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ON AN INEQUALITY OF A. GROTHENDIECK

CONCERNING OPERATORS ON L1

Haskell Rosenthal

Department of Mathematics
The University of Texas at Austin

Austin, TX 78712

Abstract. In 1955, A. Grothendieck proved a basic inequality which shows that any

bounded linear operator between L1(µ)-spaces maps (Lebesgue-) dominated sequences
to dominated sequences. An elementary proof of this inequality is obtained via a new

decomposition principle for the lattice of measurable functions. An exposition is also
given of the M. Lévy extension theorem for operators defined on subspaces of L1(µ)-

spaces.

1. Introduction

Let µ, ν be measures on measurable spaces, and let T : L1(µ) → L1(ν be a bounded

linear operator (here L1(µ) denotes the real or complex Banach space of (equivalence

classes of) µ-integrable functions). In [G], (see Corollaire, page 67) Grothendieck

establishes the following fundamental inequality:

(1)






Given f1, . . . , fn in L1(µ), then
∫

max
i

|Tfi| dν ≤ ‖T‖

∫
max

i
|fi| dµ .

We first give some motivation for the inequality, then give a proof involving an

apparently new principle concerning the lattice of measurable functions.
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2 HASKELL ROSENTHAL

It follows easily from (1) that every such operator maps dominated (or order bounded)

sequences into dominated sequences. In fact, it follows that

(2)






if F is a family in L1(µ) for which there exists a µ-integrable ϕ with

|f | ≤ ϕ a.e. for all f in F , then there exists a non-negative ν-integrable

ψ with

∫
ψ dν ≤ ‖T‖

∫
ϕdµ so that |Tf | ≤ ψ a.e. for all f in F .

This consequence of (1) (which is of course equivalent to (1)) is drawn explicitly by

Grothendieck in [G] (see Proposition 10, page 66).

In the summer of 1979, during her research visit to the University of Texas at Austin,

I suggested to Mireille Lévy that the inequality (1) might actually characterize those

operators from a subspace of L1(µ) to L1(ν), which extend to an operator on all of

L1(µ). She indeed confirmed my conjecture [L]. Combining Lévy’s result with (1) and

a simple application of the closed graph theorem, we obtain the

Extension Theorem. Let µ, ν be measures on measurable spaces, X a closed linear

subspace of L1(µ), and T : X → L1(ν) a bounded linear operator. Then the following

assertions are equivalent:

(a) T maps dominated sequences to dominated sequences.

(b) There is a constant C so that

(3)






given n and f1, . . . , fn in X, then
∫

max
i

|Tfi| dν ≤ C

∫
max

i
|fi| dµ .

(c) There is a bounded linear operator T̃ : L1(µ) → L1(ν) with T̃ |X = T .

Moreover if α denotes the smallest C satisfying (3), then T̃ may be chosen with ‖T̃‖ =

α.

A remarkable development of the setting for the Extension Theorem has recently

been given in a series of papers by G. Pisier. In [P1], Pisier obtains an extension
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theorem for operators on H1 to L1(µ) which are also bounded from H∞ to L∞(µ). In

[P2, Theorem 3], he obtains the appropriate generalization of the Extension Theorem

for operators from a subspace of Lp(µ) to L1(ν), 1 ≤ p ≤ ∞, and in fact in the more

general setting of Banach lattices. Finally, in [P3, Theorem 3.5], Pisier obtains a non-

commutative version of the Theorem. In Section 3, we give a proof of the Extension

Theorem following the approach in [P1]. This also yields a rather quick alternate

“functional-analytical” proof of (1). For a given subspaceX of L1, our exposition yields

an explicit representation for elements of X(L∞), the closure of X ⊗ L∞ in L1(L∞)

(see the Corollary towards the end of Section 3), which also suggests an open question

regarding X(L∞) (see the second Remark following the Corollary’s statement).

We note one last motivating connection. Grothendieck’s “L1-inequality” (1) follows

immediately from the classical Banach lattice result that every such operator T has an

absolute value, or modulus, |T |, which is a linear operator from L1(µ) to L1(ν) with

‖(T )‖ = ‖T‖ and

(4) |Tf | ≤ |T | |f | for all f ∈ L1(µ)

(cf. [S]). However the existence of |T | may readily be deduced from (1), which thus

certainly appears more basic and elementary.

2. A decomposition principle for the lattice of measurable functions

We first formulate the principle for the case of real scalars.

Lemma 1. Let f1, . . . , fn be real valued measurable functions on a measurable space.

There exist k (depending only on n) and non-negative measurable functions h1, . . . , hk

so that

(i) h1 + · · ·+ hk = |f1| ∨ · · · ∨ |fn| ;

(ii) for all i, there exist εij ∈ {0, 1,−1} with fi =
∑k

j=1 εijhj.



4 HASKELL ROSENTHAL

Remark. We do not need the fact that the k in Lemma 1 depends only on n. Never-

theless, let k(n) be the optimal choice for k. What is k(n)? The order of magnitude

of k(n)? Shortly after circulating the original version of this paper, V. Mascioni com-

pletely solved this problem, proving that one may choose k(n) = 2n, and this is best

possible [M]. (Our proof below yields only that k(n) ≤ e1/22nn!; also see the remark

following Lemma 2.)

We first deduce the Grothendieck inequality for real scalars from Lemma 1. Given

T and f1, . . . , fn in L1(µ), choose h1, . . . , hk and the εij ’s as in the Lemma. Then for

each i, we have

(5) |Tfi| =
∣∣∣
∑

εijThj

∣∣∣ ≤
∑

j

|Thj | .

Hence

(6) max
i

|Tfi| ≤
∑

j

|Thj | .

Thus
∫

max
i

|Tfi| dν =

∫ ∑

j

|Thj | dν by (6)(7)

=
∑

j

∫
|Thj | dν

≤ ‖T‖
∑

j

∫
hj dµ since hj ≥ 0 for all j

= ‖T‖

∫ ∑

j

hj dµ

= ‖T‖

∫
max |fi| dµ by (i) of the Lemma.

Proof of Lemma 1.

We prove the result by induction on n. Let (Ω,S) be the associated measurable

space; i.e., S is a σ-algebra of subsets of Ω, and the fi’s are S-measurable functions
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defined on Ω. For n = 1, let h1 = f+
1 , h2 = f−

1 (where as usual, e.g., f+
1 (ω) = f1(ω) if

f1(ω) ≥ 0; f+
1 (ω) = 0 otherwise). Of course then |f1| = h1 +h2, f1 = h1−h2. Now let

n ≥ 1, and suppose the Lemma proved for n. Let f1, . . . , fn+1 be given measurable

functions on Ω. Choose disjoint measurable sets E1, . . . , En+1 so that Ω =
⋃n+1

i=1 Ei

and

(8) |f1|(ω) ∨ · · · ∨ |fn+1|(ω) = |fi(ω)| for all ω ∈ Ei, all i.

Now fix i and apply the induction hypothesis to f1, . . . , fi−1, fi+1, . . . , fn+1 on Ei.

We obtain hi1, . . . , hik ≥ 0 (k depends only on n) measurable functions so that

(9)
k∑

j=1

hij = (|f1| ∨ · · · ∨ |fi−1| ∨ |fi+1| ∨ · · · ∨ |fn+1|)χEi

df
= τi

and so that for each j 6= i, there are numbers εi
jℓ in {0, 1,−1} with

(10) fj
χ

Ei
=

k∑

ℓ=1

εi
jℓhiℓ .

Let E+
i = {ω : fi(ω) ≥ 0}. E−

i = {ω : fi(ω) < 0}. We now claim the following family

of functions works, for our “hi’s” for n+ 1:

(11)






hiℓ
χ

E+

i
, hiℓ

χ
E−

i
,

(fi − τi)χE+

i
, (−fi − τi)χE−

i

(1 ≤ i ≤ n+ 1 , 1 ≤ ℓ ≤ k) .

Evidently if k′ denotes the total number of functions listed in (11), then

(12) k′ = 2(n+ 1)(k + 1) .

Now, all of these functions are non-negative (the last two types because |fi| ≥ τi on

Ei, by (8)). To verify (i) of the Lemma, note that for each i,

(13) |fi|χEi
= (fi − τi)χE+

i
+

k∑

ℓ=1

hiℓ
χ

E+

i
+ (−fi − τi)χE−

i
+

k∑

ℓ=1

hiℓ
χ

E−

i
.
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Thus, letting h1, . . . , hk′ be the functions listed in (11), we have that

(14) |f1| ∨ · · · ∨ |fn+1| =

n+1∑

i=1

|fi|χEi
=

k′∑

r=1

hr .

Finally, to verify (ii), fix j. Then

fj
χ

Ej
= fj

χ
E+

j
+ fj

χ
E−

j
(15)

= (fj − τj)χE+

j
+ τjχE+

j
− (−fj − τj)χE−

j
− τjχE−

j

= (fj − τj)χE+

j
+

k∑

ℓ=1

hjℓ
χ

E+

j
− (−fj − τj)χE−

j
+

k∑

ℓ=1

−hjℓ
χ

E−

j
.

Thus from (10) and (15), we obtain εjr = 0, 1, or −1 for all r so that

(16) fj =
n+1∑

i=1

fj
χ

Ei
=

k′∑

r=1

εjrhr . �

We next treat the case of complex scalars.

Lemma 2. Let f1, . . . , fn be complex valued measurable functions on a measurable

space. There exist k (depending only on n) and non-negative measurable functions

h1, . . . , hk so that

(i) h1 + · · ·+ hk = |f1| ∨ · · · ∨ |fn|.

(ii) for all i, there exist measurable functions εij so that |εij(ω)| = 1 or 0 for all j,

with fi =
∑k

j=1 εijhj

Remark. Let kC(n) denote the optimal choice for k. As in the real scalars case, we

again ask what is the order of magnitude of kC? Our argument below yields that

kC(n) ≤ en!. (V. Mascioni has also solved this problem, proving that kC(n) = 2n − 1

[M].)

The deduction of the Grothendieck L1-inequality involves the following
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Corollary. Let f1, . . . , fn be as in Lemma 2, and let ε > 0. There exist h1, . . . , hk

non-negative measurable functions satisfying (i) of Lemma 1 and

(ii) for all i there exist numbers αij with |αij | = 1 or 0 for all j, and

(17)
∣∣∣fi −

k∑

j=1

αijhj

∣∣∣ ≤ ε(|f1| ∨ · · · ∨ |fn|) .

Comment. If the εij ’s in Lemma 2 can be chosen as simple functions (which is of

course the case if the fi’s are simple), then the dependence of the αij ’s on ε may be

eliminated; i.e., we then have fi =
∑

j αijhj for all i. Note this is the case if the fi’s

are all real-valued; thus Lemma 2 implies Lemma 1.

Proof of the Corollary using Lemma 2. Let the hi’s and εij ’s satisfy the conclusion of

Lemma 2. We may choose disjoint measurable sets F1, . . . , Fr with Ω =
⋃r

i=1 Fi, so

that for every ν, 1 ≤ ν ≤ r, every i, 1 ≤ i ≤ n, and all j, 1 ≤ j ≤ k, there is a number

εν
ij , with |εν

ij | = 1 or εν
ij = 0, so that

(18) |εij(ω) − εν
ij | ≤ ε for all ω ∈ Fν .

We now claim: The family of functions

hi
χ

Fν
1 ≤ i ≤ k , 1 ≤ ν ≤ r ,

serves as our “hℓ’s”; for each i, the constant εν
ij serves as our “αiℓ.” Indeed, we have

that

(19)
∑

i,ν

hi
χ

Fν
= |f1| ∨ · · · ∨ |fn| .

Finally, fix i, ν. Then

∣∣∣fi
χ

Fν
−

∑
εν
ijhj

χ
Fν

∣∣∣ =
∣∣∣
∑

j

(εij − εν
ij)hj

χ
Fν

∣∣∣ by Lemma 2(ii)(20)

≤ ε
∑

hj
χ

Fν
= ε(|f1| ∨ · · · ∨ |fn|)χFν

.
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Since the Fν ’s are a partition of Ω, the result is proved. �

Proof of Lemma 2. Again we proceed by induction. For any measurable complex

valued function f , let

(sgn f)(ω) =
f(ω)

|f(ω)|
if f(ω) 6= 0 , sgn f(ω) = 0 otherwise.

Of course now the n = 1 case is “completely” trivial; simply let h1 = |f1| and

ε1(ω) = sgn f1(ω) .

Again, suppose Lemma 2 proved for n, and let f1, . . . , fn+1 be given measurable

functions. Choose the measurable partition E1, . . . , En+1 satisfying (8), and proceed

exactly as in the case of Lemma 1. Thus, we obtain hij ’s, 1 ≤ j ≤ k satisfying (9)

(with τi as defined in (9)), so that for each j 6= i, there are measurable functions εi
jℓ

with |εi
jℓ(ω)| = 0 or 1 for all ω, satisfying (10). Now we claim that the family of “hi’s”

may be taken to be

(21) hiℓ , (|fi| − τi)χEi
, 1 ≤ i ≤ n+ 1 , 1 ≤ ℓ ≤ k .

Thus listing these as h1, . . . , hk′ , we have

(22) k′ = (k + 1)(n+ 1) .

Lemma 2(i) now follows immediately, for

(23) |fi|χEi
= (|fi| − τi)χEi

+
k∑

ℓ=1

hiℓ for all i .

It remains to verify (ii). Fix j. Then

(24) (fj − (sgn fj)τj)χEj
= (sgn fj)(|fj| − τj)χEj

.
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Thus

(25) fj
χ

Ej
= (sgn fj)(|fj| − τjχEj

) +

k∑

ℓ=1

(sgn fj)hjℓ by (9).

Combining (10) and (25), we thus obtain our measurable functions εj1, . . . , εjk′ valued

in T ∪ {0} with

fj =
∑

i6=j

fj
χ

Ei
+ fj

χ
Ej

(26)

= (sgn fj)(|fj| − τjχEj
) +

k∑

ℓ=1

(sgn fj)hjℓ +
∑

i6=j

k∑

ℓ=1

εi
jℓhiℓ

=
k′∑

ℓ=1

εjℓhℓ .

�

We conclude Section 2 with a deduction of the complex Grothendieck L1-inequality.

Let then µ, ν be measures on measurable spaces, T : L1(µ) → L1(ν) be a bounded

linear operator, and f1, . . . , fn in L1(µ) be given. Let ε > 0 be given, and choose

h1, . . . , hk and the complex numbers αij as in the conclusion of the Corollary to

Lemma 2.

Now for each i, define pi by

(27) pi = fi −
k∑

j=1

αijhj .

Then we have that fi =
∑
αijhj + pi and moreover

(28) |pi| ≤ ε(|f1| ∨ · · · ∨ |fn|) by (ii) of the Corollary.
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Thus

|Tfi| =
∣∣∣
∑

j

αijThj + Tpi

∣∣∣(29)

≤
∑

j

|Thj | + |Tpi| since |αij| ≤ 1 for all j

≤
∑

j

|Thj | +
∑

j

|Tpj | .

Thus also

(30) max
i

|Tfi| ≤
∑

j

(|Thj | + |Tpj |) ,

whence

∫
max

i
|Tfi| dν ≤

∑

j

∫
(|Thj | + |Tpj |) dν(31)

≤ ‖T‖

(∫ ∑

j

hj dµ+

∫ ∑
|pj | dµ

)

≤ (1 + nε)‖T‖

∫
max

i
|fi| dµ by (i) of the Corollary and (28).

Since ε > 0 is arbitrary, the inequality (1) is proved. �

3. A proof of the Extension Theorem

As noted in the introduction, we follow the approach in [P1], thus obtaining an alter-

nate proof of the Grothendieck L1-inequality. (The approach, despite its brevity, seems

considerably more sophisticated than the elementary proof given by our decomposition

result, however.) Throughout, let µ, ν and T be as in the statement of the Extension

Theorem. We shall also assume that ν is “nice enough” so that (L1(ν))∗ = L∞(ν)

(any L1(ν) is isometric to L1(ν′) with ν′ nice).

(a) ⇒ (b) For Y a subspace of L1(µ) or L1(ν), let Yd denote the space of all

dominated sequences (yn) in Y , under the norm ‖(yn)‖d =
∫

supn |yn| dµ. We easily
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check that Yd is a Banach space; evidently then T induces a linear operator S from Yd

to (L1(ν))d, which has closed graph, since T itself is bounded. Thus S is bounded.

(c) ⇒ (a) follows immediately from Grothendieck’s L1-inequality (1). We give here

an alternate proof of (1), using the set up in [P1]. We will freely use here some

standard facts about Y ⊗̂Z, the projective tensor product of Banach spaces Y and Z.

Let L1(µ, Y ) denote the space of Bochner-integrable Y -valued functions on Ω (where

(Ω,S, µ) is the measure space associated to µ). Then L1(µ, Y ) is (canonically isometric

to) L1(µ)⊗̂Y (see Théorème 2, page 59 of [G]). It follows immediately that T⊗I yields

a linear operator from L1(µ)⊗Y to L1(ν)⊗Y with ‖T ⊗ I‖ = ‖T‖. (Here, we assume

“X” = L1(µ); i.e., the hypotheses of (1).) We apply this fact to Y = L∞(ν). It follows

that for any n, f1, . . . , fn in L1(µ), and ϕ1, . . . , ϕn in L∞(ν).

(32)
∥∥∥

n∑

i=1

Tfi ⊗ ϕi

∥∥∥ ≤ ‖T‖
∥∥∥

n∑

i=1

fi ⊗ ϕi

∥∥∥ .

Here, g
df
=

∑
fi⊗ϕi denotes the element of L1(µ, L∞(ν)) defined by g(ω) =

∑
fi(w)ϕi,

ω ∈ Ω; note that

(33) ‖g‖ =

∫
‖g(ω)‖ dµ(ω) =

∫
ess sup

s

∣∣∣
∑

fi(ω)ϕi(s)
∣∣∣ dµ(ω) .

Now fixing f1, . . . , fn and ϕ1, . . . , ϕn as above, we have
∣∣∣
∫ ∑

(Tfj)(s)ϕj(s) dν(s)
∣∣∣(34)

≤

∫
ess sup

t

∣∣∣
n∑

j=1

(Tfj)(s)ϕj(t)
∣∣∣ dν(s)

≤ ‖T‖

∫
ess sup

t

∣∣∣
∑

fj(ω)ϕj(t)
∣∣∣ dµ(ω) by (32) and (33)

≤ ‖T‖

(∫
max

j
|fj(ω)| dµ(ω)

)∥∥∥
∑

|ϕj |
∥∥∥

L∞(ν)
.

Now since ν is nice, a standard argument yields that we may choose ϕ1, . . . , ϕn in

L∞(ν) with ‖
∑

|ϕj| ‖L∞(ν) = 1 and

(35)

∫
max |Tfj|(s) dν(s) =

∫ ∑
(Tfj)(s)ϕj(s) dν(s) .
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Evidently (34) and (35) immediately yield Grothendieck’s inequality (1).

It remains to prove (c) ⇒ (d) and the “moreover” statement, i.e., M. Lévy’s theorem.

We closely follow the brief sketch given by Pisier in [P1], crystallizing some elements

of the discussion. It is convenient to introduce one more condition in the Extension

Theorem, which is explicitly used in [P1].

(d) There is a constant C so that for any n, f1, . . . , fn in X, and simple ϕ1, . . . , ϕn

in L∞(ν),

(36)
∣∣∣
∑

i

∫
(Tfi)ϕi dν

∣∣∣ ≤ C

∫
ess sup

s

∣∣∣
∑

fi(ω)ϕi(s)
∣∣∣ dµ(ω) .

We first prove (d) ⇒ (c). Consider the following general problem: Given Banach

spaces Y , B, X a closed linear subspace of Y , T : X → B∗ a bounded linear operator,

and C > 0, when does there exist T̃ : Y → B∗ extending T , with ‖T̃‖ ≤ C? Is there

a way of formulating this problem in terms of the Hahn-Banach Theorem? As e.g.,

developed in [G], L(Y,B∗) is indeed, naturally isometric to (Y ⊗̂B)∗. The pairing is as

follows: given T : Y → B∗ a bounded linear operator and ω
df
=

∑
yi ⊗ bi in (Y ⊗̂B)∗

(with
∑

‖yi‖ ‖bi‖ <∞), set

(37) 〈T, ω〉 =
∑

i

〈Tyi, bi〉 .

We then obtain the following result:

Lemma 3. Given Y , B, X, and T as above, the following are equivalent:

(i) There is a linear operator T̃ : Y → B∗ extending T , with ‖T̃‖ ≤ C.

(ii) Let X0, B0 be dense linear subspaces of X and B respectively and regard X0⊗B0

as a linear subspace of Y ⊗̂B. Define FT on X0 ⊗B0 by FT (ω) = 〈T, ω〉 for all

ω in X ⊗B. Then

(38) ‖FT‖ ≤ C .
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To see this, note that (i) ⇒ (ii) is immediate. If (ii) holds, let F̃T be a Hahn-Banach

extension of FT to Y ⊗̂B∗. Now simply let T̃ be the unique element of L(X,B∗)

satisfying

(39) 〈T̃ , ω〉 = F̃T (ω) for some ω ∈ Y ⊗̂B∗ .

To obtain (d) ⇒ (c) of the Extension Theorem, let X = X0, Y = L1(µ), B =

L∞(ν), and B0 the subspace of B consisting of simple functions. Now condition (d)

simply means that ‖FT‖ ≤ C, where FT is as in Lemma 3(ii). Thus by Lemma 3, we

obtain a linear operator T̃ : L1(µ) → L1(ν)∗∗ extending T (where of course we regard

L1(ν) ⊂ L1(ν)∗∗). The proof is completed by observing that there exists a norm-one

linear projection P from L1(ν)∗∗ onto L1(ν); then P ◦ T̃ yields the desired operator

extending T .

It remains to show that (b) ⇒ (d).

The argument for this implication involves a critical identification, due to M. Lévy

[L], and appears to have been omitted from the sketch given in [P1].

Lemma 4. Let B0 denote the subspace of L∞(ν) consisting of simple functions, and

let g ∈ X ⊗B0. Then

(40) ‖g‖ = min

{∫
max

j
|fj| dµ

∥∥∥
∑

i

|ϕi|
∥∥∥
∞

}

the minimum taken over all n, f1, . . . , fn in X, and ϕ1, . . . , ϕn in B0 so that g =
∑
fj ⊗ ϕj (where ‖g‖ is defined as in (33)).

Proof of Lemma 4. Suppose first g =
∑
fj ⊗ ϕj where f1, . . . , fn are in L1(µ),

ϕ1, . . . , ϕn are in L∞(ν) (we do not need to assume here that the fi’s belong to

X). We then have that for any ω and any s,

(41)
∣∣∣

n∑

j=1

fj(ω)ϕj(s)
∣∣∣ ≤ max

j
|fj(ω)|

∑

j

|ϕj |(s) .



14 HASKELL ROSENTHAL

It follows immediately that

(42) ‖g‖ ≤

∫
max |fj(ω)| dµ(ω)

∥∥∥
∑

|ϕj |
∥∥∥
∞
.

Thus

‖g‖ ≤ inf

{∫
max

j
|fj| dµ

∥∥∥
∑

|ϕj |
∥∥∥
∞

: g =
n∑

j=1

fj ⊗ ϕj(43)

with fj ∈ L1(µ) and ϕj ∈ B0 for all j

}
.

Now g =
∑ℓ

i=1 xi ⊗ ψi with the xi’s in X and the ψi’s in B0. We may then choose a

ν-measurable partition E1, . . . , Em of S so that the ψi’s are all A-measurable, where

A is the algebra generated by the disjoint sets E1, . . . , En. (Here, we assume L1(ν) =

L1(S, E , ν).) It then follows that we may choose z1, . . . , zm in X with

(44) g =
m∑

i=1

zi ⊗ χ
Ei
.

But then if ω ∈ Ω and s ∈ Ei,

(45) |g(ω)(s)| = |zi(ω)| .

This shows

‖g(ω)‖L∞(µ) = max
i

|zi(ω)| .

Hence

‖g‖ =

∫
max

i
|zi| dµ(46)

=

∫
max

i
|zi| dµ

∥∥∥
∑

|χEj
|
∥∥∥
∞
,

proving (40). �
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We finally show that (b) ⇒ (d), thus completing the proof of the Extension Theo-

rem. (The moreover assertion follows from the proof that (d) ⇒ (c), for of course we

show the same constant C in (b) works for (d).)

Let then f1, . . . , fn be given in X , ϕ1, . . . , ϕn be simple elements of L∞(ν), and let

C be as in (b).

By Lemma 4, we may choose x1, . . . , xm in X and ψ1, . . . , ψm simple in L∞(ν) so

that letting g =
∑
fi ⊗ ϕi, then

g =
∑

xi ⊗ ψi(46)(i)

‖g‖ =

∫
max

i
|xi| dµ

∥∥∥
∑

|ψj|
∥∥∥
∞
.(46)(ii)

Now
∣∣∣
∑

i

∫
(Tfi)ϕi dµ

∣∣∣ =
∣∣∣
∑

i

〈Tfi, ϕi〉
∣∣∣ =

∣∣∣
∑

i

〈Txi, ψi〉
∣∣∣ (by (46)(i))(47)

≤

∫ ∑

i

|Txi(s)ψi(s)| dν(s)

≤

∫
max

i
|Txi|(s)

∥∥∥
∑

j

|ψj|
∥∥∥
∞
dν(s)

≤ C

∫
max |xi(ω)| dµ(ω)

∥∥∥
∑

|ψj |
∥∥∥
∞

(by (b))

= C‖g‖

= C

∫
ess sup

s

∣∣∣
∑

fi(ω)ϕi(s)
∣∣∣ dµ(ω) .

This completes the proof of the Extension Theorem. �

The following representation result follows from the above proof of M. Lévy’s the-

orem, and seems to be what’s “really going on” (see also Lemma 1 of [L]).

Corollary. Let X be a closed linear subspace of L1(µ), and let X(L∞(ν)) denote the

closure of X ⊗ L∞(ν) in L1(µ, L∞(ν)). Then given g ∈ X(L∞(ν)) and ε > 0, there

exists a dominated sequence (xj) in X and a sequence (ϕj) in L∞(ν) so that

(i)
∑
ϕj converges unconditionally in L∞(ν).
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(ii) g =
∑
xj ⊗ ϕj.

(iii)
∫

supj |xj(ω)| dµ(ω)
∥∥∑

i |ϕi|
∥∥

L∞(ν)
≤ ‖g‖ + ε.

Remarks. 1. If (xj) in X is dominated and
∑
ϕj in L∞(ν) converges unconditionally,

then
∑
xj⊗ϕj converges unconditionally in L1(µ, L∞(ν)), to an element ofX(L∞(ν)).

Indeed, for any choice of scalars (αj) with |αj | ≤ 1 for all j and any k ≤ ℓ, we have

that

(48)
∥∥∥

ℓ∑

j=k

αjxj ⊗ ϕj

∥∥∥ ≤

∫
max

j
|xj(ω)| dµ(ω)

∥∥∥
ℓ∑

j=k

|ϕj |
∥∥∥
∞
.

But
∑
ϕj converges unconditionally iff

∥∥∥
ℓ∑

k

|ϕj |
∥∥∥
∞

→ 0 as k → ∞ with ℓ ≥ k .

Hence
∑
αjxj ⊗ ϕj converges by (48).

2. Suppose (xj) in X and (ϕj) in L∞(ν) satisfy
∫

sup
j

|xj | dµ
∥∥∥

∑

i

|ϕi|
∥∥∥
∞

df
= τ <∞ .

(Equivalently, (xj) is dominated and
∑
ϕj is weakly unconditionally summing in

L∞(ν).) It then follows that for µ-almost all ω, supj |xj(ω)| < ∞; for each such ω,

we obtain that
∑
xj(ω)ϕj converges absolutely pointwise a.e. to an element of L∞(ν),

and the function g(ω)
df
=

∑
xj(ω)ϕj belongs to L1(µ, L∞(ν)) with ‖g‖ ≤ τ . Does it

then follow that g belongs to X(L∞(ν))? This is indeed so provided X is isomorphic

to a separable dual space, or more generally, a dual space with the Radon-Nikodym

property.

Proof of the Corollary. Letting B0 denote the space of the simple L∞(ν) functions as

above, we have that L1(µ)⊗B0 is dense in L1(µ)⊗̂L∞(ν) since B0 is dense in L∞(ν).

Hence given ε > 0, we may choose a sequence (gj) in L1(µ) ⊗B0 with

(49)

(∑
‖gj‖

1/2

)2

< ‖g‖ + ε and g =
∑

gj .
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Now by Lemma 4, for each i, we may choose finite sequences (xij)
mi

j=1 in X and (ϕij)
mi

j=1

in B0 with gi =
∑

j xij ⊗ ϕij and

(50)

∫
max

j
|xij| dµ(ω) = ‖gi‖

1/2 =
∥∥∥

∑

j

|ϕij |
∥∥∥
∞
.

Hence the series
∑

i

∑mi

j=1 xij ⊗ ϕij converges unconditionally to g. Now we have

moreover that

∫
sup

i
max

j
|xij| dµ(ω) ≤

∑

i

∫
max

j
|xij | dµ(ω)(51)

≤
∑

|gj|
1/2 by (50).

Thus the sequence (xij) with 1 ≤ j ≤ mi, i = 1, 2, . . . is indeed dominated. Also
∑

i

∑mi

j=1 ϕij converges unconditionally in L∞(ν) and

(52)
∥∥∥

∑

i

∑

j

|ϕij |
∥∥∥
∞

≤
∑

i

∥∥∥
∑

j

|ϕij |
∥∥∥
∞

≤
∑

|gj|
1/2 by (50).

The Corollary now follows immediately from (49)–(52). �
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[L] M. Lévy, Prolongement d’un opérateur d’un sours-espace de L1(µ) dans L1(ν), Séminaire
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