete. 

Thus the el- heo or em (Theorem 1.0) yields that (u;) has a non-trivial weak- 
Cauchy sequence (v,) . But in turn, Corollary 1.2 implies (v,) has an (s.s.)-
subsequence (v;) , which contradicts the hypotheses by Proposition 1.4. Thus 
(1) is established. 

Now it follows that (b,) cannot be boundedly complete, or else B would be 
reflexive. That is, we may choose scalars cl , c2, . . . so that 

sup 1 1  2c,b, 1 1  < m but c,b, does not converge. 
" ,=I 

Next let f , = C:=, c,b, for all n . Of course (f,) is a bounded sequence; we 
also have that if nl < n2 < . . . are given, then 

(3) [fn , ] = [u,] for a certain block basis (ui) of (b,) ; 
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namely let u, = f,, and u = f - f for j > 1. But again ( j , )  can
J n j  nj-, 

thus have no el-subsequence, so by Corollary 1.2, (f,) must have an (s.s.)-
subsequence (f,,):, which contradicts the hypotheses by (3) and Proposi-
tion 1.4. 

Remark. Suppose B satisfies the hypotheses of Corollary 1.6. Does B have 
property (u)? I suspect the answer is no, in general. 

The argument for Corollary 1.6, when phrased directly, has a natural inter-
pretation in terms of (s.s.)-sequences,and a fundamental companion notion. 

Definition 1.4. A basic sequence (e,) in a Banach space is called (c.c.) (for 
coefficient converging) if 

(i) (CY=,e,) is a weak-Cauchy sequence and 
(ii) for any scalars (c,) , if sup, 1 1  C;=,c,e,ll < cc , then the sequence (c,) 

converges. 

Now we prove in Section 2 (cf. Proposition 2.3) that if (b,) is an (s.s.)-
sequence, then its difference sequence (e,):, is (c.c.) (where e, = b, - bj-, 
for j > 1, el = b, ); conversely if (e,) is a (c.c.)-sequence, then setting b, = 

c:=,e, for all j , (b,) is an (s.s.)-sequence. The argument for Corollary 1.6 

then yields the following result. Suppose neither co nor e1 embeds in B , and 
(b,) is a given basic sequence in B . If (b,) is not shrinking, (b,) has an (s.s.) 
block basis; if (b,) is not boundedly complete, (b,) has a (c.c.) block basis. 

Remark. The "hereditary" hypotheses in Corollaries 1.3, 1.6, and in the re-
sult formulated in the Remark following Corollary 1.2, are crucial. Indeed, 
Bourgain-Delbaen [Bo-De] have constructed a Banach space X so that c,, does 
not embed in X ,yet X* is isomorphic to e1 , so of course X is non-reflexive 
and X* is weakly sequentially complete. 

Concerning the remark after Corollary 1.2, of course C ' embeds in CIO , 11, 
yet (C[O, 11)' is weakly sequentially complete, so it has no non-trivial weak-
Cauchy sequences. A more interesting example: there is constructed in [Bo-
De] a space Y with the Schur property (i.e., every weak-Cauchy sequence 
in Y is norm-convergent), with Y* isomorphic to C[O, 1]*. Thus Y* is 
again weakly sequentially complete, and (by Theorem 1.O) e ' embeds in every 
infinite-dimensional subspace of Y . 

As in the case of the e1-Theorem, the co-theorem is proved by reducing to a 
"classical real variables" setting. The following concept is crucial. 

Definition 1.5. Let K be a compact metric space and f : K + C a given 
function. f is a (complex) difference of bounded semi-continuous functions if 
there exist continuous complex-valued continuous functions q,  , q2, ... on K 
with supkEKC 1 q j(k)1 < cc and f = C qj  point-wise. We let D(K) denote the 
family of all such functions; we also let ND(K) denote the set of all bounded 
functions f on K which don't belong to D(K). 

The reason for the terminology is as follows: let f : K + [-w ,w] be an 
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extended real-valued function. f is called upper semi-continuous if f (x) = -
limy,, f (y) for all x E K ; f is called lower semi-continuous if f (x) = 
limy ,,f (y) for all x E K . (Following Bourbaki, we use non-exclusive lim sups

, --
and lim infs; thus %,, f (y) = inf,,,, sup,,, f (y) , the inf over all open 
neighborhoods of x ; equivalently, i&;,,, f (y) = max{L E [-m ,m] : 3xn + 

x , f(x,) -..L as n -..m) , f is called semi-continuousif it is either upper or 
lower semi-continuous. It then follows from results of Baire that f E D(K) if 
and only if there are bounded lower semi-continuousfunctions u, , ... ,u, on 
K so that f = (u, - u,) + i(u, - u,) . 

Evidently, if g E D(K) , then g E Bl(K), the first Baire class of bounded 
functions on K ,  i.e., the set of all functions f on K so that there exists a 
uniformly bounded sequence (f,) in C(K) with f, + f point-wise. The 
following result gives the fundamental connection between f and the Banach 
space structure of this sequence (f,) . The result follows from refinements of 
arguments in [Bes-PI and is explicitly stated in Corollary 3.5 of [HOR]. 

Proposition 1.7. Let K be a compact metric space, f : K + C discontinuous, 
and (f,) a uniformly bounded sequence of continuous functions on K with 
f, + f point-wise. Regarding f,, 4, ... as lying in the Banach space C(K), 
then f is in D(K) ifand only if ( f , )  has a convex block basis equivalent to the 
summing basis. 

For the sake of completeness,we give the proof in Section 3 (following Corol-
lary 3.3). Now the c,-theorem follows immediately from 1.7 and the following 
"real-variables" result. 

Theorem 1.8. Let K be a compact metric space, f a complex-valuedfunction 
on K ,  and (f,)a uniformly bounded sequence of complex-valued continuous 
functions on K with f, -.. f point-wise. Then if f is not in D(K), (f,) has 
an (s.s.)-subsequence. 

To deduce Theorem 1.1, let X be a separable Banach space, and let K 
denote the unit ball of X* endowed with the weak*-topology. Let us denote by 
X; (resp. Xi: ) the set of all x**E x**with x**I K  E D(K) (resp. x**I K  E 

B1(K) ). Now suppose (x,) is a non-trivial weak-Cauchy sequence in X ,and let 
x**denote its weak*-limit in x**;also let x :X +x**denote the canonical 
embedding. If x** E X; , then Proposition 1.7 yields that (xx,)lK has a 
convex block basis equivalence to the summing basis in C(K), so of course 
(x,) has exactly the same property in X . Again if x** 4 X; , Theorem 1.8 
yields that (xx,)lK and hence (x,) has an (s.s.)-subsequence. 

We finally note a consequence of our results, formulated in terms of the 
classes X; and Xi* , for X separable. Standard results (cf. [OR]) yield that 

x**E Xi: \ X if and only if there is a non-trivial weak-Cauchy sequence (x,) 
in X with x, + x** weak*; moreover the proof of Proposition 1.7 gives that 
x**E X; if and only if there is a DUC sequence (x,) in X with x, +x** 
weak*. It thus follows that X has property (u) if and only if Xi: = X; . 
A result of E. Ode11 and the author [OR] asserts that C '  + X ifand only if 
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X** = X i ; .  We may then combine the above and Corollary 1.3 to obtain the 

following result (where we let X y D  = x**\ X; ). 


Corollary 1.9. Let X be a separable Banach space. The following are equivalent. 

( 1) Neither co nor e ' embeds in X . 
(2) X ; ; ~ X ; ~ = X * * \ X .  
(3) For all nun-reflexive linear subspaces Y of X , there exists a linear sub- 

space Z of Y so that neither Z nor Z* is weakly sequentially complete. 

Remark. Under rather strong hypotheses, one can obtain sequences which are 
"better behaved" than (s.s.)-sequences. Thus in [R6], it is proved that every 
non-trivial weak-Cauchy sequence in a Banach space with the PCP (the point of 
continuity property) has a boundedly complete subsequence. By Proposition 2.2 
below, this subsequence can be chosen to be ( s )  as defined in Section 2. In 
particular, this holds in any separable Banach space isomorphic to a dual space. 
Of course boundedly complete (s)-sequences are (s.s.); but this considerably 
stronger property seems rather rare, among general Banach spaces. For ex- 
ample, W.T. Gowers [Go] has recently constructed an infinite-dimensional Ba- 
nach space X which contains no subspace isomorphic to co and no infinite- 
dimensional subspace isomorphic to a dual space. It follows from our results 
(i.e., Theorems 1.O and 1.1) that then every infinite-dimensional subspace of X 
contains an (s.s.)-sequence, yet X has no boundedly-complete basic sequences. 

We now indicate the organization of the remaining sections of this article. 
Section 2 deals with permanence properties of (s.s.)-sequences. (Throughout, 
results are numbered consecutively in each section, with definitions being sep- 
arately numbered.) We show in Proposition 2.3 that a sequence is (s.s.) if 
and only if its difference sequence is (c.c.) ; and in Proposition 2.4 that a ba- 
sic sequence is (s.s.) if and only if its sequence of biorthogonal functionals is 
(c.c.) . Proposition 1.4 is of course an immediate consequence of 2.4. Propo- 
sition 2.7 yields the result that a sequence is (s.s.) if and only if every proper 
subsequence of its difference sequence is semi-boundedly complete. (A semi-
normalized basic sequence ( x , )  in a Banach space is called semi-boundedly 
complete if whenever sup, 1 1  CT=,cjxjll < oo , then c, +0 ; this is equivalent 
to the assertion that xJ*-0 weakly, where (xJ*)is biorthogonal to (x,) .) Our 
characterization of spaces containing co is thus related to the one of J. Elton 
[El: If ( x i )  is a normalized weakly null sequence in a Banach space with no 
subseque~ce equivalent to the co-basis, then (x,) has a semi-boundedly complete 
subsequence. 

We introduce an "&-versionwof (c.c.)-sequences in Definition 2.4, and show 
in Lemma 2.8 that a non-trivial weak-Cauchy sequence has an (s.s.)-subsequence 
provided for every E > 0 ,  every subsequence has a further subsequence where 
differences are E - (c.c.) . This result is used directly in the proof of Theorem 1.1. 

In Section 3, we first deal with some permanence properties of DUC se- 
quences. Thus we show in Proposition 3.1 that a sequence is equivalent to the 
summing basis if and only if it is an (s)-sequence which is DUC. We show that 
DUC-sequences are preserved by taking convex block bases in Proposition 3.2, 
and then (after Corollary 3.3) give the proof of Proposition 1.7. 
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The rest of Section 3, as well as most of Section 4, may be read independently 
the rest of the paper and in fact of Banach space theory. The results here 
more in the setting of descriptive set theory and classical real variables, 

rather than Banach spaces, although the latter gives their primary motivation. 
We first take up the development of the intrinsic invariants of a difference of 
bounded semi-continuous functions, introducing in Definition 3.1 the transfinite 
oscillations osca f of a complex-valued function defined on a separable metric 
space K . We prove in Theorem 3.5 that if f :K -.C is a bounded function, 
then f is in D(K) if and only if osca f is a bounded function for all a .  
Moreover, if f is real-valued and this happens, there is an a so that osca f = 
OSC,+~ f and then 

where 

1 1  f l l D  = inf{sup c Ipj(t)I :f = pi point-wise, the p, S continuous on K 
t 

A surprising consequence of our work here is that this infimum is attained. 
The transfinite oscillations osca f are related to earlier invariants introduced 

by A.S. Kechris and A. Louveau [KL], termed by us here the positive oscillations 
v,(f) of a real-valued function f (see Definition 3.2). We show the natural 
inequalities connecting these with the transfinite oscillations in Proposition 3.8; 
for the Banach space context of interest here, these invariants have essentially 
the same growth (see the Remark preceding Lemma 3.9). The fact that f is 
in D(K) if and only if osca f is bounded for all a already follows from the 
earlier work in [KL]. The transfinite oscillations seem to us more appropriate 
to Banach space structure than the transfinite positive oscillations, and these 
invariants are used to obtain further structure theorems for differences of semi- 
continuous functions and related Baire-1 classes in [R5]. Nevertheless, it turns 
out to be more convenient to use the va( f )'S to prove our main result, reduced 
to Theorem 1.8 above, and Section 3 concludes with a technical result relating 
va(f )  and va+, (f)  ,used in this proof (Lemma 3.9). 

Sections 2 and 3 thus set up the needed invariants (with complementary 
results), and Section 4 is then devoted to the proof of our main result. The heart 
of the matter is contained in the "real-variables" result, Theorem 4.1. This result 
shows that if f , + f point-wise on K a separable metric space with the 4 ' s  
uniformly bounded complex-valued functions, a is a countable ordinal, and 
0 < v,(Re f ) (x)  < oo for some x E X ,  then there is a subsequence (b,) of 

the f , 's so that all further subsequences "witness" the quantity va(Re f)(x)  
A .  The quantitative information of this theorem then yields that if E > 0 is 
given and A is large enough, then every subsequence of (b,) has its difference 
sequence E -(c.c.) . Thus to prove Theorem 1.8, we let E > 0 be given. Then we 
choose a so that va(Re f )  is a bounded function but Ilv,(Re f )11, > 2 / ~. Now 
Theorem 4.1 allows us to show that (4) satisfies the hypotheses of Lemma 2.8, 
whence ( f , )  has an (s.s.)-subsequence. 
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Theorem 4.1 is formulated directly in terms of difference sequences; we "re- 
formulate" the needed information concerning the behavior on appropriate sub- 
sequences of (4) as Theorem 4.2. We then give the easy demonstration that 
Theorem 4.2 implies Theorem 4.1, and the balance of Section 4 is devoted to 
the rather delicate proof of Theorem 4.2 itself. This argument is accomplished 
by transfinite induction; the entire proof follows very quickly from the "a to 
a + 1" step. A rather surprising feature of the argument is that using only the 
a-information, but not how it is obtained (i.e., its "history"), and a careful dis- 
cussion giving the "a = 1" case (Lemma 4.3), we obtain the a + 1-st case. The 
actual subsequences are constructed in Sub-Lemma 1 for the "a = 1" case, and 
in Sub-Lemma 2 for the "a to a + 1" case. 

The results given here were presented in a topics course at The University 
of Texas at Austin in 1991-1992. The formulations and discoveries were then 
very much in the trial and error stage, with the main theorem being established 
only in April. I am most grateful to the participants in this course for their 
patience and helpful comments concerning this work. 

We first define a notion weaker than that of (s.s.)-sequences (this concept 
appears in [HOR], without the terminology). 

Definition 2.1. A sequence (b,) in a Banach space is called an (s)-sequence 
("(s)" is for "summing") if (b,) is a weak-Cauchy basic sequence which domi- 
nates the summing basis. 

It is evident that if (b,) is an (s)-sequence, then (b,) is non-trivial weak- 
Cauchy. Now in fact standard arguments give that every non-trivial weak-Cauchy 
sequence has an (s)-subsequence (cf. [HOR]); since certain estimates in the ar- 
gument are needed for our main result, we sketch the proof below. We also 
note that if (b,) is weak-Cauchy and basic, then (b,) is (s) ifand only ifwhen- 
ever (c,) is a sequence of scalars with Ccjbj convergent, then Ccj converges. 
Thus trivially (s.s.)-sequences are (s)-sequences. Now it follows that if (b,) is 
(s),  there is a unique s E [b,]* with s(Ccjb,) = C c ,  for all x E [b,] with 
x = Cc,b, . We refer to s as the summing functional. 

A natural companion notion to (s)-sequences is the following one. (A se- 
quence (xi) in a Banach space is called semi-normalized (resp. normalized) if 
sup, llxjll < cc and inf, llx,ll > 0 (resp. llxjll = 1 for all j ) . )  

Definition 2.2. A basic sequence (e,) in a Banach space is called a (c)-sequence 
("(c)" is for "convergent") if (e,) is a semi-normalized basic sequence so that 

(En eJ.)r1is weak-Cauchy. j = 1  n-

We next give a simple relationship between these notions. (Throughout, given 
sequences (b,) and (e,) in a Banach space, (e,) is called the diference sequence 
of (b,) if el = bl and ej = bj - bj-I for all j > 1. Also, if (b,) is a basic 
sequence, then (b;) denotes its sequence of biorthogonal functionals in [bj]*; 
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i.e., b;(b,) = d,, for all i and j . It is a standard result that then (b;) is also 
a basic sequence.) 

Proposition 2.1. Let (b,) be a given sequence in a Banach space, and (e,) be 
its diflerence sequence. Then (b,) is (s) ifand only if (e,) is (c) . 
Remark. Of course it's then trivial that (b,) and (e,) are both bases for [b,] . 
It is also immediate that every (c.c.)-sequence is a (c)-sequence. 

Proof. Suppose first that (b,) is an (s)-sequence, and let (P,) be its basis 
k

projections. That is, for all k , Pk : [b,] -$ [b,] is defined by Pkx= Cj=lcjbj if 
x = CElcjbj . Also, let 1 be the basis-constant of (b,) ; that is, 1= supk llPkll. 
Finally, let s be the summing functional on [bj] . 

We then have that defining e,' for all n by 

n-1 

(4) e , ' = s - x b :  for n >  1 and e ; = s  
i= 1 

then (e,') is biorthogonal to (e,) . Moreover since for all n , Z:=,b; = sPn, it 
follows that 

Finally, to see that (e,) is basic, since (e,) is trivially linearly independent, 
it suffices to estimate the norms of its basis-projections on its linear span; that 
is, let Xo denote the linear span of (ej) and for each k , set Qk(C  c,ej) = 

x:=~c,e, for all Cc,e, in Xo ; we need only estimate supk llQkll, . 
Now let k < n and x = CY=,c,e, . Then 

Hence 
k 

x c , e ,  = Pk-,x + ei(x)bk (where we set Po= 0 )  . 
j= 1 

That is, we have proved 

(where for X a Banach space, x E X , x* E X* , x*8x denotes the rank-one 
operator (x* @ x)(y) = x*(y)x for all y E X ). Evidently we thus have that 
sup, 1 1  Qk1 1  < ce ; in fact 

Since (bk) is non-trivial weak-Cauchy, it is semi-normalized; and because it's a 
basic sequence, its difference sequence (e,) is also semi-normalized. Of course 
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since CY=,e, = b, for all n , (CY=,e,) is weak-Cauchy, and hence (e,) is a 
(c)-sequence. 

Conversely, suppose (e,) is a (c)-sequence. Then trivially (b,) is weak-
Cauchy. Since (e,) is semi-normalized, (el) is bounded. But then we may use 
(7) to obtain that if (P,) is the sequence of basis projections of (b,) on X, , 
then, for all k , 

hence l l P k l l  5 SUPkl l Q k l l  + SUPkIlelllllbkll < w '  
Thus (b,) is a basic sequence; since e;(.b,) = 1 for all j , el is indeed the 

summing functional on [b,] ,whence (b,) is (s). 

Remark. Let (b,) , (e,) be given sequences in a Banach space. Say that (b,) 
is wide- (s) if (b,) is a semi-normalized basic sequence which dominates the 
summing basis. Say that (e,) is wide- (c) if (e,) is a semi-normalized basic 
sequenceso that sup, 1 1  CY=,e,ll < w . Then the above proof yields immediately 
that (b,) is wide- (s) ifand only if its diference sequence (e,) is wide- (c) . Thus 
in particular, if (b,) is a semi-normalized basic sequence, then its diference 
sequence (e,) is basic ifand only if (b,) is wide- (s) . 

We now refine a classical argument to obtain the universality of (s)-sequences 
in non-weakly sequentially complete spaces. 

Proposition 2.2. Let (x,) be a non-trivial weak-Cauchy sequence in a Banach 
space. Then (xi) has an (s)-subsequence. 

Remark. Of course it thus follows from the 4'- heo or em that every wide- (s) 
sequence has a subsequence which is either an (s)-sequenceor an 4'-sequence 
(i.e., equivalent to the 4'-basis). We shall see below, however, that it is never-
theless natural to introduce the wide-notions of (s)-and (c)-sequences. 

We sketch the proof of 2.2. Recall that for X a Banach space and Y a linear 
subspace of X* , Y is said to isomorphically norm X if there is a constant 
0 < q so that 

qllxll 5 sup ly(x)l for all x E X . 
yEBa Y 

We also say Y q-norms X if (10) holds. Of course q 5 1. In case q = 1 
in (lo),we say Y isometrically norms X . We use the following two standard 
results without proof. (A sequence (b,) is called A-basic if it is basic with basis 
constant at most A .) 

Lemma 1. Let X be a Banach space, (x,) a semi-normalized sequence in X ,  
and Y an isomorphically norming subspace of X* so that y(xj) + 0 as j + m 

for all y E Y .  Then (xi) has a basic subsequence. In fact, if Y q-norms X ,  
then, given 0 < E < q , (x,) has a &-basic subsequence. 

Lemma 2. Let X be a Banach space, G E x**- X .  Then G' isomorphically 
norms X ,  where G' = {x*E X* :G(x*)= 0).  
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Proof of Proposition 2.2. Let (x,) be a non-trivial weak-Cauchy sequence in X , 
and define G E x**by G(f )= lim, f (x,) for all f E X*. Then G E x**-X 

since (x,) is non-trivial; hence G~ isomorphically norms X by Lemma 2, so 
(x,) has a basic subsequence (y,) by Lemma 1. Now choose f E X* with 
G(f )= 1. Hence f (y,) + 1 as j + cc . Finally, given z > 0 ,  choose (b,) a 
subsequence of (y,) with 

(13) 
Z

I1 - f(b,)l < - forall j .
2' 

To see that (b,) is an (s)-sequence,we need only show that there is a p < oo 

so that 

(14) ( ~ c , ( ~ ~ ( ( ~ c , b , ~ ~ f o r a l l n a n d s c a l a r s c l, . . . ,  c,. 
j= 1 j=1 

(It then follows that the summing functional s is well-defined with llsll 5 P .) 
But given scalars cl , ... , c, and setting x = C:=, c,b, ,we have that 

Thus (14) holds with P = 1 1  f 1 1  + z sup, IIyj 1 1  . This completes the proof of 
Proposition 2.2. 

Remarks. 1. The above argument yields the following quantitative information: 
if xi -.G weak* and 6 = dist(& ,X) then given E > 0, (x,) has an (s)-

,, ,, 

subsequence (b,) with basis constant at most + E and summingfunctional 
of norm at most &+ E . 

2. Say that a sequence (xi) in a Banach space is (wcb) (for weak-Cauchy 
basic) if (x,) is a basic sequence and a non-trivial weak-Cauchy sequence. Now 
it is easily seen that if (x,) is (wcb), c # 0 ,  and (c,) is a sequence of non-
zero scalars with cj -+ c , then (cjxj) is also (wcb). It also follows that if (x,) 
is (wcb), then there exists such a sequence (c,) with (cjxj) an (s)-sequence. 
Thus from the point of view of basic-sequence permanence properties, (wcb) 
sequences appear as the more natural objects. However because of the essential 
property given by Proposition 2.1, we always pass to subsequences to obtain 
(s)-sequences. We note also that (wcb) sequences need not be (s); indeed, if 
(b,) is the summing basis itself and c i l  = 1+ (-I)"/ log(n + 1) for all n ,then 
(c, b,) is (wcb) but not (s). 

We pass now to the elementary permanence properties of (s.s.)- and (c.c.)-
sequences. 

Proposition 2.3. Let (b,) be a given sequence in a Banach space, and (e,) be 
its diference sequence. Then (b,) is (s.~.)if and only if (e,) is (c.c.) . 
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Proof. This follows simply from Proposition 2.1 and its proof. Suppose first 
that (b,) is (s.s.) . Then (b,) is (s), so (e,) is (c) by Proposition 2.1, so in 
particular (e,) is a semi-normalized basic sequence. Thus (eJ*) is uniformly 
bounded. Now let (c,) be a sequence of scalars with 

p sup 11 5c,e, 11 < m . 
" j = 1  

It then follows that 

(16) SUP Ic,I 5 SUP Ile; I I P  < m . 

Now define (a,) by 

(17) a .,= c .,- c .  for all j . 
Then by (6), 

n n+ lxaibi = xc,e, - cn+,bn+, for all n . 

Hence by (15) and (16), sup, 1) C:=,aibill < m ,whence Cai converges, and 
thus (c,) converges by (17). Thus (e,) is (c.c.). 

Suppose conversely that (e,) is (c.c.) . Again, (b,) is (s), so in particular 

(b,) is a semi-normalized basic sequence dominating 
(19) 

the summing basis. 

Now let (a,) be a given sequence of scalars with 

Let cl = 0 and c, = - oi for all j > 1. It then follows by (19) and 
(20) that 

Now of course cj - cj+, = a, for all j ;thus by (6), 

n n- l. . 

(22) ciei = aibi + cnbn for all n 

Hence by (20) and (21), sup, 1 1  C:=, cjejll < m, so since (e,) is (c.c.) , (c,) 
converges, and thus Cai converges. Thus (b,) is (s.~.). 

Our next result shows that with respect to biorthogonal functionals, (s.s.)-
and (c.c.)-sequencesare in perfect duality. 
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Proposition 2.4. Let (x,) be a basic sequence in a Banach space. Then (x,) is 
(s.s.) ifand only if (xj*) is (c.c.) ; (x,) is (c.c.) ifand only if (xl*)is (s.s.). 

Remark. Thus if (x,) is (s.s.),then in particular (xi') is (c) ,whence by Propo- 
sition 2.1, (C:=,xl*)zl is an (s)-sequence, and thus a non-trivial weak-Cauchy 
sequence. This yields Proposition 1.4. 

Now in fact, the second statement of Proposition 2.4 follows immediately 
from the first. Indeed, define T : [x,] + [xj*]* in the obvious way; (Tx) ( f )  = 

f(x) for all f E [xj*]*, x E [x,] . Then of course T is an (into) isomorphism 
and (Tx,) is simply (x j*) ,  i.e., the sequence biorthogonal to (x;) in [xj]* . 
In fact, this "duality-trick" allows us to prove Proposition 2.4 by demonstrating 
only one implication, by virtue of the following "standard" idea. 

Definition 2.3. Let x = (xi) be a basic sequence in a Banach space. Set B(x) = 

{(c,) : (c,) are scalars with sup, 1 1  C:=, c,x, l l  < co). 

Now of course B(x) is a Banach space under the norm 

In fact B(x) is canonically isomorphic to [xl*]*. Indeed, we define a map 
T : B(x) + [x;]* as follows: T((c,)) = Cc,xJ**, the series converging w*, 
where (xj*) is the sequence given above. Of course T is just an "extension" 
of the canonical map already mentioned; since (xj*)is a weak*-basis for [xj'l* , 
it follows easily that T is a surjective isomorphism. 

Proof ofProposition 2.4. Let (b,) be an (s.s.) basic sequence in a Banach space. 
We first show that (bj) is (c.c.) . Suppose (c,) is a sequence of scalars with 

sup, I I  C:=, cjbjll < cc . It follows that Cc,b,' converges w* to an f in [b,]* . 
Since (b,) is weak-Cauchy, lim, f(bj) = limj c, exists. Now since (bj) is a 
basic sequence, it only remains to show that (C:=,bj):, is a weak-Cauchy 
sequence. Letting T be the map defined above, given f E [bj]*, choose (c,) 
in B((bj)) with T((cj)) = f .  Then 

f ( ~ b ; )= C c ,  for all n ; 

hence since (b,) is (s.s.), limn f(c=,bj) exists. 
Now to complete the proof of Proposition 2.4, by the "duality-trick" we need 

only show that if (e,) is a (c.c.)-sequence in a Banach space, then (el*) is 
(s.s.) . But letting (b,) be the sequence whose difference sequence is (e,) (i.e., 
b, = C:=, e, for all n ), we have that 

* * * 
b. = e .  -ej+, forall j = 1 , 2  ,... .(23) I I 
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Thus, if (d,) denotes the difference sequence of (e;) , then b; = -d,+, for 
all j . Of course (d,):, is (c.c.) if -(d,),"_, is. Thus, (e,) (c.c.) +- (b,) (s.s.) +-
(b;) (c.c.) +- (d,) (c.c.) +- (e;) (s.s.) . 

Remark. We may define a semi-normalized basic sequence (x,) in a Banach 
space to be wide- (s.s.) (resp. wide- (c.c.) ) if whenever (c,) is a given sequence of 
scalars with sup, 1 1  C:=, c,x,ll < m , then Cc, converges (resp. (c,) converges 
and sup, I Z:=,x,ll < m ) .  Then the arguments for Propositions 2.3 and 2.4 
yield the following generalization: 

Proposition. Let (b,) be a semi-normalized basic sequence, with diference se-
quence (e,) . 

(a) (b,) is wide- (s.s.) if and only if (e,) is wide- (c.c.) . 
(b) (b,) is (s) ifand only if (b;) is wide- (c.c.) . 
(c) (b,) is wide- (s.s.) ifand only if (bj) is (c) . 

We continue with further permanence properties. 

Proposition 2.5. Let (x,) be an (s.s.)-sequence. Then every convex block basis 
of (x,) is also (s.s.) . 
Proof. Let (y,) be a convex block basis of (xi) . Choose 0 5 nl < n2 < .. . 
and scalars (Ai) so that for all j , 

" j + ~  ",+I 

y, = x Aixi with A, 2 0 for all i and x Ai = 1 . 

Now it follows easily that (y,) is a weak-Cauchy basic sequence, since (x,) 
df

is. Let scalars (c,) be given with sup, 1 1  C:=, c,y,I = p < m , and let K be 
the basis-constant of (x,). Define (ai) by ai = c,Ai for n, < i 5 nj+l ,  

j = 1,2 ,  ... . Then 1 1  c:=,arxrl5 K p  for all i . Hence C:, a, converges, 
to s say. So in particular, lim,+, ~ysla, =s . But fixing j , 

Thus C c k  converges. 

Our next result follows from our main theorem and known results. However 
its direct proof is quite simple, so we give this here. 

Proposition 2.6. Let X be a Banach space containing no isomorph of C 1  , and 
suppose X* is not weakly sequentiallycomplete. Then X has an (s.s.)-sequence. 

Remark. As noted following Corollary 1.2, in fact (using Theorem 1.1), we 
also have that every non-trivial weak-Cauchy sequence in X* has an (s.s.)-
subsequence. 
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Proof of 2.6. We first note the following simple fact: Let X ,  Y be Banach 
spaces, T :X -,Y a bounded linear operator, and (x,) a (wcb) sequence in X 
such that (Tx,) is (s.~.). Then (xi) is (s.s.). 

Now let (f,) be a non-trivial weak-Cauchy sequence in X* . In particular, 
there is an f in X* so that f ,  -,f o*. But then (f, - f )  is also non-trivial 
weak-Cauchy, and hence has an (s)-subsequenceby Proposition 2.1. That is, 
we have 

(24) there is an (s)-sequence (f,) in X* with ( f , )  o*-null. 
Next, we may assume without loss of generality that X is separable. We 

then deduce, by a result in [JR] (cf. also [R3]), that ( f , )  has a weak*-basic 
subsequence, so without loss of generality, let us assume that (f,) itself is 
weak*-basic. It follows that there is a Banach space Y with a basis (y,) and a 
bounded linear surjection T :X -,Y so that 

(25) ~ * y ;= f ,  for all j . 
Then letting (6)be the functionals biorthogonal to (4) (in [f,]*), it fol-

lows from (25) (since T* is an into-isomorphism) that 

(26) (y,) is equivalent to (c). 
Now by the remark following the proof of Proposition 2.4, since (4)is an 

(s)-sequence, (4*)is wide- (c.c.) . (In fact the first part of the proof of 2.4 
yields this immediately.) Thus by (26), (yj) is wide- (c.c.), so by the proof of 
Proposition 2.3, setting u, = ELly, for all n ,  we have that (u,) is wide-

(s.~.). Now since C 1  doesn't embed in X ,  it doesn't embed in Y either. 
Hence (u,) has a weak-Cauchy subsequence (u',). But then (u',) is an (s.s.)-
sequence. Now by the open mapping theorem, we may choose (bj) a bounded 
sequence in X with Tb, = u; for all j. Now of course (b,) has no weakly 
convergent subsequence, since (u;) is itself non-trivial weak-Cauchy. Thus by 

the C '- heo or em and Proposition 2.2, we may choose (x,) an (s)-sequencewith 
(x,) a subsequence of (6,) . Since (Tx,) is a subsequence of (u;) , (Tx,) is 
(s.~.), so by the fact mentioned at the beginning of the proof, (xi) is (s.~.). 

Remark. Proposition 2.6 yields another proof of the known result: if C 1  does 
not embed in X and X has property (u), then X* is weakly sequentially 
complete. (This result follows immediately from the C1- heo or em and results of 
A. Pelczynski [P2].) Indeed, if not, then since X has an (s.s.)-sequence, our 
argument for Corollary 1.5 shows that X fails property (u), a contradiction. 

The final two results of this section will be used as tools in the proof of the 
main theorem. The first one gives an equivalence for (c.c.)-sequences; its proof 
follows by an argument of S. Bellenot [Be]. 

Proposition 2.7. Let (e,) be a given (c)-sequencein a Banach space. Then the 
following are equivalent. 

(a) (e,) is a (c.c.)-sequence. 
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(b) For any sequence of scalars (ci) with cj  = 0 for injnitely many j and 

Remarks. 1. Call (x,) a proper subsequence of (e,) if the x, 's are not ulti-
mately the e, 's; that is, there exist n, < n2 < .. . with N - {n, , n2, ...) 
infinite, with x, = en; for all j. Condition (b) may then be reformulated: 

Every proper subsequeice of (e,) is semi-boundedly complete. 
2: The proof of 2.7 yields also that if (e,) is a given wide- (c) sequence, then 

(e,) is wide- (c.c.) if and only if (b) holds. 

Proof of 2.7. (a) + (b) is trivial; we show (b) + (a). Let (c,) be a sequence 
of scalars with sup, 1 1  Cy=,c,e,ll < m . We must show that (c,) converges. 
Since (e,) is a semi-normalized basic sequence, (c,) is a bounded sequence, 
and hence has a convergent subsequence. Thus we may choose n, < n2 < . .. 
and c so that 

(27) 
1

Icnl - cl < - for all j . 
2' 

Now define sequences (ai)and (/Ii) by ai = ci-C if i # n, for any j ; a = 0"j 

for j = 1 , 2  ,... ; pi=O if i # n ,  forany j; /I, = c n j - c  for j =  1 , 2,... . 
We have that since sup, 1 1  C:=,eiII < m , sup, 1 1  C:=,(c,-c)eiII < m ,and hence 
since 

and 
n n n 

aiei = C ( c i- c)e, - /liei for all n , 

Since ai = 0 for infinitely many i , (28) yields that limi--rcoai = 0. But in 
virtue of (27), this implies that limi-rmci = c . 

Our last result of this section gives a criterion for extracting (s.s.)-sub-
sequences from a given sequence, which we use directly in the proof of Theo-
rem 1.1. It is convenient to first give the following eversion of (c.c.)-sequences. 

Definition 2.4. A (c)-sequence (e,) in a Banach space is called an 8- (c.c.)-
sequence if whenever (c,) is a sequence of scalars with c, = 0 for infinitely-
many j and 1 1  Xi"=,cjejll 5 1 for all n , then limj,co Ic,l I E . 
Lemma 2.8. Let (4) be an (s)-sequencein a Banach space. Then (4) has 
an (s.s.)-subsequenceprovided, for every e > 0 and subsequence (g,) of (4)' 
there is a subsequence (b,) of (g,) whose diference sequence (e,) is an e- (c.c.)-
sequence. 

Lemma 2.8 follows immediately, by diagonalization, from Proposition 2.7 
and the following quantitative permanence properties. 
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PI. Let (b,) be an (s)-sequence. There exists a A < m so that if (bi) is a 
subsequence of (b,) , then the diference sequence (e:.) of (b;) is A-basic. 

Indeed, the proof of Proposition 2.1 yields that if (b,) has basis-constant 
/3, and s is its summing functional, then (e:.) as above is A-basic where A = 

p + + p)llsll supk llbkll . 
P2. Let (b,) be an (s)-sequence, A as in P1, and e > 0 .  Then ifthe difer-
ence sequence (e,) of (b,) is e- (c.c.) and (b;) is a subsequence of (b,) with 
diference sequence (e;) , then (e:) is A&-(c.c.) . 

To see this, suppose (c,) is a sequence of scalars with 1 1  c,e;.ll < 1 for 
all k and cj = 0 for infinitely many j . Suppose nl < n, < .. . are chosen 
with b:. = b for all j . Then setting no = 0 ,  

"1 

"1 

e'.I = ei for all j . 
i=n,-,+l 

Now define (ai)by ai = C, if nj-l < i < nj , for all j . Then it follows that 

and of course ai = 0 for infinitely many i ,  whence G,lai[= G,Ic, C: 
A & .  

We first prove the (known) fundamental connection between sequences equiv-
alent to the summing basis and differences of bounded semi-continuous func-
tions, Proposition 1.7. We need some basic permanence properties of DUC-
sequences (cf. Definition 1.2). 

Suppose (xj) is a WUC-sequence in a Banach space X . A simple application 
of the uniform boundedness principle yields that there is a K < m so that 
CFlIx*(x,)I < Kllx*I for all x* E X* . We accordingly define Il(x,)llwvc by 

Similarly, if (yj) is a DUC-sequence in X ,  we define Il(yj)llDuc by 

(where we set yo = 0).  
The next result now readily follows from the basic structure of (s)-sequences. 
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Proposition 3.1. A sequence in a Banach space is equivalent to the summing basis 
ifand only if it is a DUC- (s)-sequence. 
Proof. It is trivial that the summing basis is both DUC and (s);hence so is any 
sequence equivalent to it. Suppose conversely that (b,) is a DUC- (s)-sequence, 
with difference sequence (e,) . Thus (e,) is WUC and (by Proposition 2.1) a 
basic sequence. Let then K = Il(e,)llwuc and A = sup, lle;l where (e;) are 
the biorthogonal functionals to (e,) . Then given n , scalars cl , ... ,c, , and 
x* E B ~ ( x * ) ,we have that 

Hence 

Of course (33) yields that (ei) is equivalent to the co-basis, whence (b,) is 
equivalent to the summing basis. 

We next give some permanence properties of DUC-sequences. 

Proposition 3.2. Let (xi) ,  (y,) be given sequences in a Banach space. 

(a) If (x,) , (y,) are DUC, so are (xi +y,) and (Ax,) for any scalar A. 
(b) If (xi) is DUC and (y,) is a convex block basis of (x,) , then (y,) is 

DUC and moreover 

Remark. (a) is trivial, (b) is not. Of course the immediate argument for (a) 
yields that the DUC-sequences form a normed linear space under 1 1  l l D U c  ,and, 
with a little more work, a Banach space. (In fact, of course the space of DUC-
sequences is isometric to that of the WUC sequences; but the latter is in turn 
isometric to 2 ( c o ,X) .) Note that if (xi) is DUC and C llx, -y,ll < m , then 
since (xi - y,) is DUC, so is (y,) . We shall apply (a) in this form. 

Proof of 3.2 (b). Let el = xl , ej = x .  - x .  for j > 1 . Then it follows
I 1-1 

ethat given k < C and scalars Ak+l  , ... , Ae with Cj=k+lA, = 1 and y = 

C:=,+,hixi,then setting p, = c:=,A, for all k < j < C ,we have that pk+,= 1 
and 

k I 

Hence also given rn > C and scalars A,+, , ... , Am with C:=,+, A, = 1 and 
m 

jj = Ci=,+,Aixi, then setting pj = C z jA, for all l! < j 5 m ,we have that 

y - y  = C ( I  -p,)e,+ C b e j .  



A CHARACTERIZATION OF BANACH SPACES CONTAINING c,, 727 

Now let (y,) be a convex block basis of (xi). Then we may choose 0 = no < 
n, < n2 < .. . and non-negative scalars I,,1 2 ,... so that, for all i , 

y i =  C Ijx, and C I ,= ]  

Then setting p; = xi;,I, for all ni-, < j 5 ni , it follows by (35) that 

(36) 
1

yl = x P j e j  and 

y,, -yi = x (1 - p:)e, + x p;e, for all i . 

Now setting yo = 0 for convenience and letting x* E Ba X* , we have by (36) 
and the fact that 0 < p; 5 1 for all i and j that 

Corollary 3.3. A non-weakly convergent DUC-sequence has a subsequence equiv-
alent to the summing basis. 

Proof. Let (x,) be such a sequence. Then (since (x, -xi-, ) is WUC) it follows 
that (xi) is nontrivial weak-Cauchy. Thus by Proposition 2.2, (x,) has an (s)-
subsequence (y,) . Of course (y,) is then a convex block basis of (x,) ;hence 
(y,) is also DUC by the previous result, so (y,) is equivalent to the summing 
basis by Proposition 3.1. 

We are now prepared for the 

Proof of Proposition 1.7. Let f ,  (f,), and K be as in the statement of the 
proposition. Of course we work in the Banach space X = C ( K ). Suppose first 
that (g,) is a convex block basis of (f,) ,with (g,) equivalent to the summing 
basis. But then it follows that setting go = 0 ,  gn + f pointwise, and for all 
k € K ,  
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Hence f is in D(K) . Now suppose conversely that f is in D(K) . We may 
then choose C < cc and q l  ,q2, ... in C(K) with 

(37) z l q , ( k ) l  5 C  and z q , ( k ) =  f(k)  forall k e K .  

Now set g, = qi for all j. Then it follows that f ,- g, + 0 pointwise 
as j + m, and hence f j  - g, + 0 weakly in C(K), since (6), (g,) are 
bounded sequences. Thus we may choose 0 5 n, < n2 < .. . positive integers 
and non-negative scalars A ,  ,A2, ... with 

"l+l "]+I 

(38) z A, = 1 and 
1I /  z A,($ - g,)ll 5 - for all j 

i=n .+1 i=n .+I 2' 

Now set u, = c:$+,A,& and v, = C::;,+, Aigi for all j. Of course it 
follows from (38) thai (v,) is a convex block basis of (g,), and since (37) 
immediately yields that Il(gi)llDuc5 C < m , Proposition 3.2b yields that (v,) 
is DUC. Hence also by 3.2a and (38), (uj) is DUC (in fact 1 1  (u,) I t D u c  5 C+ 1 ), 
and again by (38), u, + f pointwise. Since f is discontinuous, (u,) is non-
weakly convergent and hence has a subsequence (u:) equivalent to the summing 
basis by Corollary 3.3. This completes the proof, since (u;) is again a convex 
block basis of (A).  

We now treat some basic intrinsic invariants of differences of bounded semi-
continuous functions. It is convenient to define these on an arbitrary separable 
metric space K . We let C(K) denote the space of continuous complex-valued 
functions on X and Cb(K) the space of bounded members of C(K) under 
the sup norm. Now we define D(K) exactly as in Definition 1.5 in the compact 
case. It is not hard to show that D(K) is then a Banach space, where we define 
I 1  I I ,  on D(K) by 

M 

Now if f 2 0 is bounded and lower semi-continuous, a result of Baire's gives 
that there exist continuous 4 ' s  with 0 fo 5 f, 5 f2 5 f3 .. . and fn + f 
pointwise. Of course then f = Cjm_l(J-J-l)SO we obtain that 1 1  f 11, = 1 1  f 11, . 
If f is real-valued and in D(K) , then it follows that 

(40) 
llfll,=inf{llu+vll,: f = u - v  , u,v>Oarebounded 

lower semi-continuous). 

We prove below the rather surprising result that this infimum is attained. 
We introduce a new concept here, that of the transfinite oscillations of a 

given function. These will be our basic tool in studying D(K) . They are closely 
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related to earlier transfinite invariants defined by A.S. Kechris and A. Louveau 
[KL], which we term here the positive transfinite oscillations (see Definition 3.2 
and the following below). We first recall the upper and lower semi-continuous 
envelopes of a given extended real-valued function f on X : Uf , the upper 
semi-continuous envelope of f ,  is defined by 

(41) Uf (x) = limf (y) for all x E X ; 
Y + X  

similarly, Lf , the lower semi-continuous envelope of f , is defined by 

(Lf)(x) = lim f(y) for all x E K . 
Y - x  

Now if f : X + C is a given function, we define oscf ,  the oscillation of 
f ,as follows: First, we set 

(43) -oscf (x)  = lim I f(y) - f(x)l for all x E K . 
Y + X  

Then we set 

Now it is easily seen that if f is real-valued, then 

oscf is not in general upper semi-continuous; nevertheless this invariant is 
more appropriate for our purposes than the usual definition of the oscillation, 
which we term 6E f , the upper oscillation of f : 

oscf(x) = lim I f(y) -f(z)l
Y ,  z - x  

( = Uf -Lf if f is extended real-valued). It's worth pointing out that if f is 
bounded complex-valued, then 1 1  oscf 11, 5 1 1  E f 11, I 211f 11, while if f is 
non-negative, then 1 1  6Ef 11, = 1 1  Uf -Lf 11, I1 1  Uf 11, = I l f  11, . 
Definition 3.1. Let f : K + C be a given function, K ,  a separable metric 
space, a a countable ordinal. We define the arhoscillation of f ,  osc, f ,  by 
induction, as follows: set osc, f 0. Suppose /3 > 0 is a countable ordinal, 
and osc, f has been defined for all a < /3. If /3 is a successor, say /3 = a + 1, 
we define 

(46) O ~ C , ~f (x)= lim ( 1  f (y) - f (x)1 +osc, f (y)) for all x E K . 
Y + X  

If /3 is a limit ordinal, we set 

(47) oTcpf = suposc, f . 
a<P 

Finally, we set oscpf = Uoycpf 

Evidently we have that oyc,f = oscf and osc, f = osc f . Next we list some 
useful permanence properties of the transfinite oscillations of a function. 
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Proposition 3.4. Let f , g be given complex-valued functions on K , a separable 
metric space, t a complex number, and a ,  /I non-zero countable ordinals. 

(a) 	osc, f is an upper semi-continuous [O,  m]-valued function; if a I/I, 
then osc, f 5 oscg f .  

(b) 	osc, t f = It1 osc, f and o x a (  f + g) 5 osc, f + osc, g . 
(c) If OSC, f = OSC,,, f ,  then osc, f = oscg f for all /I > a .  Moreover if 

f is real valued, this happens if and only if osc, f & f are both upper 
semi-continuous functions. 

(d) 	If f is semi-continuous, then osc, f = oscf . 
Proof. The assertions up to the "moreover" statement in (c) are easily proved 
by transfinite induction, using Definition 3.1. 

To prove this part of (c), we first note that osc, f IoTc,,, f Iosc,,, f .  It 
then follows that 

(48) osc,,, f = osc, f if and only if oTc,,,f = OSC, f 

(for if the latter equality holds, then since osc, f is upper semi-continuous, 
OSC,+l f = UOTC,,~f = U OSC, f = OSC, f ). 

Now assume f is real valued, and suppose first that osc, f = osc,,, f .  To 
see that f + osc, f is upper semi-continuous, let x E K and (y,) a sequence 
in K with yn +x .  Then 

lim f (Y,) - f (x)+ osc, f ( Y n )
n+m 

5 lim If(Yn) - f(x)l+Oscaf(.Yn)
n+m 

IoYc,+,f (x)= osc, f (x) by (48). 

Hence 	 -
lim f (Y,) + osc, f (Y,) I f (x)+osc, f (x) 9n+m 

proving f +osc, f is upper semi-continuous. Since oscg f = oscg -f for all /I 
by 3.4(b), it follows immediately upon replacing f by -f that also f -osc, f 
is upper semi-continuous. 

Now suppose conversely that osc, f k f are upper semi-continuous, yet 
osc,,, f # osc, f . Then by (48) we may choose x E K so that oYc,,, f (x)  > 
osc, f (x). But 

Thus either 
-

(49i) lim f (y) - f (x) + osc, f (Y) > osc, f (x)
Y+X 
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But if (499 holds, f +osc, f is not upper semi-continuous, while if ( 4 9 4  holds, 
(- f )+ osc, f is not upper semi-continuous. 

Finally, to prove 3.4(d), suppose without loss of generality that f is up-
per semi-continuous. (For if f is lower semi-continuous, -f is upper semi-
continuous, and osc, f = osc, -f .) But then f = Uf and hence 

(since -L f is upper semi-continuous). But then osc f + f = f - Lf + f = 
2f -Lf and oscf -f = -L f ; thus oscf kf are both upper semi-continuous, 
so (d) follows from (c). 

We may now formulate our main structural,result concerning D(K) . 
Theorem 3.5. Let K be a separable metric space and f : K + cC a bounded 
function. There exists a countable ordinal a so that osc, f = oscg f for all 
/3 > a .  Letting z be the least such a ,  then f is in D(K) if and only if osc, f 
is bounded. When f is real valued and this occurs, then 

Moreover setting 1= 1 1  I f  1 +osc, f [I,, 

1-osc, f + f 1-osc, f - f 
U = 

2 
and v = 

2 3 

u ,  v are non-negative lower semi-continuousfunctions with f = u - v and 
llf llD = 11' + '11, ' 

We first prove the theorem, then give several remarks. The proof requires 
the following two lemmas. (Throughout, K is a given separable metric space.) 

Lemma 3.6. Let u ,v be non-negative bounded lower semi-continuousfunctions 
dejined on K . Then for all countable ordinals a ,  

(52) osc,(u - v) 5 osc(u + v) . 
Proof. (52) trivially holds for a = 0. Let a be a countable ordinal and suppose 
(52) holds. Let x E K . We first show 

We may choose (y,) a sequence tending to x so that 

Since u ,  v , and osc,(u - v) are bounded, we may assume without loss of 
generality that u(y,) , limn+, v (y,) , limn+, OSC, ( ~ ( y , )-v (y,)) ,and 
limn+, osc(u(y,) +v(y,)) all exist. We then have, by (54) and the assumption 
that (52) holds, that 
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We next observe that 

Indeed, this follows immediately from the observation that, since u is lower 
semi-continuous, 

whence limn+mlu(yn)- u(x)l = limn_, u(yn)- u(x) . Thus (56) holds since 
all the limits are the same, upon removing the absolute value signs, noting that 
v and u +v are also lower semi-continuous. Now (55), (56) yield that-

0sca+l(u- v)(x) 5 if", Iu(yn)+v(yn)- ~ ( x )- v(x)l+ 0sca(u(yn)+v(yn))-< osc,,, (u(x) +v(x)) = OSC(U(X) +v (x)) 

(by Proposition 3.4 (d)). 
Of course (53) is now established; but then since we have that oTc,+, (u -v)-

5 osc(u + v) , osc,+, (U  - v) = uosca+,(u - v) 5 U osc(u + v) = osc(u + v) . 
Finally, suppose /3 is a limit ordinal and (52) is established for all a < /3 . But 
then immediately 

oTc,(u - v) = sup osc,(u - v) < osc(u +v) , 
a<, 

so again oscg(u - v) = U osc, (u - v) < osc(u + v) . This completes the proof 
of the lemma. 

Finally, we require the following known stability result (cf. [KL]),which we 
prove here for the sake of completeness. (w ,  denotes the first uncountable 
ordinal.) 

Lemma 3.7. Let (q,),,,, be a family of upper semi-continuous extended real-
valued functions defined on K so that q, < q, for all a < /3. Then there is a 
countable ordinal a so that q, = q, for all /3 > a .  

Proof. Suppose not. Then by renumbering, we may assume that 

(58) q, # pa+, for all a < w, . 
Now let 9 be a countable base for the open subsets of K .  Fix a < w, ; 
by (58), we may choose x = x, E K with q,(x) < q,+,(x). Then by upper 
semi-continuity of q, , choose U, E 33' so that x E U, and 

(59) 
df

2, = SUP v,(U,) < V,+,(X) ' 

Since w, is uncountable, we may choose an uncountable subset r of w, so 
that 

(60) 
dfU,= Up = U forall a , / 3 ~ r .  

Finally, we claim that 
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Indeed, fixing a < B in r and letting x = xa as above, we have that Aa < 
q,,, (x) 5 qB(x)5 sup qB(U)= AB . But of course since r is uncountable, (61) 
is impossible. 

Proof of Theorem 3.5. The first assertion follows immediately from the preced-
ing lemma and Proposition 3.4(a). Now first assume f is real valued. If f is 
in D(K), we may choose u ,  v lower semi-continuous bounded non-negative 
functions with f = u - v , and then by Lemma 3.6, letting z be as in the 
statement of the theorem, osc, f 5 osc(u +v) ,a bounded function. Now sup-
pose conversely that osc, f is bounded, and let I ,  u ,  and v be as in the 
statement of Theorem 3.5. Then it's immediate that f = u - v and u ,  v are 
non-negative. But by Proposition 3.4(c), since osc, f = osc,,, f ,  osc, f ff 
are upper semi-continuous, which implies the lower semi-continuity of u and 
v . Thus since u and v are bounded, it is proved that f is in D(K) . Finally, 
for the norm identity, we first note (by (40)) that 

(62) llf llD 5 11' + '11, = It1 - OSC, f 11, 5 
(the last inequality holds since 0 5 osc, f 5 I).For the reverse inequality, let 
E > 0 and choose g ,  h non-negative lower semi-continuous with f = g - h 
and 

(63) llg+ h l l m  5 IlfllD + '  ' 

Now we have that 

I f 1  + O S C , ~= Ig - hl +osc,(g - h) 
I ( g- h(+osc(g +h) (by Lemma 3.6) 
= lg - hi+ U(g +h) - (g  +h) (since g +h is lower semi-continuous) 
I U(g + h) (since Ig - hl - (g  + h) 5 0). 

Hence 

= 1 1  If 1 + OscT f 11, 5 IIU(g+ h ) l l m  = Ilg + h l l o o  5 llf l l D  +' ' 
Since E > 0 is arbitrary, A I 1 1  f [ID,so by (62), the theorem is established for 
real-valued f . Now suppose f is complex-valued. Then it is easily established 
by transfinite induction that if g = Ref or Im f ,  then 

(64) osca g 5 osca f for all ordinals a . 
Thus we obtain that oscBg 5 oscg f = osc, f for all P > z (where z is as 
in the statement of the theorem). Hence if osc, f is bounded and /3 is such 
that oscB+,g = oscBg for both g = Ref and g = Im f ,  then oscBRe f ,  
oscgIm f are both bounded, whence f is in D(K) since its real and imaginary 
parts belong to D(K) . Of course if f is in D(K) , then we trivially have 
that Ref , Im f belong to D(K), and then osc, f 5 osc, Re f + osc, Im f 
by Proposition 3.4b; thus osc, f is bounded. This completes the proof of 
Theorem 3.5. 

We proceed now with several complements and remarks concerning Theo-
rem 3.5. 
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Let f :K +C be a general function. We define the D-index of f , denoted 
i,( f ), to be the least ordinal a so that osc, f = osc,,, f . It is shown in [R5] 
that, for f E D[O, 11, i, f may be any countable ordinal (an analogous index 
and result were previously obtained in [KL]). 

Now letting a = i, f and assuming f E D(K) , equivalently by Theorem 3.5 
that f and osc, f are bounded, we have by Proposition 3.4 that assuming 
f is real valued, osc, f * f are both upper semi-continuous. It also follows 
that osc, f + I f  1 , osc, f +f , and osc, f +f- are all upper semi-continuous. 
Indeed, osc, f + I f  1 = max{osc, f +f , osc, f - f )  , and the max of two upper 
semi-continuous functions is again upper semi-continuous. But of course since 

')+(Oscnf = , osc, f +f = ('a + I f  2 is again upper semi-continuous, 
with a similar argument for f- . Thus we also obtain f as the difference 
of two non-negative upper semi-continuous functions, u = osc, f + f and 
v = osc, f +f- , and again Ilu +vll, = 1 1  f l l D .  

We also note that, for f E D(K) complex-valued and a as above, we have 

(This follows easily from (64) and the validity of (51) for Ref , Im f ,  where 
.r = max{i, Re f ,  i, Im f )  .) 

Now for f : K -. cC bounded, which is not in D(K) , we obtain from 
Theorem 3.5 that there is a countable ordinal a so that osc, f is unbounded. 
We define i,, f ,  the non- D index of f ,  to be the least ordinal a so that 
this happens. It is obvious that a must be a limit ordinal, for 1 1  OSC,,, f 11, 5 
2llf 11, + 1 1  osc, f 11, for any ordinal a . It is proved in [R5] that in fact iND (f) 
must be an ordinal of the form wB for some countable non-zero ordinal /3 , 
and moreover for each such /3 , there is a function f : [0, 11 -. [O , 11 with 
iND(f)= wp . It's also worth observing that if K is a compact metric space, 
if f $ D(K) , f is bounded, and a = iND(f), then osc, f must assume the 
value +m . Thus for K compact metric, we have that a bounded f is in D(K) 
if (and only if) osc, f is real valued for all countable ordinals a .  

We conclude this section with a discussion of the above indices and some 
other indices and transfinite invariants for D(K) introduced earlier in [KL]. 

Definition 3.2. Let f : K -. R be a given function and a be a countable 
ordinal. We define the ath positive oscillation of f ,  yf ,  by induction, as 
follows: set v,, f = 0 .  Suppose /3 > 0 is a countable ordinal, and V, f has 
been defined for all a < /3 . If /3 = a + 1 for some a ,  define .irBf by 

(66) .irBf (x)= lim(f(y) - f (x) +v,f (y)) for all x E K . 
Y -x 

If /3 is a limit ordinal, set .irg f (x)= sup,,g v, f (x) for all x E K . Finally, let 
vgf = U.irgf. 

Of course the positive oscillations are defined exactly as in Definition 3.1, 
but we simply delete absolute values in the definition. The v, f 'S (with a dif- 
ferent terminology and equivalent formulation) are given in [KL], where it is 
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established (for K compact metric, which is not essential to the argument) that 
again f E D(K) if and only if v, f is uniformly bounded for all a .  Thus 
when the v,( f )'s are bounded, choosing a so that v,( f )= v,+~(f) , and writ- 
ing f = u,-v, , it follows (as shown in [KL])that u, is upper semi-continuous, 
and hence f is in D(K) . 

The following simple result gives the basic connection between the transfinite 
oscillations and transfinite positive oscillations. 

Proposition 3.8. Let f : K + R be a given function and a be a countable 
ordinal. Then 

(67) v,(f) I osc,f I v,(f) + v,(-f) . 
Proof. The first inequality follows immediately from the definitions and trans- 
finite induction. For the second, suppose /3 > 0 is such that the inequality is 
proved for all a < P . If P is a successor ordinal, say P = a + 1 , given x E K , 
we may choose a sequence (x,) in K with x, + x so that limn,, f (x,) and 
limn+, OSC, f (x,) both exist (as extended real numbers) and either 

(with limn,, f (x,) - f (x)2 0 ) or -
(68ii) o ~ c , + ~ f ( x )  lim f ( x )  - f(xn)+oScaf(xn)= n+m 

(with limn,, f (x,) - f (x) 5 0 ). 
But in the first instance, we have (using (67)) that 

Again in the second case, 

Thus, we have 

(69) 	 KcsfI (f>+ (-f) . 
If /3 is a limit ordinal, then 

i.e., again (69) holds. But then immediately 
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Remark. It is easily seen that if X is a separable Banach space, R = B ~ ( x * )  
endowed with the weak* topology, x**E x**, and f = x**10, then, for the 
real scalars case, 

u,(f)(-w) = u,(- f)(w) for all w E R . 
Hence by 3.8, (osc, f)(w) I 2 max,(v, f)(&w) for all w E R , whence 
1 1  osc, f 11, 5 21121, f 11, . It also then follows for the case of complex scalars 
that 1 1  osc, f 11, 5 4llv, Ref 11, . That is, the positive transfinite oscillations 
have essentially the same growth as the transfinite oscillations, in the case of 
our main application here. 

To prove our main result, Theorem 1.1, we formulate a method for comput- 
ing ua+, (q) in terms of 6,(q) and 6,(q) . 
Lemma 3.9. Let a be a countable ordinal, x E K ,  q : K -. R be a given 

function, and assume 0 < u,(q)(x) < U , + ~ ( ~ ) ( X )  let U be an open d' P < m; 
neighborhood of x and q > 0 be given. There exist positive numbers and 6 
and x, E U so that 

(1)  ( l - y ) P < A + d < ( l + q ) P ,  
(2) x1 E L where L = {y :&Iu,(q)(y) < (1 + q)p - 6 ) ,  
(3) =yiiZ_x, ; y , , ( ~ ( ~ )- c(x,))= 6 .  

Proof. This argument is just at the definitional level, but we give all the tedious 
details, to be thorough. 

For convenience, define V, for A > 0 by 

Of course V, is closed, by the upper semi-continuity of u,(q) , but we have no 
need of this fact. Next we observe 

We note in passing that (71) yields immediately that for all y E V, , A + 
v1(qlV,)(y)I V , + ~ ( V ) ( Y ) .  To see (71), choose (Y,) E 6 with Y, -.Y and 

But then 
.i),+l(q)(~)2 Jf", a)(Yn) - V(Y) + V,(V)(Y,) 

2 6,(qlV,)(y) +A -
Thus (7 1) follows directly from the definitions. 

Next, for convenience, by taking q small enough, we may assume that 

By upper semi-continuity of v,(q) and U,+~(V)) ,  choose 7 open with x E 
7c % so that 

(74) u,(q)(u) < (1 - q)P and ua+,(q)(v) < (1 + Z)P for all u E 7 
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Now choose x, E Z/ with 

(75)  ( 1  - tl)P < .ira+l(q)(xl)-
Next choose (y,) a sequence with y, -.x,  and 

(76)  n+wlim v)(Y,) - v ) ( x ~ )+ ~ , ( v ) ) ( Y ~ )= ' ,+l(~))(xl)  

By passing to a subsequence, we may assume 
df df 

(77)  lim q(y,)  - q ( x , )  = K and lim v,(q)(y,) = 1 both exist. 
n+w n+w 

Hence both 1and ic are positive. Now let 0 < A < 1be such that 

(79)  
tl1 + i c  > (1 - q ) P  and 1 - A <  - p .- 2 

Finally, set 6 =6 ,( qI 5)(x,) . Since the definition of 1now yields that v, ( 9 )(y,) 
> A for all n sufficiently large, we have that K I 6 ,  and hence 6 > 0 ,  and 
moreover 

hence ( 1 )  of 3.9 holds (using (79)  and (80) ) .  Again, we have, since 6 + < 
( 1  + !)/?and A< A +  ! p  by (79) ,that 

tl
6 + v, ( q(y,))  < 6 + + -P < ( 1 + q)P for all n sufficiently large,2 

whence ( 2 )of 3.9 holds, since y, E L for all such n . To see ( 3 ) ,simply choose 
(z ,)  E 5 with z ,  +xl and -

(81)  n+wlim v(z,) - q ( x 1 )= 6 . 
But then 

Thus (82)yields that 

v,q(z,) < ( 1  + v ) P  - 6 for all n sufficiently large; 

i.e., z,  E L for all such n , and so 

proving (3 ) .  
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The following result is the central concern of this section; it quickly leads to 
a proof of our main result, via the preceding development. 

Theorem 4.1. Let cr 2 1 be a countable ordinal, K be a separable metric space, 
f :  K -.@ , and (4)be a uniformly bounded sequence of complex-valued con- 
tinuous functions on K with f ,  + f pointwise. Also let x E K and assume 

0 <.v, (Re f )(x) d' I < m ; let 0 < 9 < 1 . There exists (b,) , a subsequence 
of (4), SO that setting el = bl , e, = b - b.  for all j > 1, then given 

I I-1 
1 = m, < m, < . . . an infinite sequence of indices, there exist a t in K and an 
integer k with 

(1) ~ : = l ~ e e m ~ , ( t ) > ( l - ~ ) ' j  
(2) Ree (t) > 0 for all 1 5 j 5 k , 

m2/ 

(3) Ci4 {m,,m2,... Iej(t)I < 'l' . 

We first deduce Theorem 1.8 from (4.1) and our previous results. Let f be 
as in Theorem 1.8, and P = iND(f ). NOW we could replace f by f , where 

f (p) = f d p  for all p E K d' B ~ ( c ( K ) * )= Ba(M(K)), 

M(K) the finite complex Bore1 measures on K . Since 11 osc,(f)ll, 5 
41/v, ~ e f / l ,  for all countable ordinals a ,  by the remark following the proof 
of Proposition 3.8, we would then have directly that vp(q) is unbounded but 
v,(q) is bounded for all cr < P . We prefer to see this "directly", by a "real- 
variables" argument. Indeed, since oscg( f )  5 oscg (Re f )+ oscg(Imf), ei-
ther oscp (Re f )  or oscg (Im f )  must be unbounded, so by replacing f by 
if and (f,) by if, for all n if necessary, we may assume without loss of 
generality that oscp(Re f )  is unbounded and hence P = iND(Re f )  since, by 
definition, osc,( f )  is bounded for all cr < P . Again, since oscp (Re f )  5 
vp(Ref )+ up Re(- f )  by Proposition 3.8, we may assume, by replacing f by 
-f and f ,  by -f, for all n if necessary, that vp(Re f )  is unbounded. Now 
as noted in the preceding section, P is a limit ordinal, and we thus have (since 
Gp (Ref )  is also trivially unbounded) that 

(83) v,(Re f )  is bounded for all cr < P and sup Ilv,(Ref )I/, = m . 

Next, by Proposition 2.2, we may assume without loss of generality that (6) 
is an (s)-sequence in the Banach space C(K) , since (4)is non-trivial weak- 
Cauchy in C(K).  Then by P1 in the proof of Lemma 2.8, we may choose 
1 5 r < m so that for all subsequences (8)of (6), 

the biorthogonal functionals for ( 8  -8-,)all have norm at most r ,  
(84) 

and also /I/;- ( - 1 1 1  5 r for all j. 
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To prove that (4)has an (s.s.)-subsequence, we apply Lemma 2.8. Thus, 
let e > 0 and (6)an arbitrary subsequence of (4)be given. By (83), choose 
x E K and cr < j? so that 

Now let 0 < q < 1, to be determined later, and choose by Theorem 4.1 a 
subsequence (b,)  of ( 6 )  satisfying its conclusion. We shall show for appropri- 
ate 0 < q < 1 that the difference sequence (e,) of (b,) is an e- (c.c.) sequence. 
Suppose that this were not the case. Then we could choose scalars (c,) so that 

(8 6ii) c, = 0 for infinitely many j (with cl = 0) , 
(86iii) (c, ( > E for infinitely many j . 

Now (86iii) means we may choose M an infinite subset of N and numbers 
p,, 0, with p, real, p, > e ,  and 0, complex, l0,l = 1 ,  and c, = pjO, for all 
j E M .  But then without loss of generality, we may assume the 0,'s converge 
to 0 say (for j in M ) .  By replacing c, by Ocj for all j , (86i-iii) are all 
unchanged, and we now have without loss of generality that 0 = 1.  Since 
Ic,/ 5 r 5=for all j by (84) and (86i), and lim,+m, ,EM Icj, 1, we may choose 

1 = m, < m, < . . . so that for all j , 

= 0 and cm2,= rj + 6, 
m 2 J - ~  

where rj is real, rj > e, and ldjl < -'I . 
2I 

At last, choose t in K and k an integer satisfying the conclusion of Theo- 
rem 4.1 for (mj)El  . Then we have 

Hence 

by (1)-(3) of Theorem 4.1 and the fact that lcil 5 r for all i . Now 0 < q < 1 
was arbitrary, so assume 
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Then by (85),we obtain 

Thus ( 1  C 3c,e,((> 1 , contradicting (86i). 

We now formulate a "real-variables" result, Theorem 4.2 which yields The-
orem 4.1; we show 4.2 implies 4.1, and then set about the remaining crucial 
work needed to establish 4.2. 

Theorem 4.2. Let (4) be a uniformly bounded sequence of complex-valued 
bounded continuous functions dejned on K ,  a separable metric space, converg-
ing pointwise to a function f .  Let a be a countable ordinal, and x E K be 
given with 0 < y ( q ) ( x )  A < m where q = Ref . Let V be an open neigh-
borhood of x ,and 0 < v < 1 be given. There exists (b,) , a subsequence of (6)  
with the following properties: Given 1 = m ,  < m 2  < . .. an injnite sequence 

of integers, there exist k ,  points x, , ... , x,,-, , x,, d' t in V ,and positive 
numbers 6 ,  , ... ,dk so that: 

( 1 )  q(x2,) - q(x2,-,) > ( 1  - v P j  for an 1 5 J 5 k >  
k 

( 2 )  ( 1  + v ) A >  C 6 ,  > ( 1  -rt)A, 
j= 1 

( 3 )  C I b , ( t ) - f ( ~ , ) l < q S ~ ~ ~f o r a l l l S j I 2 k - 1 ,
rnJ<i<mj+l 

( 4 )  C ( b j ( t )  - f ( t ) (  < v . 
i2mZk 

Remark.  1 .  It is evident that if (b,) satisfies the conclusion of 4.2, so does 
any subsequence (b:) of (b,). (The convenient anchoring condition m ,  = 1 is 
really inessential, thanks to (3 )for j = 1 .) 

2. The proof shows that x ,  , d l  may be chosen independently of ( m j ). 
3. The subsequence (b,) satisfying the conclusion of Theorem 4.2 really 

yields a "stopping time" on the set of infinite-subsets of N ; ( m ,, m ,  , ...) -. 
(m,, ... , m,) . The proof yields that the rank of this stopping time depends 
only on a .  For example, when a < w , the proof gives that we may simply 
take k = a ,  and again when a = w , we may take k finite (depending on the 
given q ). 

We now give the deduction of Theorem 4.1 from Theorem 4.2. Let v > 0 ,  
A ,  x , etc. be as in the statement of Theorem 4.1. Now let 0 < i f  < 4 also 
satisfy the inequalities 

(90) ( 1  - 3 q ) ( l  - q )  2 1 - v  and 41(1 + t f )  I r l .  

Now choose (b,) a subsequence of (6)satisfying the conclusion of Theo-
rem 4.2 for " v " = q . We claim ( b j )  satisfies the conclusion of Theorem 4.1. 

Let 1 = m ,  < m2 < - . be given, and choose k , points x ,  , ... , x2k d=' t in 
K , and positive numbers 6 ,  , ... ,dk satisfying (1)-(4)of Theorem 4.2. Now 
it follows by ( 3 )that for each j , 1 5 j 5 k , 
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Hence 
Re e (t) = Re bm2,(t) -Re b (t)

m 2 j  m 2 j - ~  

Thus (2) of 4.1 is verified. Next, 

Thus (1) of 4.1 is proved, and it remains to prove (3). Now fix J and suppose 
mj < i < mj+l.  Then 

Hence 

(the last inequality holds by (3) of 4.2). Thus 

But again using (93), 

i>rn2, i2m2k 

(the last inequality holds by (4) of 4.2). Combining (95) and (96), we have 

Thus (3) of 4.1 holds, completing the proof. 

We now deal with the proof of Theorem 4.2. Throughout, we let K , (4), 
and f be as in 4.2; y, = Ref .  We shall prove the result by induction on a .  
The following lemma easily yields the case a = 1 and will be crucial in the 
general inductive step. 

df -Lemma 4.3. Let xl E K ,  L a subset of K with xl E L ,  6 = limy_xl,,,,y,(y)-
y,(xl) > 0 ,  1 > q > 0 ,  and Y an open neighborhood of xl be given. There 
exists (bj), a subsequence of (4)so that given any m > 1, there exists an 
x, E YnL with 

(1) y,(x2)-y,(x1)>(1-t1)6, 
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4.3 immediately yields Theorem 4.2 for a = 1 . Indeed, let A = v,((o)(x)> 
0 ,  Y an open neighborhood of x , and q > 0 be given. Choose x ,  E Y with 

(97) ( 1  - q ) A  < 6 < ( 1  + q ) l  where 6= i& (o(y)- (o(x,). 
Y - x ,  

Then if ( b j )satisfies the conclusion of 4.3, it satisfies the conclusion of Theorem 
4.2, for k = 1 . 

We prove 4.3 by constructing a sequence of integers n,  < n2 < .. .  and 
Mo , M ,  , M2, . . . infinite subsets of N ,satisfying certain properties. Then we 
show (b,) = ( f n i )works. For i an integer and M an infinite subset of N ,  
i < M means i < minM. 

We first construct Mo and n ,  ;then we specify the general construction in a 
sublemma. 

Since f j  + f point-wise, choose Mo infinite with 

Then let n ,  equal the least element of Mo . 
Sub-Lemma 1. There exist positive integers n2 ,  n 3 ,  . . . and injinite subsets of 
N ,  M, ,M2 , . . . so that, for all s 2 1 , 

(99) n ,  < n2 < .. . < n, < M,; 

(100) M , c M , - , ;  
( 10 1 )  n, is the least element of M,-, ; 
(102) there exists an x ,  E V nL with 

Sub-Lemma 1 easily yields Lemma 4.3; i.e., then (b,)d f 
= ( f ,  ) works. For let 

I < m be given, and let s = m - I .  Now choose x2 E V 'satisfying (102). 
Then ( 1 )  and ( 2 )of 4.3 follow immediately from (102ii)and (102i),while ( 3 )  
holds by (102iii),since ( 100) and (101)yield that {n,,, , n,,, , . . . ) c M, . 
Proof of Sub-Lemma 1.  We first complete the case s = 1 ; i.e., we construct 
x2 E YnL and M ,  . Now (98)yields that I f ,  ( x , )- so by the f ( x , ) (  < ~ 6 ,  
continuity of fn we may choose an open 7 c V with x ,  E Zr so that 

1 

(103) Ifn,(t)- f (x , ) l  < qS for all t E 7 .  
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Now by the definition of 6 ,  choose x, E Y n L satisfying (102ii); then 
( 102i) holds for s = 1 by ( 103). Finally, since 4(x2)+ f (x,) , choose M, 
infinite with nl < Ml c Mo,satisfying ( 102iii). 

Now let s >_ 1 and suppose n, , ... , n, and M, , ... ,M, have been con-
structed satisfying (99)-(102). Let n,+, be the least element of Ms. Since 
{n, , ... ,n,+, ) c Mo,we have by (98) that 

Thus by the continuity of fn , ... , LS+l
,we may choose Y an open neigh-

borhood of x l  with Y c % sb that 

(105) 2 I fn ,  ( r )  - f (xl)l < q6 for all t E Y . 
i= 1 

Now by the definition of 6 , choose x2 E T nL satisfying (102ii). Then ( 102i) 
holds for "s " = s + 1 , by (105). Finally, since f j  (x,) -$ f (x,) , again choose 
M,+, c Ms N {n,+,) infinite so that (102iii) holds for "s " = s + 1. This 
completes the proof of Sub-Lemma 1 and hence of Lemma 4.3. 

We now proceed with the main inductive step in the proof of Theorem 4.2; 
namely we let a 2 1 , assume the result established for a ,  and prove it for 
a + 1. Thus we fix x E K satisfying 

and let 2 be a given open neighborhood of x .  Now let 0 < < 1; we 
prove the a + 1-case for "q " = q . Evidently we may assume 0 <% a ( ~ ) ( ~ )< 
v,+, (v))(x),or there is nothing toprove. Indeed if va(p)(x)= va+,(9)(x) ,the 
result already follows by the case for a .  Note that va(q)(x)= 0 is impossible, 
for otherwise v, (v))(x)= 0 ,  but it's easily seen that vafl( v ) )  5 v1(9)+va(q),  
whence v a + , ~ ( x )= 0 ,  a contradiction. 

Now let 0 < q < 1 be small, to be determined later. By Lemma 3.9, we may 
choose positive numbers and 6 ,and x, E 2 satisfying (1)-(3) of 3.9, where 
L is as in (2) of 3.9. Now using Lemma 4.3 and passing to a subsequence 
of (4),we may assume without loss of generality that (4)itself satisfies the 
conclusion of 4.3. That is, we have: given any m > 1, there exists an x, E 2 
with 

(107) A 5 va(q)(x2)< (1 + q)P - 6 (i.e., x, E L), 
(108) V)(x2)- V)(xl)> (1 - q)S 

(109) C If;(x,) - f(x,)l  < r16 9 

l<i<m 

(110) lf;(x2)- f(x2)l< ~8 . 
i2m 

Now as in the proof of Lemma 4.3 we shall construct n, < n, < ... and 
infinite sets MI , M,, M3, ... satisfying certain conditions and then show that 
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(bi)= ( f n j )  satisfies the a + 1-step (for -q ) .  W e  let ni = i for i = 1 ,  2 and -set M,  ='N ( 1 ). W e  now formulate the needed sub-lemma, analogous to 
Sub-Lemma 1 .  


Sub-Lemma 2. There exist positive integers n ,  , n, , . . . and infinite subsets of 

N ,  M , ,  M,, ... with n, = i ,  i = 1 ,  2 ,  and M,  = N - ( 1 )  so that, for all 

s 2 2 ,  


( 1 1 1 )  n ,  <.. .  < n,< M,, 

(112) Ms cM,-, 
( 1  13) n, is the least element of M,-, . 

Given 1 < r < s , there is an open set 7 c 2Y and an x ,  E 7 so that 


(116) x Ifn,(t)- f (x2) l< q6 for all t E 7 ,  
r<i<s 

(117) A I i < ( l + q ) P - d  where i = v , ( ~ ) ( x , ) ,  

( 1  18) (A.)iEMssatisfies the conclusion of Theorem 4.2 for the a-case, 
with I%"= 7 ,  "x"= x 

2' 

That is, letting n,,, be the least element of M, and assuming n,,, = m ,  < 
m ,  < - . . is an infinite sequence in M, , there exist k , y, , . . . ,y,, t in 7, 
and 6 ,  , . . . ,6, > 0 so that 

(9  v(y2,)- v(y2j-,)  > ( 1  - 716, for all 1 5 J 5 k9 
k 

(ii) ( 1 + q ) . 1 > x d j  > ( 1  -q )A ,  
j= 1 

Remark. O f  course x2 is given to us by Lemma 4.3, i.e., by the statement 
containing (107)-( 1 10). 7 is chosen after x ,  is picked. 

Let us first show that Sub-Lemma 2 implies the main inductive step o f  The- 
orem 4.2; that is, (b,) !!( f n) works for a + 1 . So, let 1 < r < e ,  < e, < .. 

I 

be an infinite sequence, and let s = el - 1 . So s 2 2 and n = n,,, . Now it 
el 

follows from ( 1 12) and ( 1  13) that 

(119) @,+, ,ns+2 ' ") cMs . 
Let m .

J 
= ne, for j = 1 ,  2 ,  . . . . Then by (119), m ,  , m,, . . . all belong to 

M, . So we may choose 7 c 2Y and X ,  E 7 satisfying ( 1  14)-(117). Then 
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there exist k and yl , . . . ,y2k df 
= t in 7 ,and d l ,  . . . ,dk > 0 satisfying 

(1  18). But then it follows that 6 ,  6, , . . . ,6, , and x l  ,x2 ,  yl , . . . ,yjk satisfy 
the conclusion of 4.2 for a + 1. That is, if k1 = k + 1, 61 = 6 ,  di = 6i-l , 
2 5 i j k t ;  xi = x, , xi = x,, and x; = yj-, for 3 5 j j 2k1, then 
61, . . . ,6;) , x i ,  . . . ,xik, satisfy (1)-(4) of Theorem 4.2. Indeed, (1 14) and 
(1  l8i) yield (1). 

As for (2) 

Thus (2) of 4.2 holds, by (120) and (121), provided 
2 2 

(122) ( l - q )  2 1 - q- and ( l + q )  I l + q .  -

Finally, we verify (3) and (4). Let m;= 1 , mi = r ,and m;= ej-, for all 
3 5 j 5 kl .  We have, since t E 7 ,that 

for all 1 5 j j 2k1 - 1 .  Indeed, (123) holds for j = 1,  2 by (1 15) and 
(1 16), and for 3 jj 5 2k + 1 by (1 18iii). Indeed, to see the latter, instead let 
1 5 j < 2k ;then 

= E 1 fnl(t)- f(y,)l since m,= n for all r e,  
mJ<n,<mj+l 

= q6;+3] . 
Thus (3) holds (since 1 < -q ). Finally, we have 

( 124) E Ifni(')- f (')I < g'L+l 
i2mik, 

by (1 l8iv) and ( 1 19). Hence (4) holds. 
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We now give the proof of Sub-Lemma 2. We first complete the first step, i.e., 
the construction of Z/ and M 2 .  (In this case, s = 2 = r .) First choose x, E % 
satisfying ( 107)-(110) for m = 2 . Then choose Z/ an open neighborhood of 
x2 with Z/ c % , satisfying (1 15) and (1 16), using the continuity of f, and 
f,. Finally by the induction hypothesis, choose M, infinite with 2 < M2 c Ml 
so that (1 18) holds. We then have that (1 1I), (1 12) hold, completing the proof 
for s = 2 .  

.Now suppose s 2 2 ,  and n,  , . . . , n, and Ml , . . . ,M, have been con- 
structed satisfying (1 11)-(118). It remains to carry out the construction for 
s+ 1. Let n,,, be the least element of M, and let M 1  = M, - {n,,, ) . We shall 
construct injnite sets M' 2 M 2  3 ... 3 M S f '  so that, for each 1 < r 5 s + 1, 
there is an open set 7 c % and an x, E Z/ satisfying (1 14)-(117) (where we 
replace " s  " by " s  + 1 " in (1 16)) and ( 1 18) (where we replace "M, " by "M' " 
and "n,,, "by "e, " in (1 18)). Once this is done, the s + 1-st step is complete, 
upon setting Ms+' = MS+' ,by virtue of Remark 1 after the statement of The- 

orem 4.2. So, let 1 < r < s + 1 and suppose Mr-' has been constructed. Now 
setting m = n, , choose x2 E % satisfying (107)-(110). Thus we have (1 14), 
( 1 17), and thanks to (109) and (1 10) 

and 

Thus we may choose an open Z/ c % with x2 E Z/ so that (1 15) and (1 16) 
hold for "s " .= s + 1, by the continuity of f ,  , . . . , hS+,At last, by the 

induction hypothesis, choose M' c M'-' so that ( 1 18) holds (replacing "M, " 
by "M' " in its statement). 

This completes the inductive construction of the M i  's, hence the proof of 
Sub-Lemma 2, and thus the main inductive step of Theorem 4.2. 

To finish the proof, let 1 > q > 0 be given, /3 > 1 a given countable ordinal, 
and suppose the theorem for all ordinals a < P . If P is a successor 
ordinal, we are done by the main inductive step. Otherwise, let % be an open 
neighborhood of x , choose 1 > q > 0 with 

and now, by the definition of vS(q)(x),  choose x' in % and a < /3 with 

(1 - tl)vg(v)(x)< A < (1 + tl)vp(v)(x) 

where A = .V ~ ( ~ ) ( X ' )  

Now choose (bj) a subsequence of (4)satisfying the conclusion of Theorem 
4.2 (for q and a ). Finally, given 1 = m, < m2< . . . and choosing k , the 
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xi's and 6,'s as in the statement of 4.2, we have 

(1 - r 5 (1 -* ,by (126) 
< (1 - q)A by (127) 

k 

< 6, < (1 + q)A by (2) of Theorem 4.2 
i= 1 

Thus (2) of 4.2 holds (for " n = q and " A "  = v,(q)(x) ), and (I ) ,  (3),  and (4) 
hold since q < -q . This completeithe entire proof. 
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ABSTRACT.A subsequence principle is obtained, characterizing Banach spaces 
containing co , in the spirit of the author's 1974 characterization of Banach 
spaces containing e ' . 
Definition. A sequence (bj) in a Banach space is called strongly summing (s.s.) 
if (bj) is a weak-Cauchy basic sequence so that whenever scalars (cj) satisfy 
sup, 11 C;=l cjbj 11 < w , then C cj converges. 

A simple permanence property: if (bj) is an (s.s.) basis for a Banach space 
B and (b;) are its biorthogonal functionals in B* , then (C;=l b,*)Fl is a 
non-trivial weak-Cauchy sequence in B* ;hence B* fails to be weakly sequen- 
tially complete. (A weak-Cauchy sequence is called nun-trivial if it is nun-weakly 
convergent.) 

Theorem. Every nun-trivial weak-Cauchy sequence in a (real or complex) Banach 
space has either an (s.~.)subsequence or a convex block basis equivalent to the 
summing basis. 

Remark. The two alternatives of the theorem are easily seen to be mutually 
exclusive. 

Corollary 1. A Banach space B contains no isomorph of co ifand only ifevery 
nun-trivial weak-Cauchy sequence in B has an (s.~.)subsequence. 

Combining the co-and el-~heorems, we obtain 

Corollary 2. If B is a nun-refexive Banach space such that X*  is weakly se- 
quentially complete for all linear subspaces X of B , then co embeds in B ;in 
fact, B has property (u )  . 

The proof of the theorem involves a careful study of differences of bounded 
semi-continuous functions. The results of this study may be of independent 
interest. 
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