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ON CERTAIN EXTENSION PROPERTIES FOR

THE SPACE OF COMPACT OPERATORS

Timur Oikhberg and Haskell P. Rosenthal

Abstract. Let Z be a fixed separable operator space, X ⊂ Y general separable operator spaces, and T :
X → Z a completely bounded map. Z is said to have the Complete Separable Extension Property (CSEP)
if every such map admits a completely bounded extension to Y ; the Mixed Separable Extension Property
(MSEP) if every such T admits a bounded extension to Y . Finally, Z is said to have the Complete
Separable Complementation Property (CSCP) if Z is locally reflexive and T admits a completely bounded
extension to Y provided Y is locally reflexive and T is a complete surjective isomorphism. Let K denote
the space of compact operators on separable Hilbert space and K0 the c0 sum of Mn’s (the space of
“small compact operators”). It is proved that K has the CSCP, using the second author’s previous result
that K0 has this property. A new proof is given for the result (due to E. Kirchberg) that K0 (and hence
K) fails the CSEP. It remains an open question if K has the MSEP; it is proved this is equivalent to
whether K0 has this property. A new Banach space concept, Extendable Local Reflexivity (ELR), is
introduced to study this problem. Further complements and open problems are discussed.
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Introduction

The space K of compact operators on a separable infinite dimension Hilbert space H is often
that thought of as the non-commutative analogue of c0, the space of sequences vanishing at infinity.
Indeed, if one regards K as matrices with respect to a fixed orthonormal basis of H , the diagonal
matrices form a subalgebra isometric to c0. In 1941, A. Sobcyk proved that c0 has the Separable
Extension Property (SEP) [S]: If Z = c0, then given X ⊂ Y separable Banach spaces and T : X → Z

a bounded linear operator, there exists a bounded linear operator T̃ :→ Z extending T . In 1977,
M. Zippin proved the (much deeper!) converse to this result [Z], any infinite-dimensional separable
Banach space Z with the SEP is isomorphic to c0. We continue here the study of operator space
analogues of the SEP, initiated in [Ro2], with the goal in particular of specifying which of these
analogues K satisfies. (For basic facts about operator spaces see [Pi3]; also see the Introduction to
[Ro2] for a brief summary and orientation.)

Thus we consider a fixed operator space Z, and consider the following diagram:

Y

X Z

T
~

T

?

Here, X and Y are (appropriately general) separable operator spaces and T is a completely bounded
linear map.

Z is said to have the Complete Separable Extension Property (CSEP) if every such T admits a
completely bounded linear extension T ; the Mixed Separable Extension Property (MSEP) if T admits

a bounded linear extension T̃ , and the Complete Separable Complementation Property (CSCP) if

T admits a bounded linear extension T̃ provided Z is separable locally reflexive, Y is also locally
reflexive, and T is a complete surjective isomorphism. If 1 ≤ λ is such that T̃ can be chosen with
‖T̃‖cb ≤ λ‖T ‖cb in the CSEP-case, we say Z has the λ-CSEP; if ‖T̃‖ ≤ λ‖T ‖cb in the MSEP-case,
we say Z has the λ-MSEP. It follows easily that if Z has the CSEP (resp. the MSEP), then X has
the λ-CSEP (resp. the λ-MSEP) for some λ ≥ 1.

Of course these properties are intimately connected with injectivity notions; thus Z is called
(isomorphically) injective (resp. mixed injective) if this diagram admits a completely bounded
solution (resp. bounded solution) T for arbitrary (not necessarily separable) operator spaces X and
Y . As in the separable setting, if Z is injective (resp. mixed injective), there is a λ ≥ 1 so that

T̃ may always be chosen with ‖T̃‖cb ≤ λ‖T ‖cb (resp. ‖T̃‖ ≤ λ‖T ‖cb); if λ works, we say Z is
λ-injective (resp. λ-mixed injective). We say Z is isometrically injective (resp. isometrically mixed
injective) when λ = 1.

It is a fundamental theorem in operator space theory that B(H) is isometrically injective for any
Hilbert space H , where B(H) denotes the space of bounded linear operators on H . It follows easily
that if X is an operator space with X ⊂ B(H) for some Hilbert space H , then X is isomorphically
injective (resp. mixed injective) if and only if X is completely complemented (resp. complemented)
in B(H).

The separable extension properties we consider have their primary interest for λ ≥ 2. Indeed,
if Z is separable, then if λ < 2 and Z has the λ-CSEP, it is proved in [Ro2] that Z is λ-injective;
we show analogously here that if Z has the λ-MSEP, Z is λ-mixed injective (and moreover Z is
reflexive, whence by a result of G. Pisier, Z is actually Hilbertian (cf. [R])).

One of the main results of this work is that K has the CSCP. A result of E. Kirchberg yields that
K fails the CSEP [Ki1]. We give a new proof and further complements in Section 4.

It is proved in [Ro2] that K0 has the CSCP, where K0 denotes the space of “small compact
operators”, namely the c0-sum of Mn’s, where Mn denotes the space of complex n × n matrices,
identified with B(Cn) for all n, Cn being the standard n-dimensional complex Hilbert space. We
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obtain that K has the CSCP via the following route: in Section 1, we show that if X ⊂ Y are given
separable operator spaces, then any complete isomorphism from X into B(H) admits a complete
isomorphic extension from Y into B(H) (Theorem 1.1). It follows from this result that if X ⊂
B(H) is fixed with X separable locally reflexive, then X has the CSCP provided X is completely
complemented in Y for any separable locally reflexive operator space Y when X ⊂ Y ⊂ B(H) (see
Corollary 1.8). Now it follows from the main result of section 2 (Theorem 2.1) that if K ⊂ Y ⊂ B(H)
(where this is the natural embedding of K in B(H)) with Y separable, there is an absolute constant
C and for all ε > 0, a projection P on B(H) with ‖P‖cb < 1 + ε with Y and K invariant under P so
that (I − P )Y ⊂ K and dcb(K,K0) ≤ C. It then easily follows that K is completely complemented
in Y provided Y is locally reflexive, from the fact that then PK has this property by the result in
[Ro2]. We do not know if K has the MSEP. However Theorem 2.1 also yields that K has the MSEP
if K0 has this property (Proposition 2.3).

We also obtain in Section 1 that if an operator space Z has the CSCP, it has the following
stronger property: there is a completely bounded operator T̃ completing the above diagram whenever
Y is separable locally reflexive and X is locally complemented in Y (Theorem 1.4). As shown in
[Ro2], X “automatically” is locally complemented provided X is completely isomorphic to a nuclear
C∗-algebra, or more generally, if X∗∗ is isomorphically injective. (X is called locally complemented
in Y provided there is a C < ∞ so that X is C-completely complemented in W for all X ⊂ W ⊂ Y
with W/X finite-dimensional). It was also previously proved in [Ro2] that K0 has this stronger
property, and moreover one may drop the assumption that Y is locally reflexive.

The MSEP is studied in Section 3, where we introduce the following concept: Given operator
spaces X and Y , X is called completely semi-isomorphic to Y if there is a completely bounded
surjective map T : X → Y which is a Banach isomorphism; X is called completely semi-isometric
to Y in case T can be chosen with ‖T ‖cb = 1 = ‖T−1‖. We then have the simple permanence
property: mixed injectivity and the MSEP are both preserved under complete semi-isomorphisms
(Proposition 3.9). The finite-dimensional isometrically mixed injectives are known up to Banach
isometry; they are the ℓ∞-direct sums of Cartan factors of type IV (see Theorem A, following
Problem 3.2). This result suggests a possible classification of the isometrically injective finite-
dimensional operator spaces; are all such completely semi-isometric to an ℓ∞-direct sum of Cartan
factors of types I–IV? (Problem 3.3). A remarkable factorization result of M. Junge’s and the semi-
isomorphism concept yield that the classification problem of the finite-dimensional mixed injectives
is exactly analogous to the famous open commutative case; namely if X is finite-dimensional and
λ-mixed injective, then for all ε > 0, there is an n so that X is (λ + ε)-semi-isomorphic to some
(λ + ε)-complemented subspace of Mn (Proposition 3.10).

To further penetrate the MSEP-problem for K, we introduce a new pure Banach space concept
in Section 3, that of Extendable Local Reflexivity (ELR). Several equivalences are given in Propo-
sition 3.12; Theorem 3.13 yields the remarkable equivalence that a Banach space X is Extendably
Locally Reflexive and has the bounded approximation property if and only if X∗ has the bounded
approximation property. The “if” part of this assertion is quite simple, and was discovered by the
second author of this present paper in the fall of 1997. The remarkable “only if” part is due to
W.B. Johnson and the first author of the present paper [JO]. Actually, ELR has a complete ana-
logue, and the complete version of Theorem 3.13 also holds. The motivation for the introduction of
this concept: if X is a separable operator space so that X∗∗ is isomorphically mixed injective and
is (Banach) ELR, then X has the MSEP (Theorem 3.14). In particular, K has the MSEP if B(H)
is ELR. The proof of this result involves a construction mixing Banach and operator space ideas,
perhaps of interest in its own right (Lemma 3.16).

Section 4 establishes some necessary conditions for certain operator spaces to have the CSEP,
yielding in particular a “qualitative” proof that K0 (and hence K) fails the CSEP. It is proved
for example that if Z1, Z2, . . . are finite-dimensional operator spaces, then if (Z1 ⊕ Z2 ⊕ · · · )c0

has the CSEP, {Z1, Z2, . . . } is of finite matrix type, and the Zj’s are all λ-injective for some λ
(Corollary 4.2). The converse to this result is established in Proposition 2.15 of [Ro2]. (See the
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beginning of Section 4 for the definition of finite matrix type.) It is further shown that if Z is a
separable operator space so that c0(Z) has the CSEP, then Z is of finite matrix type (Corollary 4.4).
We conjecture that if Z is separable with the CSEP, then Z itself is of finite matrix type.

Corollary 4.2 yields that K0 fails the CSEP, for {M1,M2, . . . } is not of finite matrix type.
We obtain a stronger quantitative result in Corollary 4.9: For every n, there exists an operator
space Yn containing K0 so that Yn/K0 is completely isometric to ℓ∞n , yet K0 is not λ-completely
complemented in Yn if λ ≤ √

n/2. It follows then from results in [Ro2] that Yn, which is of course
locally reflexive, is not λ-locally reflexive if λ < (

√
n/2) − 3. Putting these Yn’s together, we then

obtain an operator space Y containing K0 so that K0 is not completely complemented in Y , yet
Y/K0 is completely isometric to c0. Thus Y cannot be locally reflexive since K0 has the CSCP (of
course this also follows by its construction). It also then follows by results of E. Kirchberg ([Ki2])
that Y is not a nuclear operator space; however K0 and Y/K0 are obviously nuclear. We also show
in Proposition 4.11 that any descending sequence of 1-exact finite dimensional Banach isometric
spaces must be bounded below.

We finally show that Z = K0 fails to have a completely bounded solution T̃ to the above diagram
if Y is general locally reflexive separable, X a general subspace. Actually, we obtain that there
exists a subspace X of C1 (the operator space of trace class operators) and a completely bounded

linear map T : X → K0 so that T has no completely bounded extension T̃ to C1. (A remarkable
result due to M. Junge yields that C1 is 1-locally reflexive.) In fact, we establish in Proposition 4.14
that if Z is separable and there is a completely bounded solution to the above diagram for arbitrary
X ⊂ C1, Y = C1, then Z has the CSEP.

Section 1

Extending complete isomorphisms into B(H)

The main result of this section is the following:

Theorem 1.1. Let Y be a separable operator space, X a subspace of Y , and T : X → B(H) a

complete isomorphic injection of X. There exists a complete isomorphic injection T̃ : Y → B(H)
extending T .

Remarks. 1. We obtain

(∗) ‖T̃‖cb ≤ 3‖T ‖cb and ‖T̃‖cb‖T̃−1‖cb ≤ 12‖T ‖cb‖T−1‖cb + 6 .

2. Our proof of the Theorem uses ideas from [LR]. In face, our argument may be refined to obtain
the following stronger result, analogous to a result in [LR], showing that completely isomorphic
separable sequences of B(H) lie in the same position. Let X, X ′ be separable operator subspaces
of B(H) and T : X → X ′ a complete surjective isomorphism. There exists a complete surjective

isomorphism T̃ : B(H) → B(H) extending T .
We first give an operator-space version of a result of A. Pe lczyński [Pe1], for which we use the

following lemma (which is quite different than the argument in [Pe1]).

Lemma 1.2. Let X ⊂ Y and Z be Banach spaces and T : Y → Z a bounded linear operator so that
T |X is an (into) isomorphism. Let Π : Y → Y/X be the quotient map and define T̃ : Y → Z ⊕Y/X
by

(1) T̃ y = Ty ⊕ Πy for all y ∈ Y .

Then T̃ is an into-isomorphism with T̃ |X = T . In fact

(2) ‖T̃‖ ‖T̃−1‖ ≤ 2‖T ‖ ‖(T |X)−1‖ + 1

Remark. We put the ∞-norm on the direct sum Z ⊕ Y/X . If X̃ = Tx, Ỹ = Ty, (T |X)−1 refers to

the inverse map from X̃ to X , T−1 the map corresponding inverse map from Ỹ to Y .
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Proof. It is trivial that T̃ |X = Z. (Of course we identity Z with Z ⊕ 0.) We may assume without
loss of generality that ‖T ‖ = 1. Let δ = ‖(T |X)−1‖−1, and fix y ∈ Y with ‖y‖ = 1. Set τ = ‖Πy‖;
let ε > 0, and choose x ∈ X with ‖x − y‖ ≤ τ + ε. Then

(3) ‖x‖ ≥ 1 − τ .

Hence

(4) ‖Tx‖ ≥ δ(1 − τ) ,

and so

(5) ‖T̃ y‖ ≥ δ(1 − τ) − (τ + ε) .

Of course also

(6) ‖T̃ y‖ ≥ ‖Πy‖ = τ .

Hence

‖T̃ y‖ ≥ max{δ − ε − (δ + 1)τ, τ}

≥ δ − ε

δ + 2
for 0 ≤ τ ≤ 1 .

Since ε > 0, we have proved that

(7) ‖T̃−1‖ ≤ 2‖(T |X)−1‖ + 1

which establishes (2) and thus the Lemma. �

The next result yields [Pe1, Proposition 1] when restricted to the Banach space category.

Proposition 1.3. Let X ⊂ Y , X̃ be operator spaces and T : X → X̃ a complete surjective isomor-
phism. There exists an operator space Ỹ ⊃ X̃ and a complete surjective isomorphism T̃ : Y → Ỹ
extending T , in fact satisfying

(8) ‖T̃‖cb = ‖T ‖cb and ‖T̃‖cb‖T̃−1‖cb ≤ 2‖T ‖cb‖T−1‖cb + 1 .

Remark. Proposition 1.3 (or rather its proof) is used in the proof of the main result of this section,
Theorem 1.1. However if we use an alternate construction, due to G. Pisier (see 10b, p.137 of [Pi2]),
we obtain considerably better quantitative information. We first formulate the result, then give the
construction, leaving the details of proof to the interested reader.

Proposition. Let X ⊂ Y , X̃ be operator spaces and T : X → X̃ a completely bounded map. There
exists an operator space Ỹ ⊃ X̃ and a completely bounded map T̃ : Y → Ỹ extending T , satisfying
the following:

(i) ‖T̃‖cb = ‖T ‖cb.

(ii) If T is an (into) isomorphism (resp. complete isomorphism) so is T̃ , and ‖T̃−1‖ = ‖T−1‖
(resp. ‖T̃−1‖cb = ‖T−1‖cb).

(iii) If T is surjective, so is T̃ .

(iv) Y/X is completely isometric to Ỹ /X̃.
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Corollary. Let X, Y, X̃ be operator spaces with X ⊂ Y and X̃ and X completely isomorphic; set
β = dcb(X̃, X). Then given ε > 0, there exists an operator space Ỹ ⊃ X̃ and a complete bijection

T : Y → Ỹ with TX = X̃ and ‖T ‖cb‖T−1‖cb < β + ε.

Pisier’s construction (adapted to this setting) goes as follows: Let Z = (Y ⊕ X̃)1 (endowed with
its natural operator space structure, cf. [Pi3]). Assume first that ‖T ‖cb = 1. Let Γ = {x ⊕ −Tx :

x ∈ X}. Then Γ is a closed subspace of Z. Let Ỹ = Z/Γ and Π : Z → Ỹ be the quotient map.

Define j : X̃ → Ỹ and T̃ : Y → Ỹ by j(x̃) = Π(0⊕ x̃) and T̃ (y) = Π(y ⊕ 0) for all x̃ ∈ X̃ and y ∈ Y .
One then has the commutative diagram

Y
T̃−−−−→ Ỹ

i

x





x





j

X
T−−−−→ X̃

where i : X → Y is the inclusion map. Then it follows that j is a complete (into) isometry and one

now verifies all the details of the Proposition (identifying X̃ with j(x̃)). In general, assuming T 6= 0,
simply set U = T/‖T ‖cb and now carry out the construction for U instead, but then simply define

T̃ by T̃ (y) = ‖T ‖cbΠ(y⊗ 0) for all y ∈ Y . E.g., to verify the first part of (ii), let δ = 1/‖T−1‖ (resp.
1/‖T−1‖cb) (and assume still ‖T ‖cb = 1, so δ ≤ 1); if y ∈ Y ,

‖T̃ y‖ = inf{‖y − x‖ + ‖Tx‖ : Y ∈ X}
≥ inf{δ‖y − x‖ + δ‖x‖ : x ∈ X}
≥ δ‖y‖ .

Hence also ‖T̃‖−1 = 1
δ = ‖T−1‖.

Proof of Proposition 1.3. We may assume X̃ ⊂ B(H) for a suitable Hilbert space H ; also we may
assume that ‖T ‖cb = 1. Using the isometric injectivity of B(H), choose T ′ : Y → B(H) a linear
map extending T with also ‖T ′‖cb = 1. Now we apply the result in Lemma 1.2 to Z = B(H). Let

Π : Y → Y/X be the quotient map and define T̃ : Y → B(H) ⊕ Y/X by

(9) T̃ y = T ′y ⊕ Πy for all y ∈ Y .

Now setting Ỹ = T̃ (Y ), it follows from Lemma 1.2 that Ỹ is a closed linear subspace of B(H)⊕Y/X

and T̃ is an isomorphism from Y onto Ỹ . We claim further that T̃ is indeed a complete isomorphism.
Now it follows immediately from (9) and the complete contactivity of T ′ that ‖T̃‖cb = 1. Let

X = K ⊗op X , Y = K ⊗op Y , and T = I ⊗ T̃ : Y → K ⊗op B(H)
df
=Z where I = Id |K. It follows

that T|X is an isomorphism onto K ⊗op X̃ and

(10) ‖(T|X)−1‖ = ‖T−1‖cb, ‖T‖ = ‖T̃‖cb = 1 .

Thus we may apply Lemma 1.2. Let Π : Y → Y/X be the quotient map and define T̃ as in (1).

Thus Lemma 1.2 yields that T̃ is an isomorphism onto K⊗op Ỹ and (2) yields

(11) ‖(T̃)−1‖ ≤ 2‖(T̃|X)−1‖ + 1 .

But also

(12) ‖(T̃)−1‖ = ‖(T̃ )−1‖cb .
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(10)–(12) thus complete the proof. �

The next result is a simple application of Proposition 1.3, following the concept introduced in
[Ro2]: A locally reflexive separable operator space Z is said to have the Complete Separable Comple-
mentation Property (CSCP) provided every complete isomorph of Z is completely complemented in
every separable locally reflexive operator superspace. Equivalently, given separable operator spaces
X ⊂ Y with Y locally reflexive and T : X → Z a complete surjective isomorphism, there exists a
completely bounded T̃ : Y → Z extending T . That is, we have the diagram

(13)
Y

X Z

T
~

T .
Our next result yields some equivalences for the CSCP We obtain a considerably stronger version

of one of the equivalences at the end of this section (using Theorem 1.1).

Theorem 1.4. Let X be a separable locally reflexive operator space. Then the following are equiv-
alent:

(a) X has the CSCP.
(b) X is completely complemented in every separable locally reflexive superspace.
(c) X is locally complemented in every separable locally reflexive operator superspace, and when-

ever X̃ is a locally complemented subspace of a locally reflexive separable operator superspace
Ỹ and T : X̃ → X is a completely bounded map, there exists a completely bounded map
T̃ : Ỹ → X extending T .

Remarks.
1. If X and Y are operator spaces with X ⊂ Y , X is said to be locally complemented in Y if there

is a C so that X is C-completely complemented in Z for all linear subspaces Z with X ⊂ Z ⊂ Y and
Z/X finite dimensional. (Then one says X is C-locally complemented in Y ). A simple compactness
argument yields that if X is (C + ε)-locally complemented in Y for all ε > 0, X∗∗ = X⊥⊥ is
C-completely complemented in Y ∗∗ via a weak*-continuous projection. Conversely, it is proved in
Sublemma 3.11 of [Ro2] that if Y is locally reflexive and X∗∗ is completely complemented in Y ∗∗,
X is locally complemented in Y .

2. There are many situations in which the hypotheses for X̃ hold without X̃ necessarily being
complemented. For example, if X̃ is completely isomorphic to a commutative C∗-algebra or more
generally, a nuclear C∗-algebra, then if X̃ ⊂ Ỹ , with Ỹ locally reflexive, X̃ is “automatically”
locally complemented in Ỹ , but e.g., in the commutative case, there are examples where X̃ and Ỹ
are actually commutative separable C∗-algebras with X̃ uncomplemented in Ỹ . Perhaps the most
general hypothesis on X̃ alone: if (X̃)∗∗ is an isomorphically injective operator space, then X̃ is
locally complemented in any locally reflexive operator superspace (cf. [Ro2]).

Proof. (a) ⇒ (b) is trivial.

(b) ⇒ (a): Let X̃ and Ỹ be operator spaces with X̃ ⊂ Ỹ , Ỹ locally reflexive separable, and

X̃ completely isomorphic to X . Let T : X̃ → X be a complete surjective isomorphism. By
Proposition 1.3, there exists an operator space Y ⊃ X and a complete surjective isomorphism T̃ :
Ỹ → Y extending T . Then Y is also separable and locally reflexive, hence there exists a completely

bounded projection P : Y → X . Then P̃
df
=(T |X)−1P T̃ is a completely bounded projection from Ỹ

into X̃ . Thus X has the CSCP.
(c) ⇒ (a): The proof is the same. Indeed, letting X̃, Ỹ and T̃ be as above, Y is also separable and

locally reflexive, hence since X is thus locally complemented in Y by assumption, X is completely
complemented in Y , so X̃ is completely complemented in Ỹ as shown above.

(b) ⇒ (c) is an immediate consequence of the following:
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Lemma A. Let Y and Z be locally reflexive operator spaces and X be a locally complemented
subspace of Y . Let T : X → Z be a completely bounded linear operator. Then there exists a locally
reflexive operator space W ⊃ Z and a completely bounded linear operator T̃ : Y → W with T̃ |X = T .

Remark. We obtain that in fact T̃ may be chosen with ‖T̃‖cb = ‖T ‖cb and W is β-locally reflexive,
where if X is (C + ε)-locally complemented in Y for all ε > 0, Y is λ-locally reflexive, and Z is γ
locally reflexive, then

β = (max{γ, λ})(C + 1) .

We first deduce (b) ⇒ (c) of Theorem 1.4 from the Lemma. Simply choose W ⊃ X locally

reflexive and T ′ : Ỹ → W a completely bounded map extending T , by the Lemma, and then let
P : W → X be a completely bounded surjective projection; T̃ = PT ′ is then the desired extension
of T . �

Comment. Of course the implication (b) ⇒ (a) is superfluous in this entire argument, but its proof
is considerably simpler than that of Lemma A.

To prove Lemma A, we require

Lemma B. Let X be a locally complemented subspace of a locally reflexive operator space Y . Then
Y/X is locally reflexive.

Proof. Assume X is (C + ε)-locally complemented in Y , for all ε > 0. By the Remark following
the statement of Theorem 1.4, choose a completely bounded projection P : Y ∗∗ → X∗∗ with
‖P‖cb ≤ C; let E denote the null space of P . It follows that if Π : Y → Y/X is the quotient map,
then Π∗∗|E → (Y/X)∗∗ is a complete surjective isomorphism with

‖(Π∗∗|E)−1‖cb ≤ C + 1 .

Now let G be a finite-dimensional subspace of (Y/X)∗∗ and F be a finite dimensional subspace of

(Y/X)∗ = X⊥; set G̃ = (Π∗∗|E)−1G. Now assuming that Y is λ-locally reflexive, given ε > 0,

choose T̃ : G̃ → Y with

‖T̃‖cb < λ + ε and 〈T̃ g̃, f〉 = 〈g̃, f〉 for all g̃ ∈ G̃, f ∈ F .

Finally, define T : G → Y/X by

T = ΠT̃ (Π∗∗|E)−1 .

Evidently then
‖T ‖cb ≤ (λ + ε)(C + 1) .

Finally, suppose g ∈ G and f ∈ F . Then

〈ΠT̃ (Π∗∗|E)−1g, f〉 = 〈T̃ (Π∗∗|E)−1g, f〉 (since f ∈ X⊥)

= 〈(Π∗∗|E)−1g, f〉
= 〈Π∗∗(Π∗∗|E)−1g, f〉 (again since f ∈ X⊥)

= 〈g, f〉 �

Remarks. 1. Of course we obtain that Y/X is λ(C + 1)-locally reflexive. Actually, if we assume
instead that X∗∗ is C-completely cocomplemented in Y ∗∗, we have that Y/X is (λC)-locally reflexive.
In particular, if Y is 1-locally reflexive and X∗∗ is completely contractively cocomplemented in Y ∗∗,
Y/X is 1-locally reflexive.

2. After the “final” draft of our paper was finished, we learned that S-H. Kye and Z-J. Ruan had
already obtained a variant of Lemma B in [KR] (see Proposition 5.4 there), as well as an interesting
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converse. The work in [KR] contains moreover some remarkable characterizations of λ-injectivity
for dual operator spaces.

Proof of Lemma A. We use the construction of G. Pisier mentioned in the Remarks following the
statement of Proposition 1.3. Let X, Y, Z and T be as in Proposition 1.3; we may assume that
‖T ‖cb = 1. Assume then that C, λ and γ are as in the Remark following the statement of Lemma A.
Let E = (Y ⊕ Z)∞ and Γ = {x ⊕−Tx : x ∈ X} ⊂ E; let W = E/Γ, Π : E → W the quotient map,

and define j : Z → W and T̃ : Y → W by j(z) = π(0 ⊕ z) and T̃ (y) = π(y ⊕ 0) for all z ∈ Z and

y ∈ Y . Then j is a complete (into) isometry and jT = T̃ i, where i : X → Y is the inclusion map.

Thus T̃ is the desired extension with ‖T̃‖cb = 1 also.
Now we have that E is max{λ, γ} locally reflexive. We claim that Γ is locally complemented

in E. To see this, let P be the natural projection of E onto Y with nullspace Z and let Λ be a
linear subspace of E containing Γ with Γ of finite-codimension in Λ. Now PΓ = X and so X is of
finite-codimension in PΛ. Thus given ε > 0, there is a surjective linear projection Q : PΛ → X with
‖Q‖cb < C + ε. Now defining U : X → Γ by U(x) = x ⊕ Tx for all x ∈ X , also ‖U‖cb = 1 and of

course UX = Γ; we claim that R
df
= UQP |Λ is the desired projection onto Γ. Clearly RE ⊂ Γ. But

let x ⊕−Tx be a a typical element of Γ. Then

(UQP )(x ⊕−Tx) = UQx = Ux = x ⊕−Tx .

We have thus proved that also Γ is (C +1)-locally complemented. Thus W is indeed locally reflexive
by Lemma B. �

We now proceed with the proof of Theorem 1.1. For the remainder of this section, we assume
H is separable; we identify H with ℓ2 and B(H) with M∞, the set of all infinite matrices yielding
bounded linear operators on H . N ⊂ M∞ will be called a special copy of B(H) provided there
exist infinite pairwise-disjoint subsets M1, M2, . . . of N so that letting M =

⋃∞
j=1 Mj , and letting

mj
1, m

j
2, . . . be an increasing enumeration of Mj for each j, then A = (aij) in M∞ belongs to N

provided

(i) aij = 0 if i or j /∈ M
(ii) for all i, j ∈ M , if i ∈ Mr and j ∈ Ms, there exist numbers brs so that aij = brs if i = mr

k

and j = ms
k for some k, aij = 0 if i = mr

k and j = ms
ℓ with k 6= ℓ.

Evidently N is then a WOT-closed ∗-subalgebra of B(H), ∗-isomorphic to B(H). (We could also
define N “intrinsically” as follows: let e1, e2, . . . be the usual basis for ℓ2; let Hj = [ei]i∈Mj . For
each i, j let Eij be the partial isometry in B(H) with initial domain Hj and final domain Hi, so
that Eij(emj

ℓ
) = emi

ℓ
, ℓ = 1, 2, . . . . Then N is the WOT closed linear span of the Eij ’s.)

Lemma 1.5. Let Z be a separable closed subspace of B(H). There exists a special copy N of B(H)
so that Z ⊕N is a complete direct decomposition.

Remark. In fact we show that letting Q be the projection from Z ⊕N onto N with kernel Z, then

(14) ‖Q‖cb ≤ 2 .

Let us first give the

Proof of Theorem 1.1. Let X, Y and T be as in the statement of 1.1. Since B(H) is 1-injective, we
may choose T ′ : Y → B(H) a completely bounded linear map extending T with ‖T ′‖cb = ‖T ‖cb.
Now set Z = T ′Y . Choose N a special copy of B(H) satisfying (14) (by Lemma 1.5). Since N
is completely isometric to B(H) and Y/X is separable, we may choose V : Y/X → N a complete

(into) isometry. Let Π : Y → Y/X denote the quotient map and define T̃ : Y → B(H) by

(15) T̃ y = T ′y + V Πy for all y ∈ Y .
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Now letting W = Y/X , we have that the map U : Z ⊕W → Z + V (W ) is a complete isomorphism,
where

U(z ⊕ w) = z + V (w) for all z ∈ Z and w ∈ W .

Indeed, letting I denote the identity on K and P the projection from Z ⊕W onto W with kernel Z
and R = Id − P , then U = V P + R, so

(16) ‖I ⊗ U‖ ≤ ‖I ⊗ V P‖ + ‖I ⊗ R‖ ≤ 2 .

Also if Q is the projection from Z + V (W ) onto V (W ) with kernel Z, and τ ∈ K⊗ V (W ), then

‖I ⊗ U−1(τ)‖ = ‖I ⊗ U−1Qτ + I ⊗ U−1(I − Q)τ‖(17)

= max
{

‖I ⊗ U−1Q(τ)‖, ‖I ⊗ U−1(I − Q)τ‖
}

≤ 3‖τ‖ by (14).

Thus we have by (16) and (17)

(18) ‖U‖cb‖U−1‖cb ≤ 6 .

Now if we instead define ˜̃T : Y → Z⊕Y/Z by ˜̃T (y) = T ′y⊕Πy, then by the proof of Proposition 1.3,
˜̃T is a complete into isomorphism, hence also T̃ = U ˜̃T is a complete into isomorphism, and we have
by (8) that (∗) holds. �

We now proceed with the proof of Lemma 1.5. For M ⊂ N, let HM = [ei : i ∈ M ] and let
BM = PB(H)P where P is the orthogonal projection on HM .

Lemma 1.6. Let G be a separable subspace of K⊥. There exists an infinite M with G ⊥ BM .

Proof. Say that L, M are almost disjoint if (L ∼ M) ∪ (M ∼ L) is finite. Now if L, M are almost

disjoint subsets of N and µ ∈ K⊥, then

(19) ‖µ‖ ≥ ‖µ|BL‖ + ‖µ|BM‖ .

Indeed, we may choose L′ ⊂ L, M ′ ⊂ M with L′, M ′ disjoint and L ∼ L′, M ∼ M ′ finite. Since
µ ∈ K⊥, we have e.g., µ|BL∼L′ = 0, so µ|HL = µ|BL′ , µ|BM = µ|BM ′ , whence

(20) ‖µ|BL‖ + ‖µ|BM‖ = ‖µ|BL′‖ + ‖µ|BM ′‖ = ‖µ|BL′∪M ′‖ ≤ ‖µ‖.

It follows immediately that if M1, . . . , Mn are pairwise almost disjoint subsets of N, then

(21) ‖µ‖ ≥
n

∑

i=1

‖µ(Bni)‖ .

Now by an ancient classical fact, there exists an uncountable family (Mα)α∈Γ of almost disjoint

infinite subsets of N. (21) yields that for µ ∈ K⊥,

(22) µ|BMα = 0 for all but countably many α’s.

Since G is separable, it now follows that for some α, M |BMα = 0 for all M ∈ G, yielding 1.6. �

We need one more ingredient to obtain Lemma 1.5. Let Ca denote the Calkin algebra B(H)/K,
and now let Π : B(H) → Ca denote the quotient map.
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Lemma 1.7. Let N be a special copy of B(H). Then Π|N is an (into) ∗-isomorphism. In particular,
Π|N is a complete isometry.

Proof. Since Π is a ∗-isomorphism, we need only observe that N contains no non-zero compact
operators, which is trivial since Eij is a non-finite rank partial isometry for all i, j as in the alternate
definition of special N . �

We are finally prepared for the

Proof of Lemma 1.5. Since Z is separable, so also is K ⊗ ΠZ; thus we may choose G a separable
subspace of K⊥ so that

(23) K ⊗ G isometrically norms K⊗ ΠZ via the canonical pairing.

Now by Lemma 1.6, choose M an infinite subset of N so that

(24) G ⊥ BM .

Finally, let M1, M2, . . . be infinite disjoint sets with M =
⋃

Mj, and let N be the special copy of
B(H) corresponding to the Mj ’s. Of course then N ⊂ BM , and so by (24),

(25) g(x) = g(Πx) = 0 for all g ∈ G and x ∈ N .

Now let τ be an element of K⊗ (Z ⊕N ), say

τ =

k
∑

i=1

Li ⊗ (zi ⊕ xi) where Li ∈ K , zi ∈ Z and xi ∈ N for all i .

It follows from Lemma 1.7 that then

(26) ‖
∑

Li ⊗ xi‖ = ‖
∑

Li ⊗ Πxi‖ .

Now by (23), given ε > 0, we may choose S1, . . . , Sℓ in K and g1, . . . , gℓ in G so that ‖∑

Sj⊗gj‖ = 1
and

‖
∑

Li ⊗ Π(zi)‖ ≤ (1 + ε)|〈
∑

Sj ⊗ gj ,
∑

Li ⊗ Πzi〉|

= (1 + ε)|〈
∑

Sj ⊗ gj ,
∑

i

Li ⊗ Π(zi ⊕ xi)〉| (by (25)(26)

≤ (1 + ε)‖
∑

Li ⊗ Π(zi ⊕ xi)‖

(where 〈∑ Sj ⊗ gj ,
∑

Li ⊗ Ti〉 =
∑

i,j gi(Ti)Sj ⊗ Li).
Thus

‖
∑

Li ⊗ xi‖ = ‖
∑

Li ⊗ Πxi‖ (by Lemma 1.7)(27)

≤ (2 + ε)‖
∑

Li ⊗ Π(zi ⊕ xi)‖ by (26)

≤ (2 + ε)‖
∑

Li ⊗ (zi ⊕ xi)‖ .

Since ε > 0 is arbitrary, we have indeed proved that if Q(z + x) = x for all z ∈ Z and x ∈ N , then
‖Q‖cb ≤ 2. �

We conclude this section with a considerable strengthening of Corollary 1.4.
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Corollary 1.8. Let X be a locally reflexive separable operator space so that X∗∗ is completely
isomorphic to B(H). Then X has the CSCP provided X is completely complemented in every
separable locally reflexive Y with

X ⊂ Y ⊂ X∗∗ .

Proof. Let Z ⊂ W be operator spaces with W separable locally reflexive and Z completely iso-
morphic to X . We must show that Z is completely complemented in W . Let T : Z → X be a
complete surjective isomorphism. By Theorem 1.1, since X∗∗ is completely isomorphic to B(H),

we may choose Y , X ⊂ Y ⊂ X∗∗ and T̃ : W → Y a complete surjective isomorphism extending T .
Then Y is locally reflexive, hence there is a completely bounded projection P from Y onto X . Then
Q = T−1P T̃ is a completely bounded projection from W onto Z. �

Section 2

An operator space construction

on certain subspaces of M∞

Definition. Let W ⊂ N × N. MW denotes all A in M∞ with aij = 0 if (i, j) /∈ W . KW denotes
MW ∩K. We define an operation on all N×N matrices, denoted PW , as follows: for any A, PW A = B
where bij = aij if (i, j) ∈ W , bij = 0 otherwise. In case PWM∞ ⊂ M∞, it follows immediately that
PW |M∞ is bounded; then we set

‖PW ‖ = ‖PW |M∞‖ and ‖PW ‖cb = ‖PW |M∞‖cb

(which a-priori might be infinite).

We may now formulate the main result of this section, which involves the construction of a certain
W for which PW is completely bounded.

Theorem 2.1. Let Y be a separable closed subspace of M∞ with K ⊂ Y , and let ε > 0. There exists
an absolute constant C, a subset W of N × N, and a subspace Ỹ of B(H) satisfying the following:

(i) ‖PW ‖cb ≤ 2.
(ii) dcb(KW ,K0) ≤ C.

(iii) There is a complete surjective isomorphism T : Y → Ỹ with

(a) ‖T ‖cb‖T−1‖cb ≤ 1 + ε
(b) ‖Ty − y‖ ≤ ε‖y‖ for all y ∈ Y
(c) T |K = I|K.

(iv) Ỹ is invariant under PW .

(v) P∼W Ỹ ⊂ K.

Before proving this result, we give two applications.

Theorem 2.2. K has the CSCP.

Proof. By Corollary 1.8, it suffices to prove that if Y is locally reflexive separable and

(28) K ⊂ Y ⊂ M∞ ,

then K is completely complemented in Y . Now let ε > 0, and choose W and Ỹ as in Theorem 2.1;
also let T satisfy (iii) of Theorem 2.1. Then by (iii)(c) and (iv),

(29) K ⊂ Ỹ and KW ⊂ Ỹ .

By (ii) and (iii), KW is completely isomorphic to K0 and Ỹ is separable locally reflexive. Hence by

the results in [R], there is a completely bounded projection Q from Ỹ onto KW . Then using (29)

and (iv), (v) of Theorem 2.1, P̃ is a completely bounded projection from Ỹ onto K, where

(30) P̃ = (QPW + P∼W )|Ỹ .

Finally, P
df
= T−1P̃ T is a completely bounded projection from Y onto K, completing the proof. �

For our second application, we briefly introduce the concept to be developed in the next section.
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Definition. An operator space Z has the Mixed Separable Extension Property (MSEP) if for all
separable operator spaces Y , subspaces X , and completely bounded maps T : X → Z, there exists
a bounded linear map T̃ : Y → Z extending T .

As we show in Section 3, a separable Z has the MSEP iff Z is complemented in Y for every
separable operator space Y with Z ⊂ Y ⊂ B(H) (for Z →֒ B(H) a fixed complete embedding).
As noted in the introduction, we do not know if K has this property. The next result reduces this
problem to K0.

Proposition 2.3. K has the MSEP if and only if K0 does.

Proof. If K has the MSEP so does K0, because it is completely complemented in K. For the non-
trivial implication, suppose K0 has the MSEP and let Y be a separable operator space satisfying
(28). Again, for fixed ε > 0, choose W, Ỹ , and T as in Theorem 2.1; then choose Q a bounded linear

projection from Ỹ onto KW . Again, letting P̃ and P be as in the proof of 2.2, it now follows that
P is a bounded linear projection from Y onto K. �

We now proceed with the proof of Theorem 2.1. We first isolate part of the proof in the following
result:

Lemma 2.4. Let W ⊂ N × N be described as follows: there exists (mj) in N ∪ {0} that 1 = m0 <
m1 < m2 < · · · , mj+1 − mj → ∞, so that for all (i, j) ∈ N × N, (i, j) ∈ W iff the following are all
satisfied for some k = 1, 2, . . . ;

(a) mk−1 < i ≤ mk and j ≤ mk+1;
(b) mk−1 < j ≤ mk and i ≤ mk+1;
(c) i = 1 and j ≤ m1 or j = 1 and i ≤ m1.

Then ‖PW ‖cb ≤ 2 and dcb(KW ,K0) ≤ C for some absolute constant C.

In the following we use interval notation to denote intervals in N ∪ {0}.

Proof. Let Aj = (m2j−1, m2j+1] × (m2j−1, m2j+1] for j ≥ 1,
A0 = [m0, m1] × [m0, m1].

Let Bj = (m2j , m2(j+1)] × (m2j , m2(j+1)] for j ≥ 0.

Let A =
∞
⋃

j=0

Aj , B =
∞
⋃

j=0

Bj .

We claim that

(31) W = A ∪ B .

The following diagram intuitively illustrates why this is so: the heavy lines denote the Aj ’s, the

dotted lines denote the Bj ’s.
⋃2

j=0 Bj ∼ A is shaded in the diagram; the regularity of
⋃∞

j=0 Bj ∼ A
used in showing that PW is completely bounded.

m1

m2

m3

m4

m5

m6

m0 m1 m2 m3 m4 m5 m6
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First, if (i, j) satisfy (c) of 2.4, then (i, j) ∈ A0. Now suppose (i, j) ∈ W , and i > 1, j > 1. Now if
i ≤ m1 or j ≤ m1, then (i, j) ∈ (m0, m2) × (m0, m2] ⊂ B by (a) and (b) of 2.4.

Suppose then i > m1 and j > m1. But then if i ≤ m2 or j ≤ m2, (i, j) ∈ (m1, m3]× [m1, m3] ⊂ A.
Continuing by induction, we obtain that

(32) W ⊂ A ∪ B .

Next suppose (i, j) ∈ [m0, mj ] × [m0, m1]. By (c), we may assume i > 1 and j > 1. But then i
and j satisfy both (a) and (b) for k = 1, so (i, j) ∈ W . Now suppose (i, j) ∈ (m0, m2] × [m0, j2] ∼
[m0, m1] × [m0, m1]. Then if 1 < i ≤ m1, m1 < j ≤ m2, whence (a) holds for k = 1 and also (b)
holds vacuously for k = 1, while (a) holds vacuously for k = 2 and (b) holds for k = 2.

If m1 < i ≤ m2, we get that 1 < j ≤ m1, so by symmetry again (a) and (b) both hold for k = 1
and k = 2. Thus (m0, m2] × (m0, m2] ⊂ W . Carrying this one more step for the pattern, now
suppose

(i, j) ∈ (m1, m3] × (m1, m3] ∼ (m0, m2] × (m0, m2] .

Thus if m1 < i ≤ m2, m2 < j ≤ m3, whence (a) holds for k = 2, vacuously for k = 3, and (b) holds
for k = 2 and k = 3.

If m2 < i ≤ m3, then m1 < j ≤ m2, so again (a) and (b) hold for k = 2 and k = 3 by symmetry.
Thus by induction, we obtain that

(m2j , m2j+2] × (m2j , m2j+2] and (m2j+1, m2j+3] × (m2j+1, m2j+3] ⊂ W

for all j, whence

(33) A ∪ B ⊂ W .

Of course (31) is now established via (32) and (33).
Now it is evident that ‖PE‖cb = 1 for E = A, B, and A ∩ B. This gives the “easy” estimate

(34) ‖PW ‖cb ≤ 3 ,

since PW = PA +PB −PA∩B. We are indebted to T. Schlumprecht for the following better estimate:

(35) ‖PB∼A‖cb = 1 .

To see this, fix j ≥ 0. Then

(m2j , m2j+2] × (m2j , m2j+2] ∼ A(36)

= (m2j , m2j+1] × (m2j+1, m2j+2] ∪ (m2j+1, m2j+2] × (m2j , m2j+1] .

Resorting to a simple picture, we thus have that he matrices in MBj∼A have the form

T =

[

0 C

D 0

]

whence ‖T ‖ = max{‖C‖, ‖D‖} and so ‖PBj∼A‖cb = 1. Since B is the union of the disjoint blocks
B1, B2, . . . , (35) follows.

It remains to prove the final assertion of 2.4. In the following, the letter “c” denotes absolute
constants, which may vary from line to line.

First, via the Pe lczyński decomposition method, we obtain the following



THE SPACE OF COMPACT OPERATORS 15

Fact. Let (nj) be a sequence of positive integers with supj nj = ∞. Then

dcb





(

∞
⊕

j=1

Mnj

)

c0

,K0



 ≤ c .

(In fact, here one may take c = 2.) It then follows immediately that

(37) dcb(KA,K0) ≤ c

(for c in the Fact). Next, we define C, D by

C =
∞
⋃

j=0

(m2j , m2j+1] × (m2j+1, m2j+2](38i)

D =

∞
⋃

j=0

(m2j+1, m2j+2] × (m2j , m2j+1] .(38ii)

Again by the Fact, we obtain

(39) dcb(KE ,K0) ≤ c for E = C or D .

Finally, we have

(40) KW = KA ⊕ KC ⊕ KD .

Indeed, ‖PE‖cb = 1 for E = A, C or D, and W = A ∪ C ∪ D by (31) and (38). We then have that

(41) dcb(KW , (KA ⊕ KC ⊕ KD)∞) ≤ 3

and by the Fact

(42) dcb((KA ⊕ KC ⊕ KD)∞,K0) ≤ c

completing the proof. �

Remark. The following intriguing problem arises: characterize the sets W ⊂ N × N so that PW is
bounded . A related problem: if PW is bounded, is it completely bounded?

Proof of Theorem 2.1.
Let Π : Y → Y/K be the quotient map; without loss of generality, Y/K is infinite-dimensional.

Choose y1, y2, . . . in Y so that (yj) is bounded and (Πyj) is a bounded biorthogonal system spanning
Π(Y ). Thus, we may choose M < ∞ and (y∗

j ) in Y ⊥ so that for all j and k,

(43) y∗
j (yk) = δjk , ‖y∗

j ‖ ≤ M and ‖yj‖ ≤ M .

Let ε > 0 be given and set m0 = 0. We shall construct a sequence (mj) in N and certain sequences

(y
(j)
i ) in Y .

Step 1. Choose m1 ∈ N so that

(44) ‖P{1}×(m1,∞)y1‖ + ‖P(m1,∞)×{1}y1‖ <
ε

2
.
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Now define y
(1)
1 = y1 and y

(1)
j = P(m1,∞)×(m1,∞)yj for all j > 1.

Step 2. Choose m2 > m1 so that

(45) ‖P[1,m1]×(m2,∞)y
(1)
i ‖ + ‖P(m2,∞)×[1,m1]y

(1)
i ‖ <

ε

22

for 1 ≤ i ≤ 2.

Now set y
(1)
i = y

(2)
i for i ≤ 2,

y
(2)
i = P(m2,∞)×(m2,∞)y

(1)
i ) for i > 2 .

Step j. Suppose j > 2 and m1 < · · · < mj−1, (y
(s)
i )∞i=1 have been chosen, for all 1 ≤ s ≤ j − 1.

Choose mj > mj−1 so that

(46) ‖P[1,mj−1]×(mj ,∞)y
(j−1)
i ‖ + ‖P(mj ,∞)×[1,mj−1]y

j−1
i ‖ <

ε

2
,

for all i, 1 ≤ i ≤ j.

Now set y
(j)
i = y

(j−1)
i for 1 ≤ i ≤ j, then set

(47) y
(j)
i = P(mj ,∞)×(mj ,∞)y

(j−1)
i for all i > j .

This completes the inductive construction. Then we have that for all j ≥ 1,

(48) y
(j)
i = P(mj ,∞)×(mj ,∞)yi for all i > j .

Hence

(49) y
(j)
j = P(mj−1,∞)×(mj−1,∞)yj for all j > 1 and y

(1)
1 = y1 .

Thus it follows that yj − y
(j)
j is a finite rank operator for all j, whence

(50) Πy
(j)
j = Πyj and ‖y(j)

j ‖ ≤ M for all j .

Now let W be defined as in Lemma 2.4. That is, instead defining C0, C1, C2, . . .

Ck = (mk−1, mk] × (mk+1,∞) ∪ (mk+1,∞) × (mk−1, mk] for k ≥ 1 ,(51)

C0 = {1} × (m1,∞) ∪ (m1,∞) × {1} ,(52)

then

(53) W =∼ C where C =

∞
⋃

j=0

Cj .

Now fix 1 ≤ i. Then by (44)–(46), (49) and (51)–(52),

(54) ‖PCj−1y
(i)
i ‖ <

ε

2j
if j ≥ i .

But by (49),

(55) PCj−1y
i
i = 0 if i > j .
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We thus obtain for all i, from (54) and (55), that

(56) ‖PCy
(i)
i ‖ =

∥

∥

∥

∞
∑

j=i

PCj−1y
(i)
i

∥

∥

∥ ≤
∞
∑

j=i

‖PCj−1y
i
i‖ <

ε

2i−1
.

We next define the operator T specified in the statement of 2.1. First, let Y0 denote the linear

span of K and the y
(i)
i ’s. Note that the y

(i)
i ’s are linearly independent over K. We first define T on

Y0. For S ∈ K and scalars c1, . . . , cn, set

(57) y =

n
∑

j=1

cjy
(j)
j

and define

(58) T (S + y) = S + PW y .

Now if we assume that

(59) ‖S + y‖ = 1 ,

then

(60) |cj | = |y∗
j (S + y)| ≤ M for all j .

But then

(61) ‖T (S + y) − (S + y)‖ =
∥

∥

∥

n
∑

j=1

cjPCy
(j)
j

∥

∥

∥ = 2Mε by (56) and (59).

Now it follows immediately that T extends to a bounded linear operator (also denoted T ) from Y
into B(H), satisfying

(62) ‖Ty − y‖ ≤ 2Mε for all y ∈ Y .

Now if we assume (as we may) that 2Mε < 1, then setting T̃ = TY , Ỹ is a closed linear subspace

of B(H) and T maps Y one-to-one onto Ỹ . Moreover, since TY0 is invariant under PW , so is Ỹ .
We now have that (i), (ii), (iv) of Theorem 2.1 hold (by Proposition 2.2), and furthermore (b) and
(c) of (iii) hold. It remains to verify (iii)(a) and (v) of 2.1. Now (v) is easy, for suppose z ∈ Y0,
z = S +y, S ∈ K, y as in (57). Then P∼W TZ = P∼W S +P∼W y, but P∼W y is actually an absolutely
converging series of finite rank operators by (56). Thus P∼W TZ ∈ K, proving 2.1(v).

Finally, for each j, define a rank-one operator Fj : Y → B(H) by

(63) Fj(y) = y∗
j (y)PCy

(j)
j .

Then it follows from (56) and (43) that

(64) ‖Fj‖cb <
Mε

2j−1
for all j .

Then setting Q =
∑

Fj , Q is of course also completely bounded, and

(65) ‖Q‖cb < 2Mε .

Now an inspection of the definition of T on Y0 yields that

(66) Tz = z − Qz for all z ∈ Y .

But then we obtain

(67) ‖T ‖cb‖T−1‖cb <
2Mε

1 − 2Mε

which of course (qualitatively) yields 2.1(iii)(a). �

Remark. Let us say that T ∈ M∞ is a generalized block diagonal (gbd) if there exists a W of the
form given in Proposition 2.2 so that T = PW T . The following is a byproduct of our proof of
Theorem 2.1: Every operator in M∞ is (for every ε > 0) a perturbation of a gbd operator by a
compact operator of norm less than ε.
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Section 3

The λ-Mixed Separable Extension Property

and Extendably Locally Reflexive Banach spaces

We first give the quantitative version of the property introduced in the preceding section.

Definition. Let λ ≥ 1. An operator space Z has the λ-Mixed Separable Extension Property (λ-
MSEP) if for all separable operator spaces Y , subspaces X, and completely bounded maps T : X → Z,

there exists a bounded linear map T̃ : Y → Z extending T with ‖T̃‖ ≤ λ‖T ‖cb.

Next, we give a simple result summarizing various permanence properties of the MSEP for sepa-
rable operator spaces Z.

Proposition 3.1. Let Z be a separable operator space and assume Z ⊂ B(H) for some H. Then
the following are equivalent.

(a) Z has the MSEP.
(b) Z is complemented in Y for all separable spaces Y with Z ⊂ Y ⊂ B(H).
(c) Z has the λ-MSEP for some λ ≥ 1.

Moreover, fixing λ ≥ 1, then the following are equivalent.

(a′) Z has the λ-MSEP.
(b′) Z is λ-complemented in Y for all Y as in (b).
(c′) Z is λ-complemented in every separable operator superspace.

Proof. (a) ⇒ (b) is essentially trivial, for let T : Z → Z be the identity map; a bounded linear

extension T̃ : Y → Z is a bounded projection onto Z.
(b) ⇒ (c) and (b′) ⇒ (a′). We first observe that there is a λ′ so that (b′) holds. If not, choose for

every n, Yn a separable superspace of Z contained in B(H) so that Z is not n-complemented in Yn.
Then letting Y = [Yj : j = 1, 2, . . . ], Y is a separable superspace of Z contained in B(H), and Z is
uncomplemented in Y , contradicting (b). Now assuming (b′), it suffices to show that (a′) holds.

Suppose then X, Y are separable operator spaces with X ⊂ Y and T : X → Z is completely
bounded. By the isometric operator injectivity of B(H), we may choose S : Y → B(H) with

‖S‖cb = ‖T ‖cb and S|X = T . Then letting Ỹ = [S(Y ), Z], Ỹ is a separable superspace of Z and

hence there is a projection P : Ỹ → Z onto Z with ‖P‖ ≤ λ. Then T̃
df
= PS is the desired extension

of T with ‖T̃‖ ≤ λ‖T ‖cb. This completes the proof, in view of the triviality of the implications (a′)
⇒ (c′) ⇒ (b′). �

Although we are mainly interested in the separable case, we next note that the equivalence (a)
⇒ (c) of Proposition 2.1 holds in general.

Proposition 3.2. Let Z be an operator space with the MSEP. Then Z has the λ-MSEP for some
λ ≥ 1.

Proof. If not, we may choose for every n, operator spaces Xn and Yn with Xn ⊂ Yn and Tn : Xn → Z
with ‖Tn‖cb = 1

n2 so that

(68) ‖T̃n‖ > n for any T̃n : Yn → Z with T̃n|Xn = Tn .

Let now Y = (Y1 ⊕ Y2 ⊕ · · · )c0 and X = (X1 ⊕ X2 ⊕ · · · )c0 endowed with the standard operator
space structure. Of course Y is separable. Define T : X → Z by

(69) T (xj) =
∑

Tjxj .

T is well defined, since Z is a Banach space, and if (xj) ∈ X , then
∑ ‖Tjxj‖ ≤ ∑ 1

n2 ‖x‖.
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Now given m, K1, . . . , Km in K, and z′, . . . , zm in X , we have that

∥

∥

∥

∑

Ki ⊗ Tzi
∥

∥

∥ ≤
∑

j

∥

∥

∥

∑

i

Ki ⊗ Tzi
j

∥

∥

∥(70)

≤
∑

j

‖Tj‖cb

∥

∥

∥

∑

i

Ki ⊗ Tzi
j

∥

∥

∥

≤
∑ 1

n2
max

j

∥

∥

∥

∑

i

Ki ⊗ Tzi
j

∥

∥

∥

=
∑ 1

n2

∥

∥

∥

∑

Kiz
i
∥

∥

∥ .

Hence T is completely bounded, but there is no bounded linear extension T̃ : Y → Z since for such
a presumed extension, T̃ /Yn extends Tn, whence ‖T̃ |Yn‖ > n. �

Of course the MSEP is related to a more restrictive injectivity property.

Definition. An operator space Z is mixed injective if for all operator spaces Y , subspaces X , and
completely bounded maps T : X → Z, there is a bounded linear map T̃ : Y → Z extending T . If,
for λ ≥ 1, T̃ can always be chosen with ‖T̃‖ ≤ λ‖T ‖cb, we say Z is λ-mixed injective. Finally, if Z
is 1-mixed injective, we say that Z is isometrically mixed injective.

We then have the following result, whose simple proof (via the isometric operator injectivity of
B(H)) is left to the reader.

Proposition. Let Z be an operator space with Z ⊂ B(H) for some H. Then Z is mixed injective
iff Z is complemented in B(H). Hence Z is λ-mixed injective for some λ ≥ 1. Moreover if λ ≥ 1,
then Z is λ-mixed injective if Z is λ-complemented in B(H).

As pointed out in the Introduction, we not not know if K0 has the MSEP. The next result shows
this problem is equivalent to the question of whether K0 is complemented in Y for all separable Y
with K0 ⊂ Y ⊂ K∗∗

0 , in virtue of the fact that K∗∗
0 is an (isometrically)-injective operator space.

Proposition 3.3. Let Z be a separable operator space so that Z∗∗ is mixed injective. Then Z has
the MSEP iff

(∗) Z is complemented in W for all separable spaces W with Z ⊂ W ⊂ Z∗∗

Proof. One implication is trivial. For the slightly less trivial assertion, let X ⊂ Y be separable
operator spaces and T : X → Z a completely bounded map. Choose T̃ : Y → Z∗∗ a bounded
linear extension of χT , where χ : Z → Z∗∗ is the canonical injection. Let Y = [χZ, T̃ (Y )] and let
P : Y → Z be a surjective bounded linear projection (where Z is of course identified with χZ).

Then P T̃ is the desired operator extending T . �

Remark. Of course Proposition 3.2 “reduces” the problem of the MSEP for K0, to a pure Banach
space question: See [JO] for a study of the family of separable Banach spaces Z satisfying (∗),
particularly in the case where Z = (En)c0 , E1, E2, . . . finite-dimensional.

The next perhaps surprising result shows that the MSEP and mixed injectivity are equivalent for
operator spaces complemented in their double duals.

Proposition 3.4. Let X be an operator space which is β-complemented in X∗∗ and suppose X has
the λ-MSEP. Then X is λβ-mixed injective.
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Corollary. Every reflexive operator space with the MSEP is mixed injective.

Proof of Proposition 3.4. Let Y be an operator super space of X . By Proposition 3.1, it suffices to
prove that X is λβ-complemented in Y .

First, fix F a finite-dimensional subspace of X . We shall prove:

(71) there exists a linear operator TF = T, T : Y → X∗∗, with ‖T ‖ ≤ λ and T |F = I|F .

Let G be the family of finite-dimensional subspaces of Y containing F , directed by inclusion. For
each G ∈ G, since X has the λ-MSEP, choose TG : G → X a linear operator with ‖TG‖ ≤ λ and

TG|F = I|F . Then define T̃G : Y → X by T̃G(y) = 0 if y /∈ G, T̃G(y) = TG(y) if y ∈ G. Well,

T̃G is neither continuous nor linear. However the weak*-compactness of the λ-ball of X∗∗ in its
weak*-topology allows us by the Tychonoff theorem to select a subnet (T̃Gβ

)β∈D of the net (T̃G)G∈G

so that

(72) lim
β∈D

T̃αβ
(y)

df
= T (y)

exists weak* in X∗∗ for all y ∈ Ba(Y ). Since we do have that T̃G(λy) = λT̃G(y) for all y ∈ Y , we
obtain that the limit in (72) exists weak* for all y in Y , and in fact we discover that T as defined by

(72) is indeed a linear operator with ‖T ‖ ≤ λ. Finally, if f ∈ F , then T̃α(f) = f for all f , whence
also Tf = f . Thus (71) is proved.

Finally, let F be the family of finite-dimensional subspaces of X directed by inclusion. For each
F ∈ F , choose TF satisfying (71). Again exploiting the weak*-compactness of the λ-ball of X∗∗, we
find a subnet (TFβ

)β∈D of the net (TF )F∈F so that

(73) lim
β∈D

TFβ
(y)

df
= S(y)

exists weak* in X∗∗ for all y ∈ Ba(y). Now it follows that S : Y → X∗∗ is a linear operator with
‖S‖ ≤ λ. But if x ∈ X , then “eventually”, x ∈ Fβ for β ∈ D, whence TFβ

(x) = x, so also S(x) = x.
Finally, letting Q : X∗∗ → X be a surjective projection with ‖Q‖ ≤ β, we obtain that P = QS is
the desired projection from Y onto X of norm at most βλ. �

Remarks. 1. Of course the proof shows that if X is complemented in X∗∗, then X is mixed injective
if X has the formally weaker property that for some λ ≥ 1 and for all finite-dimensional operator
spaces F ⊂ G and linear maps T : F → X , there is a linear extension T̃ : G → X with ‖T̃‖ ≤ λ‖T ‖cb.

2. The same compactness argument also yields that if X is an operator space with X completely
complemented in X∗∗, then if X has the CSEP, X is injective. (This strengthens Proposition 2.10
of [Ro2].) Indeed, as noted in [Ro2], it follows that X has the λ-CSEP for some λ ≥ 1. But then
just replacing “bounded” by “completely bounded” in the above proof, one obtains that if X is
β-completely complemented in X∗∗, then X is βλ-completely complemented in Y .

We next note that certain results in [R] carry over almost word for word to the mixed category.

Proposition 3.5. Let X be a non-reflexive operator space. If X is mixed injective, X has a subspace
Banach-isomorphic to ℓ∞. If X is separable with the MSEP, X has a subspace Banach-isomorphic
to c0.

Proof. If X satisfies the hypothesis in the second statement, X is isomorphic (in fact completely
isomorphic) to a complemented subspace of some C∗-algebra. The second assertion now follows from
results of H. Pfister [Pf] and A. Pe lczyński [Pe2]. If X satisfies the first hypothesis, X is completely
isomorphic to a complemented subspace of some von-Neumann algebra. The first assertion now
follows from these results and the result of [Ro1] that any non-weakly compact operator from ℓ∞

into some Banach space fixes a copy of ℓ∞. The argument itself is word for word as the proof of
Proposition 2.8 of [Ro2], deleting the word “completely” in all its occurrences. �

Finally, we note the analogue of Proposition 2.22 of [Ro2].
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Proposition 3.6. Let X be a separable operator space with the λ-MSEP. If λ < 2, then X is
reflexive (and hence is λ-mixed injective by Proposition 3.3).

Proof. The argument is essentially the same as that for Proposition 2.22 of [Ro2]. We give this
argument however, for the sake of completeness. Suppose to the contrary that X is not reflexive.
Then X contains a subspace isomorphic to c0 by Proposition 3.5. Now let ε > 0, to be decided later,
and choose (using the “folklore” result, proved in Proposition 2.22 of [Ro2]) a subspace Z of X
which is Banach (1 + ε)-isomorphic to c0 and (1 + ε)-complemented in X . Now let Y be a separable
subspace of Z∗∗ with Z ⊂ Y and let i : Z → X be the identity injection, and also let P : X → Z
be a surjective projection with ‖P‖ < 1 + ε. Since X has the λ-MSEP, letting Y have its natural
operator space structure, we find a bounded linear extension ı̃ : Y → X with ‖ı̃‖ ≤ λ. But then
letting Q = P ı̃, Q is a projection from Y onto Z and

(74) ‖Q‖ < (1 + ε)λ .

Since Z is (1 + ε)-isomorphic to c0, it now follows that if Ỹ is separable with c0 ⊂ Ỹ ⊂ ℓ∞, then

(75) c0 is (1 + ε)2λ-complemented in Ỹ .

This implies c0 itself has the (1 + ε)2λ SEP, whence by a result of Sobczyk [S], (1 + ε)2λ ≥ 2. Of
course this is a contradiction for ε small enough. �

We now give some examples of operator spaces with the MSEP. Evidently any complemented
subspace of an operator space with the MSEP also has the MSEP. The next result is thus an
immediate consequence of a result in [Ro2].

Proposition 3.7. Let X be a λ-complemented subspace of c0(R ⊕ C). Then X has the 2λ-MSEP.

Proof. It is proved in [Ro2] that c0(R ⊕ C) has the 2-CSEP, hence trivially the 2-MSEP. �

Of course c0(R ⊕ C) is Banach isomorphic to c0(ℓ2), and the infinite-dimensional complemented
subspaces of c0(ℓ2) have been isomorphically classified in [BCLT]; there are exactly six of them.

Problem 3.1. Let X be an infinite-dimensional separable operator space with the MSEP. Is X
Banach isomorphic to one of the spaces

(76) c0, (ℓ2
n)c0 , c0(ℓ2), ℓ2, c0 ⊕ ℓ2 , or (ℓ2

n)c0 ⊕ ℓ2 ?

Of course if K (or equivalently K0) has the MSEP, the answer is negative, and the list must be
much bigger than this. It is worth pointing out, however, that work of G. Pisier yields immediately
that every reflexive mixed injective operator space is Hilbertian, i.e., Banach isomorphic to a Hilbert
space (cf. [R]). Thus the list in (76) is complete in the separable reflexive case; ℓ2 is the only example!

We next give some examples of 1-mixed injective operator spaces. Let N∗ = N ∪ {∞} and
n, m ∈ N∗. Recall that M∞ denotes B(ℓ2) regarded as matrices operating on the natural basis.

Now the following are all 1-mixed injective.

I. Mn,m

II. Sn, the n × n symmetric matrices
III. ASn, the anti-symmetric n × n matrices.

(If At denotes the transpose of A, then A ∈ Sn iff A = At; A ∈ ASn iff A = −At.)
Neither S∞ nor AS∞ are injective, while of course Mn,m is 1-injective for all n and m. However

another family of 1-mixed injectives occurs; the spin factors .

Definition. A closed subspace X of B(H) is called a spin factor if

(a) X is self-adjoint
(b) dim X > 1
(c) the square of every element of X is a scalar.
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It is known that spin-factors are 1-mixed injective [ES] and Hilbertian. Moreover, in the separable
case, X is a spin-factor iff there exists a sequence S1, S2, . . . of anti-commuting self-adjoint unitaries
with X = [Sn]. Here, (Sn) is either finite of length at least 2, or infinite. X , as an operator space,
is determined up to complete isometry by its dimension (i.e., the length of this sequence (Sn)).
For n ∈ N∗ ∼ {1}, let Sp(n) denote a spin factor of dimension n for n < ∞ (resp. separable
infinite-dimensional if n = ∞).

Standard constructions yield that for all n, Sp(n) is 1-completely isometric to a (necessarily
contractively complemented) subspace of M2n/2 if n is even, M2[n/2] ⊕M2[n/2] if n is odd.

However the following result yields that Sp(∞) is not completely isomorphic to a subspace of K.

Proposition 3.8. Let X be an operator space so that X⊗opX is completely isomorphic to a subspace
of X. If Sp(∞) completely embeds in X, then ℓ1 Banach embeds in X, hence X∗ is non-separable.

Proof. By a result of U. Haagerup [H] (see also [Pa]), if (Si) is an infinite spin system in B(H),
(Si⊗Si) is Banach-equivalent to the usual ℓ1-basis. Now if Y is a subspace of X which is completely
isomorphic to Sp(∞), Y ⊗op Y is completely isomorphic to Sp(∞) ⊗op Sp(∞), hence ℓ1 embeds in
X ⊗op X by Paulsen’s results. �

We next give a remarkable, simple permanence property of mixed injectivity and the Mixed
Separable Extension Property. We first need the following (apparently new) concept.

Definition. Given operator spaces X and Y , X is completely semi-isomorphic to Y if there exists a
completely bounded map T : X → Y which is a Banach isomorphism, i.e., (since X, Y are assumed
complete), so that T is 1–1 and onto. We call such a map T a complete semi-isomorphism from
X onto Y . In case ‖T ‖cb = 1 = ‖T−1‖, T is called a complete semi-isometry and X is said to
be completely semi-isometric to Y in case there exists a complete semi-isometry mapping X onto
Y . In case ‖T ‖cb‖T−1‖ ≤ λ, we say X is λ-completely semi-isomorphic to Y . Finally, we set
ds(X, Y ) = inf{λ : X is completely semi-isomorphic to Y }.

This relation is trivially reflexive and is also (quantitatively) transitive: if X is λ-completely
semi-isomorphic to Y and Y is β-completely semi-isomorphic to Z, then X is λβ-completely semi-
isomorphic to Z. The relation is of course not symmetric in general; e.g., R∩C is completely semi-
isomorphic to R but R is not completely semi-isomorphic to R∩C. It can be shown that the relation
does not yield a partial order on operator spaces modulo complete isomorphism. In fact, there exist
non-completely isomorphic operator spaces X and Y so that each is completely semi-isometric to
the other. However if X and Y are each completely semi-isomorphic to the other, then X and Y are
completely isomorphic if one of them, say X , is homogeneous, i.e., if every bounded operator on X
is completely bounded. Indeed, suppose X is λ-homogeneous (i.e., ‖U‖cb ≤ λ‖U‖ for all U ∈ L(X))
and suppose T : X → Y and S : Y → X are surjective complete semi-isomorphisms. But then
T−1S−1 is completely bounded, hence so is T−1 = T−1S−1S, and ‖T−1‖cb ≤ λ‖T−1‖ ‖S−1‖ ‖S‖cb.
We thus obtain that dcb(X, Y ) ≤ λds(X, Y )ds(Y, X).

We now give the permanence property mentioned above: mixed injectivity and the MSEP are
both preserved under complete semi-isomorphisms; i.e., if X is completely semi-isomorphic to Y and
Y has one of these properties, so does X .

Proposition 3.9. Let λ, β ≥ 1 and let Z and Z̃ be operator spaces with Z̃ β-completely semi-
isomorphic to Z. Then if Z is λ-mixed injective (resp. has the λ-MSEP), Z̃ is βλ-mixed injective
(resp. has the λβ-MSEP).

Proof. Choose S : Z̃ → Z a surjective complete semi-isomorphism with ‖S‖cb‖S−1‖ ≤ β. Let

X ⊂ Y be operator spaces and T : X → Z̃ be a completely bounded map. Now consider the
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diagram:

Y

X Z

V

T S
Z
~

.
In the case where Z is λ-mixed injective, choose V a linear operator completing this diagram with

(77) ‖V ‖ ≤ ‖S ◦ T ‖cb ≤ λ‖T ‖cb‖S‖cb .

Then letting T̃ = S−1V , we obtain that T̃ : Y → Z̃ is an extension of T with

‖T̃‖ ≤ λ‖S‖cb‖S−1‖ ‖T ‖cb by (77)(78)

≤ λβ‖T ‖cb .

Of course (78) yields Z̃ is λβ-mixed injective.
In the case where Z has the λ-MSEP, simply assume that Y is in addition separable, to obtain

the desired conclusion. �

Proposition 3.9 has the immediate consequence: If X is completely semi-isomorphic to a space
with the CSEP, X has the MSEP. This suggests the following question.

Problem 3.2. Let X be a separable operator space with the MSEP. Is X completely semi-isomorphic
to a space with the CSEP?

We do not know if K is semi-isomorphic to a space with the CSEP, although we suspect this is
not the case. Let us note, however, that the presently known examples of separable spaces with the
MSEP do have the property specified in this problem, e.g., Sp(∞) is completely semi-isomorphic to
R.

The 1-mixed injective finite-dimensional spaces are completely classified up to Banach isometry,
based in part on deep work of E. Cartan [C] for which there seems to be no decent modern exposition.

Theorem A. Let X be a finite-dimensional isometrically injective operator space. Then X is
Banach isometric to a (finite) ℓ∞-direct sum of spaces E each of the following form for some m, n ∈ N

I. E = Mn,m

II. E = Sn

III. E = ASn

IV. E = Sp(n)

Spaces of the form I–IV are known as Cartan factors of types I–IV. Of course any ℓ∞ finite direct
sum of Cartan factors of types I–IV is isometrically mixed injective (in its natural operator space
structure). Now Proposition 3.8 coupled with the spaces listed in Theorem A, yields a rather vast
supply of finite-dimensional 1-mixed injectives (e.g., Rn ∩ Cn is of this form). Are these the only
ones?

Problem 3.3. Is every finite dimensional 1-mixed injective completely semi-isometric to an ℓ∞

direct sum of Cartan factors of types I–IV?

The work in [AF] is certainly related to this problem, especially if the answer is negative! Prob-
lem 3.2 ought to be solved in this century! The next problem, on the other hand, seems quite
intractable at this time (although a negative answer need not be). An affirmative solution would
imply an affirmative solution to the famous “finite-dimensional Pλ problem” in the commutative
theory.
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Problem 3.4. Given λ > 1, is there a β so that every λ-mixed injective finite-dimensional space is
β-completely semi-isomorphic to a 1-mixed injective?

A remarkable factorization theorem due to M. Junge [J] yields that a purely local formulation of
the classification problem for finite-dimensional mixed injectives. We are indebted to M. Junge for
the proof of this result, which yields that the finite-dimensional β-mixed injectives are essentially,
up to complete semi-isomorphism, the β-complemented subspaces of Mn’s.

Proposition 3.10. Let X be a finite-dimensional operator space and λ ≥ 1. The following are
equivalent:

(1) X is λ-mixed injective.
(2) For all ε > 0, there exist an n and linear maps U : X → Mn and V : Mn → X so that

IX = V U and ‖V ‖ ‖U‖cb < λ + ε. That is, we have the diagram

Mn
Uր ցV

X
I−→ X .

Corollary 3.11. If X is finite-dimensional and λ-mixed injective, then for all ε > 0, there is a
subspace Y of Mn so that X is (λ + ε)-completely semi-isomorphic to Y and Y is (λ + ε)-mixed
injective.

Remark. Of course the conclusion of the Corollary implies that Y is (λ + ε)-Banach complemented
in Mn.

Proof of 3.11. Set Y = U(X), where U, V are chosen as in (2) of 3.10. It follows that U : X → Y
is a semi-isomorphism with U−1 = V |Y , hence ds(X, Y ) ≤ ‖V |Y ‖ ‖U‖cb < λ + ε. Setting P = UV ,
then P is a projection from Mn onto Y , and ‖P‖ ≤ ‖U‖ ‖V ‖ < λ + ε, as desired. �

Proof of Proposition 3.10. (1) ⇒ (2): Assume without loss of generality that X ⊂ B(H). Then
there exists a surjective linear projection P : B(H) → X with ‖P‖ ≤ λ. Let Y = (X, MIN), and
let T : X → Y be the formal identity map and i : X → B(H) be the identity injection. Thus
T completely factors through B(H), T = Pi, and ‖P‖cb‖i‖cb ≤ λ. Hence by a basic factorization
theorem in [J] (reproved as Theorem 7.6 in [EJR]; see also Remark 3.6 in [JM]), we may choose n and

linear maps U : X → Mn, Ṽ : Mn → Y with T = Ṽ U and ‖Ṽ ‖cb‖U‖cb < ‖P‖cb‖i‖cb + ε ≤ λ + ε.

But now just letting V = T−1Ṽ , we obtain (2) of 3.10, for trivially ‖V ‖ ≤ ‖T−1‖ ‖Ṽ ‖cb = ‖Ṽ ‖cb.
(2) ⇒ (1): Let Y ⊂ Z be separable operator spaces and T : Y → X be a given linear map. Let

ε > 0 and choose Mn and U, V as in (2). Now since Mn is 1-injective, choose S : Z → Mn a linear
map with ‖S‖cb = ‖UT ‖cb ≤ ‖U‖cb‖T ‖cb. Thus we have the diagram

Mn

XXY

S U

T I

V

Then T̃ε
df
= V S extends T and ‖T̃ε‖cb < λ+ε. Since X is finite-dimensional, we may choose a sequence

(εn) tending to zero and an operator T̃ : Z → X so that T̃εn → T̃ in the strong operator topology.

It follows that T̃ extends T and ‖T̃‖cb ≤ λ. Thus X has the λ-MSEP, so by Proposition 3.4, X is
λ-mixed injective. �

We briefly indicate the remarkable connection of Theorem A with a rather vast domain of modern
research. A closed linear subspace X of B(H) is called a (concrete) JC∗-triple if

(79) TT ∗T ∈ X whenever T ∈ X .
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It then follows by polarization that

(80) 2{A, B, C} df
= AB∗C + CB∗A belongs to X whenever A, B, C do.

{A, B, C} is called the triple product of A, B, and C; an abstract generalization of this led to the
theory of JB∗ triples. In turn, this theory yields the following remarkable general result, which
includes Theorem A.

Theorem B. Let X be a finite-dimensional Banach space. The following are equivalent.

1. X is isometric to a contractively complemented subspace of some C∗-algebra.
2. X is isometric to a JC∗-triple.
3. The open unit ball of X is biholomorphically transitive, and X contains no contractively

complemented subspace isometric to a Cartan factor of type V.
4. X is of the form specified in Theorem A.

Several of the implications in Theorem B hold in infinite-dimensions as well. In fact, it is known
that 1 ⇒ 2 ⇒ 3 in general and finally if X satisfies 3. and is isometric to a dual space, then 3 ⇒ 1.
1 ⇒ 2 is due to Y. Friedman and B. Russo [FR] and 2 ⇒ 3 (without the assertion concerning the
type V factor, which came later) is due to L. Harris [H]; see also [K2]. For 3 ⇒ 1 for X a dual, see
C.-H. Chu and B. Iochum [CI]. As far as we know, the following are open questions in general: Does
3 ⇒ 1? Does 2 ⇒ 1? The profound result of Cartan’s which underlies this: the unit ball of a finite-
dimensional Banach space is biholomorphically transitive iff the space is an ℓ∞-direct sum of Cartan
factors . In addition to the factors of types I–IV, there are two more, types V and VI; the type VI
factor consists of the 3 × 3 Hermitian matrices over the complex octonions, and is 27-dimensional.
The type V factor embeds in this one; as a Banach space, it may however be explicitly identified as
follows: Let e0, e1, . . . , e7 be the usual basis for the complex octonions O (with e0 the identity). For

a ∈ O, a =
∑7

i=0 aiei with the ai’s complex scalars, set |a| = (
∑ |ai|2)1/2 and n(a) =

∑

a2
i ; also set

ã = a0e0 −
∑7

i=1 aiei. Now the Cartan factor of type V may be identified with X = O × O where,
if x = (a, b), then

(81) ‖x‖2 = |a|2 + |b|2 +
√

(|a|2 + |b|2)2 − |n(a)|2 + |n(b)|2 + 2|ã b|2 .

Note that if a and b have only real coefficients, |ã b| = |ã| |b| = |a| |b| by a fundamental property of
the real octonions, whence

‖x‖2 = |a|2 + |b|2, the ordinary Euclidean norm of the vector x.

(The industrious reader may dig the proof of Theorem B out of the references [C], [FR], [K1], [K2].
See also [H] for important earlier structure results on JC∗-triples. Also see [CI] and [LO], [D], and
finally [Ru] for a comprehensive survey on JB∗-triples. Also, although (81) is a simple deduction
from known work, this explicit expression for the actual norm on the type V Cartan factor, seems
to be new.)

To further penetrate the fundamental question of whether K has the MSEP, we introduce the
following new concept in pure Banach space theory.

Definition. A Banach space X is called Extendably Locally Reflexive (ELR) if there exists a λ ≥ 1
so that for all finite dimensional subspaces F and G of X∗ and X∗∗ respectively and all ε > 0, there
exists an operator T : X∗∗ → X∗∗ with

(82)











(i) TG ⊂ X

(ii) 〈Tg, f〉 = 〈g, f〉 for all g ∈ G, f ∈ F

(iii) ‖T ‖ < λ + ε .

In case λ works, we say X is λ-ELR.



26 TIMUR OIKHBERG AND HASKELL P. ROSENTHAL

The terminology is motivated as follows: by the Local Reflexivity Principle due jointly to J. Lin-
denstrauss and the second author of this paper [LR2] (see also [JRZ]); for all X, and F, G as above,
ε > 0, there exists an operator T : G → X with ‖T ‖ < 1 + ε and satisfying (82)(ii). Then X is

ELR precisely when there exist such operators which admit uniformly bounded extensions T̃ to all
of X∗∗, i.e., we have

X∗∗ T̃−−−−→ X∗∗

⋃ ⋃

G
T−−−−→ X

with ‖T̃‖ ≤ C

for some absolute constant C.
The next result yields several equivalences for Extendable Local Reflexivity.

Proposition 3.12. Let λ ≥ 1, X a given Banach space. The following are equivalent:

(i) X is λ-ELR.
(ii) there exists a net (Tα) of linear operators on X∗∗ with ‖Tα‖ ≤ λ for all α, so that for all

x∗∗ ∈ X∗∗

(a) Tαx∗∗ → x∗∗ weak*
and

(b) Tαx∗∗ is ultimately in X.
(iii) same as (ii), with the addition

(c) Tαx → x in norm, for all x ∈ X.
(iv) for all F, G finite-dimensional subspaces of X∗ and X∗∗ respectively, there is an operator

T : X∗∗ → X∗∗ satisfying (82)(i)–(iii) and in addition

(83) Tg = g for all g ∈ G ∩ X .

Proof. (i) ⇒ (ii). Let D = {F, G, ε : F, G are finite-dimensional subspaces of X∗ and X∗∗ respec-
tively, and 0 < ε < 1. Direct D by:

(F, G, ε) ≤ (F ′, G′, ε′) if F ⊂ F ′, G ⊂ G′, and ε′ ≤ ε.

Given α = (F, G, ε) in D, choose Tα = T satisfying (82), and set Tα = λ
λ+εTα. Then (Tα)α∈D has

the desired property.
(ii) ⇒ (iii). Let D be the directed set given in the above proof, and also suppose the net satisfying

(ii) is given by (Tα)α∈G . Now given d = (F, G, ε) in D, choose β ∈ G so that for all α ≥ β,

(84)
(i) TαG ⊂ X

(ii) |〈Tαg, f〉 − 〈g, f〉| ≤ ε‖g‖ ‖f‖ for all g ∈ G, f ∈ F .

Now if x ∈ G ∩ X , then Tαx → x weakly; hence certain far out convex combinations converge in
norm. But then, thanks to the finite-dimensionality of G, we may choose a convex combination Sd

of {Tα : α ≥ β} so that

(85) ‖Sdx − x‖ ≤ ε‖x‖ for all x ∈ G ∩ X .

Now Sd still satisfies (84)(i) (replacing “Tα” by “Sd” there) and of course ‖Sd‖ ≤ λ also, hence
it follows that the net (Sd)d∈D, satisfies the conclusion of (iii).

(iv) ⇒ (i) – trivial.
(iii) ⇒ (iv). Let ε > 0 and fix F, G finite-dimensional subspaces of X∗, X∗∗ respectively, choose

f1, . . . , fn a basis for F , and choose x1, . . . , xn in X with fi(xj) = δij for all i and j. Now assuming
(Tα) satisfies (iii), we may choose α so that (84)(i) holds and also

(86)
(i) |〈Tαg − g), fi〉| ≤ δ‖g‖ for all g ∈ G

(ii) ‖Tαg − g‖ ≤ ε‖g‖ for all g ∈ G ∩ X .
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Now also choose Y a linear subspace of G with

(87) Y ⊕ (G ∩ X) = G ;

then choose P, Q linear projections onto Y , G ∩ X respectively so that

(88) G ∩ X ⊂ ker P and Y ⊂ ker Q .

Of course then by (87) and (88), QP = PQ = 0, and

(89) P |G is a projection onto Y with kernel G ∩ X, and Q|G = (I − P )|G .

Let δ > 0, to be decided later. Assuming (Tα) satisfies (iii) of the Theorem, choose α so that (84)(i)
holds and also

(90)
(i) |〈(Tαg − g), fi〉| ≤ δ‖g‖ for all g ∈ G

(ii) ‖Tαg − g‖ ≤ δ‖g‖ for all g ∈ G ∩ X .

Then define T : X∗∗ → X∗∗ by

(91) Tz =

n
∑

j=1

〈Pz − TαPz, fj〉xj + TαPz + Qz + TαRz

for all z ∈ X∗∗. Now if z ∈ G ∩ X , then P (z) = R(z) = 0 and Q(z) = z, so Tz = z; hence (83)
holds, and so

(92) 〈Tz, f〉 = 〈z, f〉 for all f ∈ F .

If z ∈ Y , then Q(z) = R(z) = 0 and P (z) = z; whence

(93) Tz =
n

∑

j=1

〈z, fj〉xj −
n

∑

j=1

〈Tαz, fj〉xj + Tαz .

But then for each j,

(94) 〈Tz, fj〉 = 〈z, fj〉 − 〈Tαx, fj〉 + 〈Tαz, fj〉 = 〈z, fj〉 .

Since the fj’s are a basis for F , (92) holds. But then since (93) holds for z ∈ G ∩ X and z ∈ Y ,
(82)(ii) holds. Finally, we estimate the norm of T . Now fixing z in X∗∗, z = Pz + Qz + Rz. Hence

(95) (T − Tα)z =
n

∑

j=1

〈Pz − TαPz, fj〉xj + Qz − TαQz .

Thus, we obtain by (90) that

(96) ‖(T − Tα)z‖ = δ‖P‖
n

∑

j=1

‖xj‖ ‖z‖ + δ‖Q‖ ‖z‖ .

Hence, simply choosing δ so small that

(97) δ

(

‖P‖
n

∑

j=1

‖xj‖ + ‖Q‖
)

< ε ,

we obtain that the finite-rank perturbation T − Tα of T has norm smaller than α, whence

(98) ‖T ‖ < ‖Tα‖ + ε ≤ λ + ε .

completing the proof of Proposition 3.12. �

Although not evident from the definition of the Extendable Local Reflexivity, there is an aston-
ishing connection between this property and the bounded approximation property (the bap).
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Theorem 3.13. Let X be a given Banach space. The following assertions are equivalent.

(i) X is ELR and has the bap.
(ii) There exists a uniformly bounded net (Tα) of finite rank operators on X∗∗ with Tαx∗∗ → x∗∗

weak* for all x∗∗ ∈ X∗∗.
(iii) X∗ has the bap.

Remarks.
1. The second author of this paper discovered the ELR concept as well as the implication (iii) ⇒

(i) during a research visit to Odense University, November 1997. (Of course X∗ has bap ⇒ X has
bap is an old standard result.) The implication (i) ⇒ (iii) was discovered by the authors of [JO]
shortly after an initial draft of the present paper was prepared.

2. Our proof yields that one can choose a net (Tα) satisfying (ii) with ‖Tα‖ ≤ λ for all α iff X∗

has the λ-bap. On the other hand, if X is λ-ELR and has the β-bap, X∗ has the λβ-bap (as also
obtained in [JO]).

3. It follows immediately from Theorem 3.13 and a deep result of T. Szankowski [S] that C1 fails
to be ELR (C1 the trace class operators on Hilbert space). This and other examples of Banach
spaces failing to be ELR are given in [JO].

Proof of Theorem 3.13. (i) ⇒ (ii). Suppose X is λ-ELR and has the β-bap. Let D be the directed
set given in the proof of (i) ⇒ (ii) of the preceding Proposition. Given α = (F, G, ε) in D, first
choose T : X∗∗ → X∗∗ satisfying (82). Now choose S : X → X a finite rank operator with

(99) ‖S‖ < β + ε and Sx = x for all x ∈ TG .

Hence

(100) 〈S∗∗Tg, f〉 = 〈STg, f〉 = 〈g, f〉 for all g ∈ G, f ∈ F, by (82) and (99) .

Finally, let Uα = S∗∗T . Then Uαx∗∗ → x∗∗ ω∗ for all x∗∗ ∈ X∗∗,

‖Uα‖ ≤ (λ + ε)(β + ε)

for all α, and moreover limα∈D ‖Uα‖ ≤ λβ. So if we let Tα = λβ
(α+ε)(β+ε)Uα, then (Tα) satisfies (ii)

with ‖Tα‖ ≤ λβ for all α (as claimed in Remark 1 above).
(ii) ⇒ (iii). Let (Tα) be a net of finite rank operators satisfying (ii), and suppose ‖Tα‖ ≤ λ for all

α. Now since the Tα’s are finite rank, it follows that we may assume the Tα’s are weak*-continuous .
To see this, again let D be the directed set given above. For β ∈ D, β = (F, G, ε), choose α so that

(101) |〈Tαg, f〉 − 〈g, f〉| ≤ (1 + ε)‖g‖ ‖f‖

for all g ∈ G and f ∈ F .
Then applying the local reflexivity principle (see Lemma 3.1 of [JRZ]), choose T̃β a weak* continuous
finite rank operator on X∗∗ so that

(102) ‖T̃β‖ < λ + ε and T̃β|G = Tα|G .

It then follows that T̃β → I weak* on X∗∗, and finally so does the net ( λ
λ+ε T̃β)β∈D.

Now choose for all α, Sα a linear operator on X∗ with S∗
α = Tα, ‖Sα‖ ≤ λ. But then it follows

immediately from (ii) that

(103) Sαf → f weakly for all f ∈ X∗ .

But then there exists a net (Vα) of convex combinations of the Sα’s so that Vαf → f in norm for
all f in X∗. Hence X∗ has the λ-bap.
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(iii) ⇒ (i). Suppose X∗ has the λ-bap. Then it is a standard fact that X has the λ-bap. (Actually,
our proof that in Proposition 3.12, (ii) ⇒ (iii), already gives the argument.) Now let ε > 0, and let
F and G be finite dimensional subspaces of X and X∗ respectively.

Then choose S a finite rank operator on X∗ so that

(104) S|F = I|F and ‖S‖ < λ + ε .

Next, let H = S∗X∗∗. H is finite dimensional so by the local reflexivity principle, we may choose
U : H → X with

(105) ‖U‖ < 1 + ε and 〈Uh, f〉 = 〈h, f〉 for all h ∈ H and f ∈ F .

Finally, let T = US∗. Then for all g ∈ G and f ∈ F ,

(106)
〈Tg, f〉 = 〈US∗g, f〉 = 〈S∗g, f〉 by (105)

= 〈g, Sf〉 = 〈g, Sf〉 by (104).

Of course ‖T ‖ < (1 + ε)(λ + ε), whence since λ > 0 is arbitrary, X is λ-ELR. �

Remark. Extendable Local Reflexivity may easily be extended to the complete category, and then
the quantized versions of our results are valid. Thus, we define an operator space X to be Completely
Extendably Locally Reflexive (CELR) if there is a λ ≥ 1 so that for all ε > 0 and finite-dimensional
subspaces F and G of X∗ and X∗∗, (82) holds, except that we replace “‖T ‖” by “‖T ‖cb” in (82)(iii).
In case λ works, we say X is λ-CELR. We then obtain that appropriate quantized versions of
Proposition 3.12 and Theorem 3.13 are valid. Thus in Proposition 3.12, we replace “Banach” by
“operator”, “λ-ELR” by “λ-CELR” and “‖Tα‖” by “‖Tα‖cb”.

A quantized version of Theorem 3.13 goes as follows:

Theorem 3.13′. Let X be a given operator space. Then the following are equivalent.

(i) X is CELR and has the cbap.
(ii) There exists a uniformly completely bounded net (Tα) of weak*-continuous finite-rank oper-

ators from X∗∗ to X with Tαx∗∗ → x∗∗ weak* for all x∗∗ ∈ X∗∗.
(ii)′ X is locally reflexive and X satisfies (ii) without assuming the Tα’s are weak*-continuous.
(iii) X∗ has the cbap and X is locally reflexive.

Also the quantitative statements go through; if X∗ has the λ-cbap and X is β-locally reflexive,
then X is λβ-CELR and has the λβ-cbap, while if X is λ-CELR and has the β-cbap, then X∗ has
the λ2β-cbap. Moreover if (Tα) satisfies (ii) with ‖Tα‖cb ≤ λ for all α, then X and X∗ both have
the λ-cbap and X is λ-CELR. It then follows that nuclear C∗-algebras are 1-CELR, for it is known
that such are 1-locally reflexive with duals having the 1 cbap which are also 1-locally reflexive [EJR].

We are indebted to N. Ozawa for pointing out that the implication (iii) ⇒ (i) is false without the
assumption that X is locally reflexive. Actually, we construct a non-reflexive operator space Y in
Corollary 4.9 so that K0 ⊂ Y ⊂ K∗∗

0 with Y/K0 completely isometric to c0. As pointed out to us
by N. Ozawa, since K0 is a complete M -ideal K∗∗

0 , Y ∗ is completely isometric to C1 ⊕ ℓ1 (ℓ1-direct
sum), whence Y ∗ has the cmap and moreover Y ∗∗ is isometrically injective. It can also be seen
(using arguments similar to those for Theorem 4.7 below), that Y fails the cbap, thus answering a
question of Ozawa’s.

The next result yields an unusual connection between Extendable Local Reflexivity and the CSCP.

Theorem 3.14. Let X ⊂ Y be separable operator spaces so that X has the CSCP and X∗∗ is
isomorphically mixed injective. Suppose there exists an operator space Z which is (Banach) ELR
and X ⊂ Y ⊂ Z. Then X is complemented in Y .

First, an immediate consequence.
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Corollary 3.15. Suppose B(H) or every separable C∗ algebra is ELR, and let X be an operator
space with the CSCP so that X∗∗ is mixed injective. Then X has the MSEP; in particular, K has
the MSEP.

Proof. Let X have the CSCP and suppose X ⊂ Y ⊂ B(H) with Y separable. If B(H) is ELR, X is
complemented in Y by Theorem 3.14. Letting A be the C∗-algebra generated by Y , A is separable,
so again X is complemented in A and hence in Y by Theorem 3.14. �

Theorem 3.14 is a simple consequence (via known results) of the crucial

Lemma 3.16. Let X ⊂ Y be operator spaces. Assume the following:

(i) X is locally reflexive
(ii) X∗∗ is complemented in Y ∗∗

(iii) Y is ELR.

Then there is a NEW operator space structure on Y , agreeing (isometrically) with the given one on
X, so that (Y, NEW) is locally reflexive.

Remark. Our proof yields that if X is λ-locally reflexive, X∗∗ is β-cocomplemented in Y ∗∗, and Y
is γ-ELR, then (Y, NEW) is (γβ + λβ + λ)-locally reflexive.

Proof of Theorem 3.14. Since X∗∗ is mixed injective, X∗∗ is complemented in Z∗∗. By the Lemma,
choose a NEW operator structure on Z which agrees with that on X so that (Z, NEW) is locally re-
flexive. But then (Y, NEW) is also locally reflexive, (see [ER]). Hence X is completely complemented
in (Y, NEW), which of course gives that X is complemented in Y . �

We now proceed with the proof of Lemma 3.16. The idea goes as follows. By a standard Banach
space construction (which we give), X⊥⊥ is in fact weak*-complemented in X∗∗. Now letting Z
be a weak* complement, (Y, NEW) is defined in such a way that (Y ∗∗, NEW) coincides on X⊥⊥

with the given operator space structure, while it is equivalent to MAX on Z. The hypothesis that
Y is ELR then allows us to obtain a “local reflexivity operator” T1 : G1 → Y , for given G1 ⊂ Z
finite-dimensional, with T1 uniformly completely bounded, and also given G2 ⊂ X∗∗, T2 : G2 → X is
found by the local reflexivity of X . Then if G = G1 ⊕G2, T = T1⊕T2 is the desired local reflexivity
operator.

Proof of Lemma 3.16. We identify X∗∗ with X⊥⊥, X⊥ with (Y/X)∗, and, as usual, Z with its
canonical embedding in Z∗∗, (for any Banach space Z). We first have (the standard result) that the
hypotheses are equivalent to: X∗∗ is weak*-complemented in Y ∗∗. In fact, fix β ≥ 1.

Fact. X∗∗ is β-cocomplemented in Y ∗∗ iff X⊥ is β-complemented in Y ∗.

Proof. Let L : Y ∗∗∗ → Y ∗ be the canonical projection defined by

(107) 〈Ly∗∗∗, y〉 = 〈y∗∗∗, y〉 for all y∗∗∗ ∈ Y ∗∗∗, y ∈ Y .

Now suppose first that P : Y ∗∗ → Y ∗∗ is a projection with ker P = X⊥⊥ and ‖P‖ ≤ β. Define Q by

(108) Q = L ◦ (P ∗|Y ∗) .

Now we claim that Q is a projection on Y ∗, onto X⊥; of course it’s trivial that ‖Q‖ ≤ β.
By definition, we have for all y∗ ∈ Y ∗ and y ∈ Y , that

(109) 〈Qy∗, y〉 = 〈LP ∗y∗, y〉 = 〈P ∗y∗, y〉 = 〈y∗, Py〉 .

Now suppose first y∗ ∈ X⊥. Then for y ∈ Y ,

(110)
〈Qy∗, y〉 = 〈y∗, Py〉 by (109),

= 〈y∗, y〉 since y − Py ∈ X⊥⊥ .
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Hence Qy∗ = y∗. On the other hand, if y∗ is arbitrary and x ∈ X , then

(111) 〈Qy∗, x〉 = 〈y∗, Px〉 = 0

since x ∈ X⊥⊥, (109) and (111) prove our claim. Of course conversely if Q : Y ∗ → X⊥ is a projection

with ‖Q‖ ≤ β, Q∗ df
= P is a projection on X∗∗ with kernel X⊥⊥.

Next, for Z an arbitrary operator space, let ‖ · ‖op(Z) denote the given norm on K⊗Z; thus also

‖ · ‖op(Z∗) is then the induced norm on K ⊗ Z∗, given by the expression

(112) ‖T ‖op(Z∗) = sup{‖〈T, S〉‖ : S ∈ K⊗ Z, ‖S‖op(Z) ≤ 1}

where for T =
∑

Ki ⊗ z∗i in K⊗ Z∗, S =
∑

Lj ⊗ zj in K ⊗ z,

(113) 〈T, S〉 =
∑

i,j

z∗i (zj)Ki ⊗ Lj

(regarded as an operator on ℓ2 ⊗ ℓ2). Recall also, for T as above,

(114) ‖T ‖MIN = sup

{

∥

∥

∥

∑

i

z∗i (z)Ki

∥

∥

∥ : z ∈ Ba(Z)

}

.

Now we first define a new operator structure on K ⊗ Y ∗, and then let ‖ · ‖NEW on K ⊗ Y be the
one induced by this.

Definition. For T =
∑

Ki ⊗ y∗
i in K ⊗ Y ∗, set

(115) ‖T ‖N∗ = max
{

‖T ‖MIN, sup{‖〈T, S〉‖ : S ∈ K⊗ X, ‖S‖op(X) ≤ 1
}

.

Now it is easily verified that ‖ · ‖N∗ on K ⊗ Y ∗∗ satisfies Ruan’s axioms (cf. [ER]), here Y ∗ is
indeed an operator space in this new structure. Next, we observe that ‖ · ‖N∗ is induced by a NEW
operator structure on Y . It suffices to prove that given n, T =

∑n
i=1 Ki ⊗ y∗

i , and a net (Tα) with
Tα =

∑n
i=1 Ki⊗y∗

i,α for all α, then if y∗
i,α → y∗

i ω∗ for all i and ‖Tα‖N∗ ≤ 1 for all α, also ‖T ‖N∗ ≤ 1.
But it is evident that then given y ∈ Y , ‖y‖ ≤ 1, that

(116)
∑

i

y∗
i,α(y)Ki →

∑

y∗
i (y)Ki in norm,

and moreover given S ∈ Ba(K ⊗ X), that

(117) 〈Tα, S〉 → 〈T, S〉 in norm.

Hence ‖∑

y∗
i (y)Ki‖ ≤ 1, so ‖T ‖MIN ≤ 1, and also ‖〈T, S〉‖ ≤ 1, thus ‖T ‖N∗ ≤ 1 as desired.

Now let ‖ · ‖NEW be the operator space structure induced on K ⊗ Y by ‖ · ‖N∗ ; we have thus by
duality that

(118) ‖ · ‖NEW∗ = ‖ · ‖N∗ .

Next, we show that ‖ · ‖NEW equals ‖ · ‖op(X) on K ⊗ X . Now first note that

(119) ‖ · ‖NEW ≥ ‖ · ‖op(Y ) .
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Indeed, (119) follows immediately by duality, since ‖T ‖N∗ ≤ ‖T ‖op(Y ∗) for all T ∈ K ⊗ Y ∗. but if
S ∈ K ⊗ Y and ‖S‖op(X) ≤ 1, then by definition, ‖〈T, S〉 ≤ 1 for all T ∈ K ⊗ Y ∗ with ‖T ‖N∗ ≤ 1,
hence ‖S‖NEW ≤ 1; proving

(120) ‖ · ‖NEW ≤ ‖ · ‖op(X) on K ⊗ Y .

We now assume that X∗∗ is β-cocomplemented in Y ∗∗, i.e., X⊥ is β-complemented in Y ∗, by the
Fact. Now choose P : Y ∗ → X⊥ a projection with ‖P‖ ≤ β, and let E = ker P . We next claim that
‖ · ‖NEW∗∗ is equivalent to ‖ · ‖MAX on K ⊗E⊥. Now it follows immediately from the definition that

(121) ‖T ‖NEW∗ = ‖T ‖MIN for all T ∈ K ⊗ X⊥ .

By duality, we have that for any S ∈ K ⊗ Y ∗∗,

(122) ‖S‖MAX = sup{‖〈T, S〉‖ : T ∈ K ⊗ Y ∗, ‖T ‖MIN ≤ 1} .

But if T ∈ K ⊗ Y ∗, say T =
∑

Ki ⊗ y∗
i , then letting P̃ T =

∑

Ki ⊗ Py∗
i , we have that

(123) ‖P̃T ‖MIN ≤ β‖T ‖MIN

and of course P̃ T ∈ K ⊗ X⊥. Hence we obtain that if S ∈ K ⊗ E⊥, then for any T ∈ K ⊗ Y ∗

(124) 〈S, T 〉 = 〈S, P̃T 〉

whence

(125)
‖〈S, T 〉‖ = ‖〈S, P̃T 〉‖ ≤ ‖S‖NEW∗∗‖P̃ T ‖NEW∗

= ‖S‖NEW∗∗‖P̃ T ‖MIN .

Thus

(126) ‖S‖MAX ≤ β‖S‖NEW∗

as desired. Finally, we show that (Y, NEW) is locally reflexive. Assume then that X is λ-locally
reflexive and now suppose Y is γ-ELR. Let F, G be finite-dimensional spaces with F ⊂ Y ∗, G ⊂ Y ∗∗.
Now we may assume without loss of generality, by simply enlarging G and F if necessary, that

(127) G = G1 ⊕ G2 and F = F1 ⊕ F2

with

(128) G1 ⊂ E⊥, G2 ⊂ X⊥⊥, F1 ⊂ X⊥, F2 ⊂ E .

Let ε > 0. Since X is λ-locally reflexive, choose T2 : G2 → X with

(129)
(i) ‖T2‖cb < λ + ε

(ii) 〈T2y, f〉 = 〈g, f〉 for all g ∈ G2, f ∈ E .

Since Y is λ-ELR, we may choose T1 : E⊥ → Y ∗∗ with

(130)

(i) ‖T1‖ < γ + ε

(ii) T1G1 ⊂ Y

(iii) 〈T1g, f〉 = 〈g, f〉 for all g ∈ G1, f ∈ F1 .
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Now it follows that

(131) ‖T1‖cb < (γ + ε)β .

(Here, we are computing the cb norm with respect to (E⊥, NEW∗∗).) Indeed, if I denotes I|K, then
if S ∈ K ⊗ E⊥,

(132) ‖(I ⊗ T1)(S)‖ ≤ ‖T ‖ ‖S‖MAX < (γ + ε)β‖S‖NEW∗∗ .

Finally, we define T : G → Y by

(133) T = T1|G1 ⊕ T2 .

Then by (129)(ii), (130)(iii), and (127),

(134) 〈Tg, f〉 = 〈g, f〉 for all g ∈ G, f ∈ F .

Now letting R = P ∗|G, we have

(135) ‖R‖cb ≤ ‖P ∗‖cb = ‖P‖cb ≤ ‖P‖ ≤ β

since X⊥ has the MIN operator structure by (121). Now T = T1R + T2(I − R) by (128), hence

(136)
‖T ‖cb ≤ ‖T1R‖cb + ‖T2(I − R)‖cb

≤ (γ + ε)β + (λ + ε)(1 + β)

by (129), (131) and (135).
Since TG ⊂ Y and (122) holds, we have established that (Y, NEW) is (γ + λ)β + λ-locally

reflexive. �

Remarks. 1. The alert reader may notice that the ELR assumption on Y is used only at the very
end. Thus, without this, we still obtain that (Y, NEW) coincides on X with the original operator
space structure, and (Y ∗, NEW) is still the MAX structure on E⊥ (to a constant), and the given
structure on X∗∗. However if G ⊂ E⊥ is finite-dimensional, we cannot insure that a Banach local
reflexivity operator T : G → Y is uniformly completely bounded, since G may not have MAX as its
induced operator structure. The synthesis of the ELR concept occurred precisely to overcome this
(apparently insurmountable) difficulty.

2. There is really no reason to assume that Y is an operator space at all. We really make no essen-
tial use of the given operator space structure on Y ; the inequality (110) can instead be easily estab-
lished directly (replacing ”X” in its statement). We also obtain that X∗∗ is completely complemented
in (Y ∗∗, NEW) (in fact if X∗∗ is β-cocomplemented in Y ∗∗, it is completely β-cocomplemented in
(Y ∗∗, NEW)).

3. It is an open question if maximal operator spaces are locally reflexive. If the answer to this
question is affirmative, the conclusion of Lemma 3.16 would hold without the assumption that Y is
ELR; consequently Theorem 3.14 would hold without the assumption of the existence of the ELR Z
in its statement, and it would follow that K has the MSEP. (Moreover here, we would just require
that separable maximal operator spaces are locally reflexive.) Indeed, the NEW operator space
structure on Y is defined so that the induced structure on E⊥ ⊂ Y ∗∗ is equivalent to MAX there.
ELR of Y is used solely to insure the existence of the “local reflexivity” of T1|G1 with controlled
cb-norm. Now suppose (Y, MAX) is locally reflexive. But then we could choose T1 : G1 → Y
satisfying (130)(iii) with ‖T1‖cb ≤ τ , where τ is a constant depending only on the local reflexivity
constant of (Y, MAX) and on β (as defined in the proof). We note concerning this open question
that it is equivalent (in general to the problem: is (B(H), MAX) locally reflexive? Indeed, fixing
a maximal operator space Y , choose a Hilbert space H so that Y ⊂ B(H). But then the induced
operator structure on Y via (B(H), MAX) coincides with the given maximal structure, thanks to
the injectivity of B(H). Thus if (B(H), MAX) is locally reflexive, so is Y .

Section 4
K0 fails the CSEP: a new proof and generalizations

To formulate the main result of this section, we first recall a concept introduced in [R2].
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Definition. A family Z of operator spaces is said to be finite matrix type if there is a C ≥ 1 so
that for any finite-dimensional operator space E, there is an n = n(E) so that

‖T ‖cb ≤ C‖T ‖n for all linear operators T : E → Z and all Z ∈ Z .

If C works, we say that Z is of C-finite matrix type, or briefly, that Z is C-finite. Finally, we say
that an operator space Z is of finite matrix type provided {Z} has this property.

It is established in [Ro2], Proposition 2.15, that if for some λ, Z1, Z2, . . . are separable λ-injective
operator spaces with {Z1, Z2, . . . } of finite matrix type, then (Z1 ⊕ Z2 ⊕ · · · )c0 has the CSEP. Our
main result in this section establishes the converse.

Theorem 4.1. Let Z1, Z2, . . . be operator spaces so that {Z1, Z2, . . . } is not of finite matrix type.
If all of the Zi’s have finite matrix type, let Z = (Z1 ⊕ Z2 ⊕ · · · )c0 . Otherwise, choose i so that Zi

is not of finite matrix type, and set Z = c0(Zi). Then there exists an operator space Y with Y/Z
separable such that Z is not completely complemented in Y .

We then easily obtain a converse to the result from [Ro2] mentioned above, in view of the fact
that separable injective operator spaces are necessarily injective (Corollary 2.9 of [Ro2]).

Corollary 4.2. Let Z1, Z2, . . . be reflexive separable operator spaces so that (Z1 ⊕ Z2 ⊕ · · · )c0 has
the CSEP, and assume that Zi is of finite matrix type for all i. Then there is a λ so that Zj is
λ-injective for all j, and {Z1, Z2, . . . } is of finite matrix type.

Remark. We conjecture that the last hypothesis is superfluous; see the Conjecture following Corol-
lary 4.3.

Proof of 4.2. By the results of [Ro2], there exists a λ so that (Z1 ⊕ Z2 ⊕ · · · )c0 has the λ-CSEP.
Hence for each j, Zj has the λ-CSEP.

Since Zj is reflexive, Zj is λ-injective by Proposition 2.10 of [Ro2]. Of course Theorem 4.1 then
yields that {Z1, Z2, . . . } is of finite matrix type. �

Now standard results yield that {M1,M2, . . . } is not of finite matrix type, where for all n, Mn

denotes the operator space of n×n matrices. (We give a quantitative refinement of this fact below.)
Thus we obtain the result of E. Kirchberg [Ki1] (see also [W]):

Corollary 4.3. K0 fails the CSEP.

Conjecture. If a separable operator space has the CSEP, it is of finite matrix type.

The next immediate consequence of 4.1 supports this conjecture.

Corollary 4.4. Let Z be a separable operator space which is not of finite matrix type. Then c0(Z)
fails the CSEP. Hence if c0(Z) is completely isomorphic to Z, then Z fails the CSEP.

We now proceed with the proof of Theorem 4.1. The following construction gives the crucial tool.

Lemma 4.5. Let (Z1, Z2, . . . ) be a given sequence of operator spaces, k a positive integer, C > 1,
and E an m-dimensional operator space. Assume there exists a sequence 1 = n0 < n1 < n2 < · · ·
of positive integers and for all k ≥ 1, a linear map Uk : E → Zk so that

(137i) ‖Uk‖cb ≤ 1
(137ii) ‖Uk‖nk

> 1 − 1
k

(137iii) ‖Uk‖nk−1
≤ 1

C
k

k−1 if k > 1.

Then setting Z = (Z1 ⊕Z2⊕· · · )c0 , there exists an operator space Y ⊃ Z with dim Y/Z ≤ m so that
‖P‖cb ≥ C for any surjective linear projection P : Y → Z.

Proof. In this discussion, we let Ij denote the identity map on Mj . We construct Y as a subspace

of W
df
=(Z1 ⊕ Z2 ⊕ · · · )∞. Define U : E → W by

(138) U(x) = (U1(x), U2(x), . . . ) for x ∈ E



THE SPACE OF COMPACT OPERATORS 35

and let F = U(E), Y = Z + F . Let P : Y → W be a linear projection. Now given k0 > 1, by
making a small perturbation if necessary, we may without loss of generality assume that there is a
k > k0 with

(139) P(F ) ⊂ Z1 ⊕ · · · ⊕ Zk−1 .

Let Qj be the coordinate projection from W onto Zj , for all j. Now by (137ii), choose τ ∈ E⊗Mnk

with ‖τ‖ = 1 and

(140) ‖Uk ⊗ Ink
(τ)‖ > 1 − 1

k
.

Then letting β = (U ⊗ Ink
)(τ), we have by (137i) and (140) that

(141) 1 ≥ ‖β‖ ≥ ‖Qk ⊗ Ink
(β)‖ > 1 − 1

k
,

and by (137iii) that

(142) ‖Qℓ ⊗ Ink
(β)‖ ≤ 1

C

k

k − 1
for all ℓ > k .

Finally, let γ = β − ∑k
j=1(Qj ⊗ Ink

)(β). Then

(143) ‖γ‖ = sup
j>k

‖Qj ⊗ Ink
(β)‖ ≤ 1

C

k

k − 1
≤ 1

C

k0

k0 − 1
.

However we have that (Qk ⊗ Ink
)(P ⊗ Ink

)(γ) = −Qk ⊗ Ink
(β) by (134), hence

‖P ⊗ Ink
(γ)‖ ≥ ‖(Qk ⊗ Ink

)(P ⊗ Ink
)(γ)‖(144)

= ‖Qk ⊗ Ink
(β)‖ > 1 − 1

k
by (141)

≥ 1 − 1

k0
.

Since k0 > 1 is arbitrary, (143) and (144) yield that ‖P‖cb ≥ C, as desired. �

The next quantitative result easily yields Theorem 4.1.

Lemma 4.6. Let C > 1 and let Z be a family of operator spaces which is not C-finite. There exist

Z1, Z2, . . . in Z and an operator space Y ⊃ Z
df
=(Z1 ⊕ Z2 ⊕ · · · )c0 with Y/Z finite-dimensional so

that ‖P‖cb ≥ C for any linear surjective projection P : Y → Z.

Proof. Choose E a finite dimensional operator space so that for all n ∈ N, there exists a Z ∈ Z and
a linear operator U : E → Z with

(145) ‖U‖cb = 1 and ‖U‖n <
1

C
.

Also note, that for any completely bounded map T between operator spaces,

(146) ‖T ‖cb = sup
n

‖T ‖n .

Using (145), choose Z1 ∈ Z and a linear operator U1 : E → Z1 with ‖U1‖cb = 1 and ‖U1‖1 < 1
C .

Choose n1 > 1 with ‖U1‖n1 > 0. Suppose k > 1 and nk−1 has been chosen. By (145), we may
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choose Zk ∈ Z and a linear operator Uk : E → Zk with ‖Uk‖cb = 1 and ‖Uk‖nk−1
< 1

C . Then using

(146), choose nk > nk−1 with ‖Uk‖nk
> 1 − 1

k .
This completes the inductive construction. Then (137) holds for all k, so the Uk’s satisfy the

hypotheses of 4.5, which thus yields Lemma 4.6. �

We are now prepared for the

Proof of Theorem 4.1. Suppose first that X is an operator space which is not of finite matrix type,
and let Z = c0(X). Then by Lemma 4.6, for each n ∈ N we may choose Yn an operator space with
Yn ⊃ Z so that Z is not n-completely complemented in Yn and Yn/Z is finite dimensional. Let

Y = (Y1 ⊕ Y2 ⊕ · · · )c0 and Z̃ = (Z ⊕ Z ⊕ · · · )c0 . Then Z̃ is canonically completely isometric to Z,

Y/Z̃ is separable, and Z̃ is not completely complemented in Y .
Now let {Z1, Z2, . . . } be as in the statement of 4.1. If i is such that Zi is not of finite matrix

type, the above argument establishes the conclusion of 4.1. Otherwise, Lemma 4.6 and its proof
yield that we may choose infinite pairwise disjoint subsets M1, M2, . . . of N so that for each j, letting
Wj = (

⊕

i∈Mj
Zi)c0 , there exists an operator space Yj ⊃ Wj with Yj/Wj finite-dimensional and Wj

not j-completely complemented in Yj .
Indeed, it follows from the definition of families of finite matrix type that there then exist ℓ1 <

ℓ2 < · · · so that Zℓj is not j-finite for all j. Then let M̃1, M̃2, . . . be infinite pairwise disjoint sets

so that
⋃∞

j=1 M̃j = {ℓ1, ℓ2, . . . }. Now it follows that letting Zj = {Zm : m ∈ M̃j}, then Zj is not

of finite matrix type for all j; now Lemma 4.6 yields an appropriate infinite Mj ⊂ M̃j, for all j,
satisfying the above.

Now letting Ỹ = (Y1 ⊕Y2 ⊕ · · · )c0 and W̃ = (W1 ⊕W2 ⊕ · · · )c0 , then Ỹ /W̃ is separable and W̃ is

not completely complemented in Y . Finally, let M0 = W ∼ ⋃∞
j=1 Mj and Z̃ = (

⊕

i∈M0
Zi)c0 . Then

let Y = Ỹ ⊕ Z̃. Z is canonically isometric to W̃ ⊕ Z̃, and of course W̃ ⊕ Z̃ is uncomplement in Y
and Y/(W̃ ⊕ Z̃) = Ỹ /W̃ . �

We now give a “tight” quantitative version of Corollary 4.3 (which is one of the main motivating
results of this section). Recall that for a finite-dimensional operator space X , the exactness constant
of X , denoted Ex(X), is defined by

Ex(X) = inf{dcb(X, F ) : F ⊂ K}
Fact
= inf{dcb(X, F ) : F ⊂ Mn for some n} .

Theorem 4.7. Let E be a finite-dimensional operator space, and let C = Ex(E∗). There exists an
operator space Y containing K0 and a finite-dimensional subspace F of Y so that

(i) Y/K0 is completely isometric to E.
(ii) K0 is Banach (1 + ε) co-completely in Y for every ε > 0.

(iii) ‖P‖cb ≥ C for any surjective linear projection P : Y → K0.

We first require a lemma, which really yields a precise local, quantitative version of the fact that
{Mn : n = 1, 2, . . . } is not of finite matrix type.

Lemma 4.8. Let E be a finite-dimensional operator space, ℓ > 1, ε > 0 and set C = Ex(E∗).
There exist an m and a 1–1 operator T : E → Mm satisfying the following:

(i) (1 + ε)C > ‖T ‖cb > (1 − ε)C
(ii) 1

1+ε‖x‖ ≤ ‖T ⊗ Iℓ(x)‖ ≤ (1 + ε)‖x‖ for all x ∈ E ⊗Mℓ.

Proof. We let Pk : M∞ → Mk ⊂ M∞ be the natural truncation operator; i.e.,

Pk(aij) = aij if 1 ≤ i, j ≤ k
Pk(aij) = 0 otherwise.
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Of course ‖Pk‖cb = 1 and PkT → T in the strong operator topology.
We first note that it suffices to find T : E → M∞ satisfying (i) and (ii). Indeed, if such a T has

these properties, then for m large enough, (since E is finite-dimensional), (1 + ε)C > ‖PmT ‖cb >
(1 − ε)C also and

(147)
1

(1 + ε)2
‖x‖ ≤ ‖PmT ⊗ Iℓ(x)‖ ≤ (1 + ε)2‖x‖

for all x ∈ E ⊗Mℓ, hence T̃
df
= PmT has the desired property (for a little bigger ε).

Now we dualize; without loss of generality E∗ ⊂ M∞. Next we claim that for k sufficiently large,

(148)
1

1 + ε
‖x‖ ≤ ‖Pk ⊗ Iℓ(x)‖ for all x ∈ E∗ ⊗Mℓ

and

(149) ‖(Pk|E∗)−1‖cb < (1 + ε)C .

(Note that by (148), we will have Pk|E∗ is 1–1; setting G∗
k = Pk(E∗), (Pk|E∗)−1 refers to the inverse

of E∗ Pk|E
∗

−−−−→ G∗
k). Indeed, we may choose n ≥ ℓ and Y ⊂ Mn with dcb(E∗, Y ) < (1 + ε)C. Hence

we may choose T : E∗ → Y a linear operator with

(150) ‖T ‖cb‖T−1‖cb < (1 + ε)1/2C .

Next, since E∗ is finite-dimensional, so is E∗ ⊗Mℓ, so we can in fact choose k so that

(151)
1

(1 + ε)1/2
‖x‖ ≤ ‖Pk ⊗ In(x)‖ for all x ∈ E∗ ⊗Mn .

which gives (149) immediately. But then we have that T (Pk|E∗)−1 : Gk → Mn, thus using a Lemma
of Roger Smith (cf. [S], also see [Pi3]),

‖T (Pk|E∗)−1‖cb = ‖T (Pk|E∗)−1‖n(152)

≤ ‖T ‖cb‖(Pk|E∗)−1‖n

≤ (1 + ε)1/2‖T ‖cb (by (151) .

But then

‖(Pk|E∗)−1‖cb = ‖T−1T (Pk|E∗)−1‖cb(153)

≤ ‖T−1‖cb‖(Pk|E∗)−1‖cb

≤ (1 + ε)C by (151) and (152)),

proving (149).
Finally, set G∗

k = Pk(E∗), let S = (Pk|E∗)−1 : G∗
k → E∗, and let T = S∗ : E → Gk. Then since

‖S−1‖cb = ‖Pk|E∗|cb ≤ 1, and E∗ ⊂ Mn, ‖S‖cb ≥ C; hence in fact

(154) C ≤ ‖T ‖cb

and, by (148),

(155)
1

1 + ε
‖x‖ ≤ ‖T ⊗ Iℓ(x)‖ ≤ ‖x‖ for all x ∈ E ⊗Mℓ .
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(Also ‖T−1‖cb = ‖S−1‖cb = ‖Pk|E∗‖cb ≤ 1, but we don’t use this.) Thus T satisfies (i) and (ii)
(regarding T (E) ⊂ M∞), so at last we obtain the desired operator by our initial observations. �

Remark. Buried in this proof, we have a rather remarkable fact: if X is a finite-dimensional subspace
of M∞, then for k sufficiently large, Pk|X is 1–1 and ‖Pk|X‖−1 → Ex)(X) as k → ∞. That is,
not only do we locate a specific Y ⊂ Mk with dcb(Y |X) close to Ex(X), we also obtain that setting
Y = Pk|X , T = Pk|X : X → Y satisfies ‖T ‖cb‖T−1‖cb is almost equal to Ex(X). (This fact may
also be found buried in the discussion in [Pi2].)

We are now prepared for the

Proof of Theorem 4.7. Let 0 < η < 1 with 1+η
1−η < 1 + ε. Using Lemma 4.8, we choose 1 = n0 < n1 <

n2 < · · · and for all k, linear maps Uk : E → Mnk
as follows: First choose n1 > 1 and an operator

T1 : E → M1 so that (i) and (ii) of 4.8 hold for “T ” = T , ε = η
2 , ℓ = 1.

Set U1 = T1/‖T1‖cb. Suppose k > 1 and nk−1 has been defined. Choose nk > nk−1 and an
operator Tk : E → Mnk

so that (i) and (ii) of 4.8 hold for “T ” = Tk, ε = η
2k , ℓ = nk−1. Then set

Uk = Tk/‖Tk‖cb.
This completes the inductive construction of the Uk’s. We then have for all k, letting τk =

(1 + η
2k )|(1 − η

2k ) and noting that 1 − ε < 1
1+ε if ε < 1, that

‖Uk‖cb = ‖Uk‖nk
= 1(155i))

‖Uk‖nk−1
= ‖Uk ⊗ Ink−1

‖ ≤ τk/C(155ii)

‖(Uk ⊗ Ink−1
)−1‖ ≤ τkC .(155iii)

Setting Zk = Mnk
, C and the Uk’s fulfill the hypotheses of Lemma 4.5, so let Ỹ be the space

given in that construction and simply let Y = Ỹ ⊕ (Mi1 ⊕Mi2 ⊕ · · · )c0 where i1 < i2 < · · · is an
increasing enumerator of N ∼ {n1, n2, . . . }. Now it is immediate that Y satisfies (iii) of 4.7; let us

verify the other assertions of 4.7 (which immediately reduce to considering Ỹ instead).

Let U and Z be as in the proof of 4.5. Let π : Ỹ → X̃/Z be the quotient map. Then we have for
ℓ ≥ 1 and x ∈ E ⊗Mℓ, that for all k > ℓ, since then nk−1 ≥ ℓ,

(156)
1

τkC
‖x‖ ≤ ‖Uk ⊗ Iℓ(x)‖ ≤ (τk/C)‖x‖ .

But then for any w ∈ Z ⊗Mℓ,

(157) lim
k→∞

‖Qk ⊗ Iℓ(U ⊗ Iℓ(x) − w)‖ =
‖x‖
C

.

Since ℓ is arbitrary, this shows that

(158) ‖(πU) ⊗ Iℓ(x)‖ =
‖x‖
C

.

That is, CπU is a complete isometry, proving (i) of Theorem 4.7.

Finally, let ε > 0, choose k0 so that τk < 1 + ε if k > k0, and define V : E → Ỹ by

QjV (e) = 0 if j < k0 ,(159)

QjV (e) = QUk(e) if j ≥ k0 .

Then setting F = V (E), we have that F ⊕ K0 = Ỹ and f ∈ F and z ∈ K0 imply

‖f + z‖ ≥ lim
k→∞

‖Qk(f + z)‖(160)

= lim
k→∞

‖Qk(f)‖

≥ 1

1 + ε
‖f‖

by (156) (for ℓ = 1), showing that Z is (1 + ε)-cocomplemented in Ỹ , completing the proof. �

We now draw some immediate consequences of Theorem 4.7 and previously known results.
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Corollary 4.9. (a) For all n, there exists an operator space Yn containing K0 so that Yn/K0 is
completely isometric to ℓ∞n and ‖P‖cb ≥ √

n/2 for any surjective linear projection P : Yn → K0.
(b) There exists an operator space Y containing K0 so that Y/K0 is completely isometric to c0

and K0 is completely uncomplemented in Y .

Proof. (a) Set E = ℓ∞n in Theorem 4.7. Then E∗ = (ℓ1
n, MAX) and it is known that Ex(ℓ1

n, MAX) ≥√
n/2 [Pi2].

(b) Let Y = (⊕Yn)c0 , and K̃0 = c0(K0). Of course K̃0 is isometric to K0, K̃0 is completely

uncomplemented in Y by (a), and Y/K̃0 is completely isometric to (⊕ℓ∞n )c0 which is completely
isometric to c0. �

Remarks. 1. By a standard result, there exists a linear projection P : Yn → K0 with ‖P‖cb ≤ √
n+1.

Thus the order of magnitude result in (a) is best possible. Our construction yields that K0 is Banach
(1 + ε)-co-complemented in Yn and Y , for any ε > 0.

2. Actually, in part (a), we may replace ℓ∞n by any n-dimensional Banach space E endowed with
the minimal operator space structure. Then by a result of M. Junge and G. Pisier, Ex(E∗, MAX) ≥√

n/4 [JP]. Hence we obtain an operator space Yn containing K0 so that Yn/K0 is completely
isometric to E and K0 is not λ-completely complemented in Yn if λ <

√
n/4.

3. A separable operator space X is defined to be nuclear if there exists a sequence (Tn) of finite
rank operators on X with Tn → IX in the strong operator topology, so that for all n, there exist ℓn

and complete contractions Un : X → Mℓn and Vn : Mℓn → X with Tn = VnUn. Thus, a separable
C∗-algebra is nuclear precisely when it is a nuclear operator space. It follows from the results of
E. Kirchberg in [Ki2] that the space Y in (b) is not nuclear; however K0 and Y/K0 are obviously
nuclear . This is in marked contrast with the algebraic case (in fact since K0 is already an ideal
in K∗∗

0 , if K0 ⊂ A ⊂ K∗∗
0 with A a C∗-algebra, then A/K0 nuclear implies A is nuclear). Indeed,

the work in [Ki2] yields that were Y nuclear, Y would be 1-locally reflexive, whence K0 would be
completely complemented in Y since K0 has the CSCP ([Ro2]), contradicting Corollary 4.9(b).

Corollary 4.10. Let Yn be as in part (a). Then Yn is not λ-locally reflexive for λ ≤ (
√

n/2) − 3.

Remark. Of course Yn is locally reflexive; in fact just because dim Yn/K0 = n, there is an absolute
constant c so that Yn is c

√
n locally reflexive.

Proof. Suppose that Yn is C-locally reflexive. By Sublemma 3.11 of [Ro2], since K∗
0 = B(H) is

isometrically injective, K0 is C + 3 + ε-completely complemented in Yn for all ε > 0. Hence by
Corollary 4.9, C + 3 + ε ≥ √

n/2 for all such ε > 0, so C ≥ (
√

n/2) − 3. �

Our next (and final) application of the arguments for Theorem 4.7 yields that every descending
sequence of 1-exact Banach isometric finite-dimensional spaces is bounded below.

Proposition 4.11. Let (λk) be a sequence of real numbers with λk ≥ 1 for all k and
∏∞

k=1 λk < ∞.
Let (Ej) be a sequence of 1-exact finite dimensional operator spaces so that Ek is λk-semi-isometric

to Ek+1 for all k. Then limk,n→∞ dcb(Ek, En) ≤ 4.

Proof. For each k, choose Jk : Ek → Ek+1 a linear map with

(161) ‖J−1
k ‖ ≤ λk and ‖Jk‖cb = 1 for all k .

Suppose the conclusion were false; then by passing to a subsequence if necessary, we may assume
that for some C > 4,

(162) ‖J−1
k ‖cb ≥ C for all k .

(Note that if n1 < n2 < · · · is given, then letting J̃k = (Jnk+1−1) · · ·Jnk+1Jnk
, then (Enj ) satisfies

the same hypotheses as (Eℓ), replacing “λk” by λ̃k =
∏nk+1−1

i=nk
λi for all k.)
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Now by a “small perturbation” argument, we may also assume that there are ℓ1 < ℓ2 < · · · so

that Ek ⊂ Mℓk

df
= Zk for all k. Now let Z = (Z1 ⊕Z2 ⊕ · · · )c0 and F ⊂ (Z1 ⊕Z2 ⊕ · · · )ℓ∞ be defined

by

(163) F =
{

{e, J1e, J2J1e, . . . } : e ∈ E1

}

.

Then setting Y = Z + F ⊂ (Z1 ⊕ Z2 ⊕ · · · )ℓ∞ , Y is a 1-exact operator space (since λk → 1).
Now results of E. Kirchberg and standard techniques yield that Y is 1-locally reflexive. Indeed, a

standard argument yields that any 1-exact operator space embeds in a nuclear operator space; the
results in [Ki2] yield in turn that nuclear operator spaces are 1-locally reflexive. (See also the last
paragraph of [KR].) Thus by Lemma 3.9 of [Ro2] (and the remark following it), Z is 4-completely
complemented in Y . On the other hand, the argument for Lemma 4.5 yields that if P : Y → Z is a
linear projection, then ‖P‖cb ≥ C, a contradiction. �

We next show that K0 (and hence K) fails to admit completely bounded extensions from certain
subspaces of particular separable locally reflexive operator spaces.

Proposition 4.12. There exists an operator space Ỹ which is separable 1-locally reflexive, a closed
linear subspace X̃, and a completely bounded map T : X̃ → K0 so that T has no completely bounded
extension to Ỹ .

This result follows from our work above, known results, and the following elementary tool.

Lemma 4.13. Let X, Y and Ỹ be operator spaces with X ⊂ Y , and let q : Ỹ → Y be a complete
metric surjection; set X̃ = q−1(X) and let T = q|X̃. Then if T has a completely bounded (resp.

bounded) extension T̃ : Ỹ → X, X is completely complemented (resp. complemented) in Y .

Proof. Let W = ker q; then

(164) W ⊂ X .

Now suppose T̃ is a completely bounded (resp. bounded) extension, and let Π : Ỹ → Ỹ /W̃ be the

quotient map and S : Ỹ /W → Y the canonical complete surjective isomorphism so that

(165) q = SΠ .

By (164), we may define a map U : Ỹ /W → X by

(166) T̃ = UΠ .

Indeed, for f ∈ Ỹ , set U(Πf) = T̃ (f). If f ∈ W , f ∈ X , hence T̃ (f) = T (f) = q(f) = 0; this
shows U is well defined, and we also obtain that U is completely bounded (resp. bounded) with

‖U‖cb = ‖T̃‖cb (resp. ‖U‖ = ‖T̃‖).
Now define P : Y → X by

(167) P = US−1 .

Since T is a surjective quotient map from X̃ into X , if we let x ∈ X and choose x̃ ∈ X̃ with
T x̃ = x, we have that

P (x) = US−1q(x̃) = UΠ(x̃) by (165)(168)

= T̃ (x̃) by (166)

= T (x̃) = X .

Thus P is a completely bounded (resp. bounded) surjective projection. �

Proposition 4.12 follows immediately from Corollary 4.3 and the next result.
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Proposition 4.14. There exists a 1-locally reflexive separable operator space Ỹ with the following
property: Given a separable operator space X, if every completely bounded (resp. bounded) linear

map from a subspace X̃ of Ỹ to X admits a completely bounded (resp. bounded) linear extension to

Ỹ , then X has the CSEP (resp the MSEP).

Proof. Let Ỹ = C1 or (⊕Cn
1 )ℓ1 , where C1 is the space of trace-class operators (resp. Cn

1 is the
n-dimensional trace-class), endowed with its dual structure via C1 = K∗ (resp. (⊕Cn

1 )ℓ1 = K∗
0). A

remarkable result of M. Junge yields that Ỹ is 1-locally reflexive ([J]; see also [EJR] and [JM]). But

every separable operator space is completely isometric to a quotient space of Ỹ [B]. Proposition 4.14
now follows immediately from Lemma 4.13. �

Remark. We do not know if Ỹ in Proposition 4.12 may be chosen so that Ỹ ∗ is separable, or so that
Ỹ ∗ has the CMAP.
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