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BANACH EMBEDDING PROPERTIES

OF NON-COMMUTATIVE Lp-SPACES

U. HAAGERUP, H.P. ROSENTHAL AND F.A. SUKOCHEV

Abstract. Let N and M be von Neumann algebras. It is proved that Lp(N ) does not Banach embed
in Lp(M) for N infinite, M finite, 1 ≤ p < 2. The following considerably stronger result is obtained
(which implies this, since the Schatten p-class Cp embeds in Lp(N ) for N infinite).

Theorem. Let 1 ≤ p < 2 and let X be a Banach space with a spanning set (xij) so that for some
C ≥ 1,

(i) any row or column is C-equivalent to the usual ℓ2-basis,
(ii) (xik,jk

) is C-equivalent to the usual ℓp-basis, for any i1 < i2 < · · · and j1 < j2 < · · · .

Then X is not isomorphic to a subspace of Lp(M), for M finite. Complements on the Banach
space structure of non-commutative Lp-spaces are obtained, such as the p-Banach-Saks property and
characterizations of subspaces of Lp(M) containing ℓp isomorphically. The spaces Lp(N ) are classified
up to Banach isomorphism, for N infinite-dimensional, hyperfinite and semifinite, 1 ≤ p < ∞, p 6= 2.
It is proved that there are exactly thirteen isomorphism types; the corresponding embedding properties
are determined for p < 2 via an eight level Hasse diagram. It is also proved for all 1 ≤ p < ∞ that
Lp(N ) is completely isomorphic to Lp(M) if N and M are the algebras associated to free groups, or
if N and M are injective factors of type IIIλ and IIIλ′ for 0 < λ, λ′ ≤ 1.
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1. Introduction

Let N be a finite von Neumann algebra and 1 ≤ p < 2. Our main theorem yields that Cp is
not linearly isomorphic to a subspace of Lp(N ) (where Cp denotes the Schatten p-class). It follows
immediately that for any infinite von Neumann algebra M, Lp(M) is not isomorphic to a subspace of
Lp(N ), since Cp is then isomorphic to a subspace of Lp(M). (It is proved in [S1] that also Cp does not
embed in Lp(N ) for any 2 < p <∞.)

For N a semi-finite von-Neumann algebra and τ a faithful normal semi-finite trace on N , Lp(τ)
denotes the non-commutative Lp space associated with (N , τ) (see e.g., [FK]). The particular choice of
trace τ is unimportant, for if β is another such trace, Lp(β) is isometric to Lp(τ). We also denote this
(isometrically unique) Banach space by Lp(N ).
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Given C ≥ 1 and non-negative reals a and b, let a
C∼ b denote the equivalence relation 1

C a ≤ b ≤ Ca.
Sequences (xj) and (yj) in Banach spaces X and Y respectively all called C-equivalent if

∥∥∥
n∑

i=1

αixi

∥∥∥ C∼
∥∥∥

n∑

i=1

αiyi

∥∥∥ for all n and scalars α1, . . . , αn .(1.1)

(Equivalently, there exists an invertible linear map T : [xi] → [yi] with ‖T ‖, ‖T−1‖ ≤ C, where [xi]
denotes the closed linear span of (xi).) (xj) is called unconditional if there is a constant u so that for
any n and scalars c1, . . . , cn and ε1, . . . , εn with |εi| = 1 for all i, ‖∑n

i=1 εicixi‖ ≤ u‖∑
cixi‖ (then

one says (xj) is u-unconditional). The usual ℓp-basis refers to the unit vector basis (ej) of ℓp, where
ej(i) = δji for all i and j.

Our main result goes as follows.

Theorem 1.1. Let N be a finite von Neumann algebra, 1 ≤ p < 2, and let (xij) be an infinite matrix
in Lp(τ) where τ is a fixed faithful normal tracial state on N . Assume for some C ≥ 1 that every row
and column of (xij) is C-equivalent to the usual ℓ2-basis and that (xik,jk

)∞k=1 is unconditional, whenever
i1 < i2 < · · · and j1 < j2 < · · · . Then there exist i1 < i2 < · · · and j1 < j2 < · · · so that setting
yk = xik,jk

for all k, then

lim
n→∞

n−1/p
∥∥∥

n∑

i=1

y′i

∥∥∥
Lp(τ)

= 0(1.2)

for all subsequences (y′k) of (yk).

Corollary 1.2. Let p and N be as in 1.1. Let X be a Banach space spanned by an infinite matrix of
elements (xij) so that for some λ ≥ 1,

(i) every row and column of (xij) is λ-equivalent to the usual ℓ2 basis
(ii) (xin,jn

)∞n=1 is λ-equivalent to the usual ℓp-basis, for all i1 < i2 < · · · and j1 < j2 < · · · .
Then X is not Banach isomorphic to a subspace of Lp(τ). In particular, Cp does not embed in Lp(τ).

The Corollary yields its final statement since the standard matrix units (xij) for Cp satisfy (i) and
(ii) with λ = 1.

To see why 1.1 =⇒ 1.2, suppose to the contrary that T : X → X ′ ⊂ Lp(τ) were an isomorphic
embedding, where X is as in 1.2. Then (Txij) satisfies the hypotheses of 1.1 with C = λ‖T ‖ ‖T−1‖.
However if (ik), (jk) satisfies the conclusion of Theorem 1.1, (Txik,jk

) and hence (xik ,jk
) cannot be

equivalent to the usual ℓp-basis, a contradiction.
Let RadCp denote the “Rademacher unconditionalized version” of Cp (1 ≤ p <∞). That is, letting

(rij) be an independent matrix of {1,−1}-valued random variables with P (rij = 1) = P (rij = −1) = 1
2

for all i, j, and letting (cij) be a matrix of scalars with only finitely many non-zero terms, then

‖(cij)‖RadCp
= Eω‖(rij(ω)cij)‖Cp

.(1.3)

Corollary 1.3. Let p and N be as in 1.1. Then RadCp is not isomorphic to a subspace of Lp(τ).

Proof. The standard matrix units basis (xij) of RadCp also satisfies the hypotheses of Corollary 1.2
with λ = 1.

Corollary 1.3 yields new information in the classical, commutative case of Lp. (Throughout, Lp refers
to Lp on the unit interval, endowed with Lebesgue measure; i.e., Lp = Lp(N ) where N = L∞ acting on
L2 via multiplication.) This also reveals a remarkable difference in the structure of Lp-spaces, p < 2 or
p > 2, for RadCp is isometric to a subspace of Lp for 2 < p <∞ (cf. Theorem 5 of [L-P]). Also, let us
note that RadCp is isometric to a subspace of Lp (Cp) for 1 ≤ p < 2, so we obtain an unconditionalized
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version of Cp in Lp(M) which also does not embed in Lp(N ), for N finite, where M = L∞ ⊗ B(H).
(Throughout, Lp(X) refers to the Bochner-Lebesgue space Lp(X,m), where m is Lebesgue measure.)

It is a classical result of C.A. McCarthy that Cp does not “locally” embed in Lp, for 1 ≤ p < ∞
[McC]. Corollary 1.2 yields an “infinite” dimensional proof of this result for 1 ≤ p < 2, as well as the
apparently new discovery that also RadCp does not locally embed in Lp for these p. To see this, we
give the following.

Definition. Let 1 ≤ p < ∞, n ∈ N, and λ ≥ 1. A finite-dimensional Banach space X is called a
λ-GCn

p -space provided there is an (n× n)-matrix (xij) spanning X so that

(i) any row and column of (xij) is λ-equivalent to the usual ℓ2n-basis
(ii) (xik ,jk

)m
k=1 is λ-equivalent to the usual ℓpm basis for any m,

1 ≤ i1 < · · · < im ≤ n and 1 ≤ j1 < j2 < · · · < jm ≤ n .

An infinite-dimensional space X is called a λ-GCp-space provided it admits a spanning matrix (xij)
satisfying (i) and (ii) of Corollary 1.2; finally X is called a GCp-space if it is a λ-GCp-space for some
λ ≥ 1.

Cn
p refers to the n2-dimensional Schatten p-class consisting of n × n matrices in the Cp norm; “G”

stands for “Generalized”. For example, RadCn
p is a 1-GCn

p space. The next result yields that λ-
GCn

p -spaces cannot be uniformly embedded in Lp, hence in particular, we recapture the classical fact
mentioned above that Lp does not contain Cn

p ’s uniformly. (For isomorphic Banach spaces X and Y ,

d(X,Y ) = inf{‖T ‖ ‖T−1‖ : T is a surjective isomorphism from X to Y }).

Corollary 1.4. Let 1 ≤ p < 2 and λ ≥ 1. Define:

βn,λ = inf{d(X,Y ) : X is a λ-GCn
p -space and Y ⊂ Lp} .

Then limn→∞ βn,λ = ∞.

Proof. Suppose this were false. Then we could choose λ ≥ 1 and X1, X2, . . . subspaces of Lp so that
Xn is a λ-GCn

p -space for all n. Choose then (xn
ij) an n× n matrix of elements of Xn, satisfying (i) and

(ii) of the definition, for all n. Let M00 denote the linear space of all infinite matrices of scalars with
only finitely many non-zero entries. Let U be a free ultrafilter on N. Define a semi-norm ‖ · ‖ on M00

by

‖(cij)‖ = lim
n∈U

‖
∑

cijx
n
ij‖ .(1.4)

It is easily checked that ‖ · ‖ is indeed a semi-norm; let W be its null space; W = {(cij) ∈ M00 :
‖(cij)‖ = 0}, and let X denote the completion of (M00, ‖ · ‖)/W . It follows easily that X is a λ-GCp-
space. By standard ultraproduct techniques, it follows that X is finitely representable in Lp. But then
(since ultraproducts of (commutative) Lp(µ) spaces are (commutative) Lp(ν) spaces and any separable
subspace of an Lp(ν) space is isometric to a subspace of Lp), X isometrically embeds in Lp. This
contradicts Corollary 1.2.

Remark. Theorem 1.1 may easily be extended to the case of general finite von Neumann algebras N ,
and not just the finite, σ-finite ones covered by its statement. Corollaries 1.2 and 1.3 also hold in this
setting, as well as the general formulations of Theorems 4.1 and 4.2. Indeed, in general, one has that
Lp(N ) is isometrically isomorphic to Lp(τ) for some semi-finite faithful normal trace τ on N . Let (xij)
be a matrix of elements of Lp(τ) satisfying the assumptions of Theorem 1.1, and let P be the supremum
of all the support projections of xij and x∗ij , i, j = 1, 2, . . . . Then P is a σ-finite projection in N , and
thus PNP is both finite and σ-finite. Moreover all the xij ’s belong to Lp(PNP, τ ′) = PLp(N , τ)P ,
where τ ′ = τ |PNP . But in turn, Lp(PNP, τ ′) is isometrically isomorphic to Lp(PNP, τ ′′) for some
faithful finite normal trace τ ′′ on PNP . This reduces the proof of Theorem 1.1 in the case of general
finite von Neumann algebras, to those with a finite trace.
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We now give a description of the results and proof-order of the paper.
If a matrix satisfies the hypotheses of Theorem 1.1, then every row and column has the property that

the pth powers of absolute values of the terms form a uniformly integrable sequence. We develop the
basic technical tools to explain and exploit this, in Section 2, through the device of the p-modulus of an
element of Lp(N ) with respect to a normal tracial state τ on N . We give several useful inequalities for
this modulus in Lemma 2.3. Although many of these can be obtained from the literature (e.g., [FK]), we
give full proofs for the sake of completeness. We also obtain equivalences for relative weak compactness
in L1(N ) in terms of uniform integrability in Proposition 2.5, and a useful non-commutative truncation
equivalence for general p, in Corollary 2.7.

We give technical information concerning general unconditional sequences in Lp(N ) for p < 2 in
Lemmas 3.1–3.3, yielding in particular the following definitive equivalences obtained in Corollaries 3.4
and 3.5. Let (fn) be a bounded unconditional sequence in Lp(N ). Then the following are equivalent.

1. (fn) has no subsequence equivalent to the usual ℓp basis.
2. (|fn|p) is uniformly integrable.
3. limn→∞ n−1/p‖∑n

i=1 f
′
i‖Lp(τ) = 0 for all subsequences (f ′

n) of (fn).

The proof of Theorem 1.1 is then completed, using the standard ultraproduct construction of the
finite ultrapower of a finite von Neumann algebra N , and a result giving the connection between its
associated Lp space and the Banach ultrapower of Lp(N ) (Lemma 3.6).

Section 4 yields results considerably stronger than Theorem 1.1. The arguments here do not use
the ultraproduct construction in Section 3, and are thus more elementary (but also more delicate).
Theorem 4.1 gives the following result (which immediately implies Theorem 1.1).

If a semi-normalized matrix in Lp(N ) is such that all columns and “generalized” diagonals are
unconditional while all rows are u-unconditional for some fixed u, then three alternatives occur: Either
some column has an ℓp-subsequence, or ℓpn’s are finitely represented in the terms of the rows, or the
matrix has a “generalized diagonal” (yk) satisfying (1.2) of Theorem 1.1.

Using results from Banach space theory, we obtain in Theorem 4.2 that if p = 1 or if p > 1 and
N is hyperfinite, the unconditionality assumption in 4.1 may be dropped. The case p > 1 also uses
recent non-commutative martingale inequalities (see [SF], [PX1]). The case p = 1 uses techniques from
[R1], which yield results for sequences in the preduals of arbitrary von Neumann algebras which may
be independent interest (see Lemmas 4.8 and 4.9). The proof in this case also requires an apparently
new elementary finite disjointness result (Lemma 4.10B).

Section 5 contains rather quick applications of our main results and the techniques of their proofs.
For example, Proposition 5.1 asserts that neither the Row nor Column operator spaces completely
embed in the predual of a finite von Neumann algebra; this is a quick consequence of our main result.
Theorem 5.4 shows that for 1 ≤ p < 2 and N finite, a subspace of Lp(N ) contains ℓpn’s uniformly iff
it contains an almost disjointly supported sequence (which of course is then almost isometric to ℓp),
extending the previously known commutative case [R2]). We give the concepts of the p-Banach-Saks
and strong p-Banach-Saks properties in Definition 5.5, and extend the classical results of Banach-Saks
[BS] and Szlenk [Sz] in Proposition 5.6. This result also yields that for p and N as above, a weakly null
sequence in Lp(N ) has the property that every subsequence has a strong p-Banach-Saks subsequence
if and only if the pth powers of absolute values of its terms are uniformly integrable.

The main result of Section 6 shows that there are precisely thirteen Banach isomorphism types
among the spaces Lp(N ) for N hyperfinite semi-finite, 1 ≤ p < ∞, p 6= 2. The embedding properties
of the various types for p < 2 are given in an eight-level Hasse diagram, in Theorem 6.2. This work
completes the classification and embedding properties of the type I case given in [S2]. The main work in
establishing this Theorem is found in the non-embedding results given in Theorems 6.3 and 6.9; we also
give a new proof of a non-embedding result in the type I case, established in [S2], in our Proposition 6.5.
The most delicate of these is Theorem 6.9, which yields that if M is a type II∞ von-Neumann algebra,
and Lp(M) embeds in Lp(N ), then also N must have a type II∞ or type III summand (1 ≤ p < 2). Of
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course this reduces directly to the case where M is the hyperfinite type II∞ factor; the proof requires
our Theorem 4.1, and also rests upon recent discoveries of M. Junge [J] and Pisier-Xu [PX2].

Our methods do not cover the following case, which remains a fascinating open problem: Is it so
that the predual of a type III von-Neumann algebra does not Banach embed in the predual of one
of type II∞? In fact, we do not know if the predual of the injective type II∞ factor can be Banach
isomorphic to the predual of an injective type III-factor. We show in Theorem 7.2 that such factors
cannot in general be distinguished by the Banach space isomorphism class (or even operator space
isomorphism class) of their preduals. Letting Rλ denote the Powers injective factor of type IIIλ and
R∞ denote the Araki-Woods injective factor of type III1, we show that (Rλ)∗ is completely isomorphic
to (R∞)∗ for all 0 < λ < 1. (For a von Neumann algebra N , N∗ denotes its predual, also denoted here
by L1(N ).) Thus there are uncountably many isomorphically distinct injective factors, all of whose
preduals are completely isomorphic. We also show in Theorem 7.2 that there are uncountably many
isomorphically distinct injective type III0-factors, all of whose preduals are completely isomorphic to
(R∞)∗.

We show in Theorem 7.3 that the famous open isomorphism problem for free group von Neumann
algebras cannot be resolved by the Banach (or even operator) space structure of the predual. Namely,
we prove that the preduals of the L(Fn)’s are all completely isomorphic, for 2 ≤ n ≤ ∞, where Fn is the
free group on n generators and L(Fn) its associated von Neumann algebra. This extends the result of
A. Arias [Ar], showing that the L(Fn)’s themselves are completely isomorphic as operator spaces. The
proof of Theorem 7.3 relies basically on the deep result of D. Voiculescu that L(F∞) ∼= Mk(L(F∞)) as
von Neumann algebras, for k = 2, 3, . . . (cf. [Vo] or [VDN]).

The results in Section 7 also extend to the case of the non-commutative spaces Lp(N ), for 1 < p <
∞ (see Theorem 7.5). These isomorphism results (as well as the “positive” isomorphism results in
Section 6) rely on the operator space version of the so-called Pe lczyński decomposition method (see
Lemma 6.13). Thus, one actually shows for von Neumann algebras N and M, that each of the spaces
Lp(N ) and Lp(M) is completely isometric to a completely contractively complemented subspace of the
other, and also (e.g., in the free group case M = L(F∞)), that say Lp(M) also has the property that
(Lp(M)⊕· · ·⊕Lp(M)⊕· · · )ℓp completely contractively factors through Lp(M), which then implies the
operator space isomorphism of these two spaces. Thus the proofs of these operator space isomorphism
results are actually based on natural isometric embedding properties of the Lp(N ) spaces themselves.

2. The modulus of uniform integrability and weak compactness in L1(N )

Let N be a finite von Neumann algebra, acting on a Hilbert space H . Let P = P(N ) denote the
set of all (self-adjoint) projections in N . We shall assume that N is endowed with a faithful normal
tracial state τ , which is atomless . That is, for all P ∈ P with P 6= 0, there is a Q ≤ P , Q ∈ P , with
0 < τ(Q) < τ(P ). (Equivalently, 0 6= Q 6= P , since τ is faithful.)

These assumptions cause no loss in generality. Indeed, if N has a faithful normal trace γ, then
simply replace N by Ñ = N⊗̄L∞, where Ñ is equipped with the atomless trace γ = τ ⊗m, with m the
trace on L∞ given by integration with respect to Lebesgue measure on [0, 1]. N is (∗-isomorphic to) a

subalgebra of Ñ , and hence Lp(N ) is isometric to a subspace of Lp(Ñ ), so we may as well assume our

space X in Theorem 1.1 is already contained in Lp(Ñ ).
Now if M ⊂ N is a MASA, it follows easily that also τ |M is atomless. Indeed, were this false, we

could choose P 6= 0, P ∈ M so that 0 ≤ Q ≤ P , Q ∈ M implies Q = 0 or Q = P . But then choosing

Q ∈ P(N ), 0 ≤ Q ≤ P with 0 < τ(Q) < τ(P ), we obtain that if M̃ is the von Neumann algebra

generated by M and Q, M̃ is also commutative and M̃ 6= M, a contradiction.

Definition 2.1. Given f ∈ N∗ = L1(τ), we define the modulus of uniform integrability of f as the
function on R+, ε→ ω(f, ε) given by

w(f, ε) = sup{τ(|fP |), P ∈ P , τ(P ) ≤ ε} .(2.1)
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We also define the lower modulus of f , ε→ ω(f, ε), as

ω(f, ε) = sup{|τ(fP )| : P ∈ P , τ(P ) ≤ ε} .(2.2)

To handle the case p 6= 1 in our Main Theorem, we also use the following p-moduli. (When τ is
fixed, we set ‖f‖p = ‖f‖Lp(τ) = (τ(|f |p))1/p. Also, for f ∈ N , we set ‖f‖∞ = ‖f‖N .)

Definition 2.2. Let 0 < p <∞ and f ∈ Lp(τ). The p-modulus of f , ωp(f, ·), the symmetric p-modulus
of f , ωs

p(f, ·), and the spectral p-modulus of f , ω̃p(f, ·) are given, for 0 ≤ ε ≤ 1, by

ωp(f, ε) = sup{‖fP‖p : P ∈ P , τ(P ) ≤ ε} ,(2.3)

ωs
p(f, ε) = sup{‖PfP‖p : P ∈ P , τ(P ) ≤ ε} ,(2.4)

ω̃p(f, ε) = sup

{(∫

(r,∞)

tpd(τ ◦ E|f |(t))
)1/p

: τ ◦ E|f |((r,∞)) ≤ ε

}
(2.5)

where for g self-adjoint, Eg denotes the spectral measure for g.

It is trivial that all these moduli are increasing (i.e., non-decreasing) functions on R+, which are
continuous at 0, thanks to the assumption that f ∈ Lp(τ). Actually, the assumption that τ is atomless
yields that ωp(f, ·), ω(f, ·) and ωs

p(f, ·) are absolutely continuous on [0, 1].
We now give some basic properties of these moduli. The most important of these is that several of

them reduce to the uniform integrability modulus given in Definition 2.1. In particular, we obtain for
f ∈ Lp(τ) and ε > 0 that

ωs
p(f, ε) ≤ ωp(f∗, ε) = ωp(f, ε) = (ω(|f |p, ε))1/p ≤ 2ωs

p(|f |, ε) .
For any f affiliated with N , we let t → µ(f, t) denote the decreasing rearrangement of |f | on [0, 1];

µ(f, t) = inf{r ≥ 0 : τ ◦ E|f |((r,∞)) ≤ t}.

Lemma 2.3. Let 1 ≤ p <∞, f, g ∈ Lp(τ), and ε > 0.

ωp(f + g, ε) ≤ ωp(f, ε) + ωp(g, ε)(2.6)

and

ωs
p(f + g, ε) ≤ ωs

p(f, ε) + ωs
p(g, ε) .

If f is self-adjoint, then

ωp(f, ε) = ωs
p(f, ε) = (ω(|f |p, ε))1/p

= max{‖fP‖p : Pf = fP, P ∈ P , and τ(P ) = ε}

=

(∫ ε

0

µp(f, t) dt

)1/p
(2.7)

and

ω(f, ε) ≤ 2ω(f, ε) when p = 1 .(2.8)

In general,

ωs
p(f, ε) ≤ ωp(f, ε) = ωp(f∗, ε)

= ωp(|f |, ε) = (ω(|f |p, ε))1/p ≤ 2ωs
p(f, ε)

(2.9)

and in case p = 1,

ω(f, ε) ≤ ω(f, ε) ≤ 4ω(f, ε) .(2.10)

Finally, let r = ε−1/p‖f‖p. There exists a spectral projection P for |f | so that fP ∈ N with

‖fP‖∞ ≤ r and ‖f(I − P )‖p ≤ ω̃p(f, ε) ≤ ωp(f, ε) .(2.11)
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The case p > 1 uses the following classical submajorization inequality, due to H. Weyl [W].

Sublemma. Let f and g be decreasing non-negative functions on (0, 1] so that
∫ x

0

f(t) dt ≤
∫ x

0

g(t) dt for all 0 < x ≤ 1 .

Then also ∫ x

0

fp(t) dt ≤
∫ x

0

gp(t) dt for all 1 < p <∞ ,

all 0 < x ≤ 1.

Remarks. 1. This follows easily from the corresponding “discrete” formulation, cf. [GK]. Also, the
result holds in greater generality; one does not need the functions to be non-negative, and moreover the
conclusion generalizes to assert that

∫ x

0

Φ ◦ f(t) d ≤
∫ x

0

Φ ◦ g(t) dt for all 0 < x ≤ 1

all continuous convex functions Φ.
2. All the assertions of Lemma 2.3 hold for semi-finite von Neumann algebras N that are atomless

(i.e., have no minimal projections), endowed with a faithful normal trace τ . Several of its assertions
can also be deduced from results in [FK] and [CS]. For example, once one proves the equality of the
first and last terms in (2.7), one may apply Lemma 4.1 of [FK] to obtain several of the other equalities
in (2.7), for p = 1; one then has that ω(T, ε) = Φε(T ) in the notation of [FK], and some other results in
Lemma 2.3 follow from Theorem 4.4 of [FK]. However we prefer to give a “self-contained” treatment,
in part because we take the modulus ω(f, ε) as the primary concept in our development.

Proof of Lemma 2.3. Let p, f, g and ε be as in the statement. (2.6) is a trivial consequence of the fact
that ‖ · ‖p is a norm (i.e., the triangle inequality). Also, we easily obtain that

ωs
p(f, ε) ≤ ωp(f, ε) = ωp(|f |, ε)(2.12)

ω̃p(f, ε) ≤ ωp(f, ε)(2.13)

and in case p = 1,

ω(f, ε) ≤ ω(f, ε) .(2.14)

Indeed, if P ∈ P , then

|fP | = (Pf∗fP )1/2 = (P |f |2P )1/2 =
∣∣ |f |P

∣∣(2.15)

which immediately yields the equality in (2.12). Since compression reduces the Lp(τ) norm, we have

‖PfP‖p = ‖P (fP )P‖p ≤ ‖fP‖p(2.16)

which gives the inequality in (2.12). If 0 ≤ r and τ ◦ E|f |((r,∞)) ≤ ε, then setting P = E|f |((r,∞)),
(∫

(r,∞)

tp dτ ◦ E|f |(t)

)1/p

=
∥∥ |f |P

∥∥
p
≤ ωp(f, t) ,(2.17)

yielding the inequality in (2.13). (2.14) is trivial, since for any P ∈ P ,

|τ(fP )| ≤ τ(|fP |) = ‖fP‖1 .(2.18)

For the non-trivial assertions of the Lemma, we need the following basic identities (cf. [FK], [CS]).

‖f‖p
p =

∫ ∞

0

tp dτ ◦ E|f |(t) ≤
∫ 1

0

µp(f, t) dt .(2.19)

(The final inequality is also an equality, but this follows from the conclusion of our Lemma.)
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Now let f be self-adjoint. Let N (f) denote the von Neumann algebra generated by f , and let M
be a MASA contained in N with N (f) ⊂ M. Then by our initial remarks, τ |M is atomless. Let us
identify (as we may), M and τ |M with an atomless probability space (Ω,S, ν). It follows that we may
choose a countably generated σ-subalgebra S0 of S so that f is S0-measurable and also ν|S0 is atomless.
Denote the corresponding von-Neumann algebra by: L∞(ν|S0) = M0.

It then follows that (Ω,S0, ν) is measure-isomorphic to ([0, 1],B,m) (where B denotes the Borel
subsets of [0, 1] and m denotes Lebesgue measure on B), and moreover the measure-isomorphism may
be so chosen that the “random-variable” f is carried over to the decreasing function t → µ(f, t) (cf.
Lemma 4.1 of [CS]). It now follows that

∫ x

0

µp(f, t) dt ≤ ωp
p(f, x) .(2.20)

Indeed, it follows that there exists a set S ∈ S0 with ν(S) = x and
∫

S
|f |p dν = τ(|χSf |p) =

∫ x

0
µp(f, t) dt

(where χS may be interpreted as the projection in M0 obtained via multiplication). Now we define a
quantity β (depending on x) by

β = sup{‖fψ‖1 : ψ ∈ N , ‖ψ‖∞ ≤ 1, |τ(ψ)| ≤ x} .(2.21)

We are going to prove that there exists a G ∈ P(M0) with τ(G) = x and

τ(|fG|) = τ(|f |G) = β .(2.22)

Note that the first equality in (2.22) is trivial, since G ↔ f . But then all the equalities in (2.7) for
the case p = 1, follow immediately, for we have also that then |f |G = G|f |G = |GfG| and so trivially
τ(|f |G) ≤ ω(|f |, x) ≤ β and τ(|f |G) ≤ ωs

1(f, x) ≤ β; of course also ω(f, x) ≤ β, hence by (2.22),
β = ω(f, x). Moreover by the argument for (2.20) and (2.22) we have that β = τ(|f |G) =

∫ x

0 µ(f, t) dt.
Before proving this basic claim, let us see why it also yields (2.7) for p > 1 (via the Sublemma). Still

keeping x fixed, assume 0 < x ≤ ε ≤ 1, and suppose P ∈ P with τ(P ) ≤ ε. Now setting g = |fP |, g is
self-adjoint and “supported” on P , whence it easily follows that µ(g, t) = 0 for t > ε.

But now we obtain that
∫ x

0

µ(g, t) dt ≤
∫ x

0

µ(f, t) dt .(2.23)

Indeed,
∫ x

0

µ(g, t) dt ≤ ω(g, x) = ω(fP, x)

= sup{‖fPQ‖1 : τ(Q) ≤ x}
= sup{|τ(fPQϕ)| : ϕ ∈ N , ‖ϕ‖∞ ≤ 1} (by duality)

≤ β

(2.24)

(since PQ ∈ N , ‖PQ‖∞ ≤ 1, and |τ(PQ)| ≤ τ(Q) ≤ x).
Now (temporarily) unfixing x, we also have that (2.23) holds for x > ε, since µ(g, t) = 0 for all t > ε.

Thus the Sublemma yields that
∫ ε

0

µp(g, t) dt ≤
∫ ε

0

µp(f, t) dt .(2.25)

Hence in view of (2.19),

‖fP‖p
p ≤

∫ ε

0

µp(f, t) dt ,(2.26)
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and so at last

ωp(f, ε) ≤
(∫ ε

0

µp(f, t) dt

)1/p

.(2.27)

Of course (2.20) combined with (2.27) now yields that

ωp(f, ε) =

(∫ ε

0

µp(f, t) dt

)1/p

,(2.28)

and now all the equalities in (2.7) follow for p > 1 as well.
We now establish (2.22). Using the polar decomposition of f and duality, we have that

β = sup{|τ(fψϕ)| : ψ, ϕ ∈ N , ‖ψ‖∞, ‖ϕ‖∞ ≤ 1 and |τ(ψ)| ≤ x}
= sup{τ(|f |ψ) : ψ ∈ N , 0 ≤ ψ ≤ 1, τ(ψ) ≤ x}
= sup{τ(|f |ψ) : ψ ∈ M, 0 ≤ ψ ≤ 1, τ(ψ) ≤ x} .

(2.29)

The last equality follows by a conditional expectation argument from classical probability theory.
Indeed, given 0 ≤ ψ ≤ 1 in N with τ(ψ) ≤ x, there exists a unique ψ̃ ∈ M0 such that

τ(gψ) = τ(gψ̃) for all g ∈ L1(M0) .(2.30)

It follows that then 0 ≤ ψ̃ ≤ 1 and τ(ψ̃) ≤ x; this yields the desired equality.
Now let K be defined:

K = {ψ ∈ M0 : 0 ≤ ψ ≤ 1 and τ(ψ) ≤ x} .(2.31)

Then K is a weak* compact convex set, thus

K = ω∗ − co{ϕ : ϕ ∈ ExtK}(2.32)

and moreover

β = sup{τ(|f |ϕ) : ϕ ∈ ExtK} .(2.33)

Now we claim that if ϕ ∈ ExtK, ϕ is a projection. To see this, again identifying M0 with
L∞(Ω,S0, ν|S0), we regard ϕ as an S0-measurable function on Ω. Were ϕ not a projection, we could
choose 0 < δ < 1

2 so that setting F = {ω ∈ Ω : δ ≤ ϕ(ω) ≤ 1 − δ}, then µ(F ) > 0. Since µ is atomless,

choose a measurable E ⊂ F with µ(F ) = 1
2µ(E). Now define g by

g =
δ

2
χE − δ

2
χF∼E .(2.34)

Then g 6= 0, τ(g) = 0, and 0 ≤ ϕ±g ≤ 1. But then τ(ϕ±g) ≤ ε, hence ϕ±g ∈ K and ϕ = (ϕ+g)+(ϕ−g)
2 ,

contradicting the fact that ϕ ∈ ExtK. (For a proof of this claim in a more general setting, see [CKS].)
We finally observe that the supremum in (2.29) is actually attained, thanks to the ω∗-compactness

of K. But it then follows that this is attained at an extreme point of K, i.e., there indeed exists a
G ∈ P(M0) with τ(G) = x, satisfying (2.22).

We may now also easily obtain (2.8). Letting f = f+ − f− where f+ · f− = 0 and f+, f− ≥ 0, we
have (by the proof of (2.7))

ω(f, ε) = sup{τ(|f |P ) : P ∈ P(M0), τ(P ) ≤ ε}
= sup{τ(f+P ) + τ(f−P ) : P ∈ P(M0), τ(P ) ≤ ε}
≤ 2 sup{|τ(fP )| : P ∈ P(M0), τ(P ) ≤ ε}
≤ 2ω(f, ε)

(2.35)

The first equality in (2.9) follows from the fact that for a general f affiliated with N , there exists
a unitary U in N with f = U |f | (thanks to the finiteness of N ). But then |f | and |f∗| are unitarily
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equivalent, which yields that µ(f, t) = µ(f∗, t) for all t, and hence the desired equality follows by the
final equality in (2.7).

It remains to prove the last inequalities in (2.9) and (2.10), and the final statement of the lemma.
Let f = g + ih with g and h self-adjoint (and so in Lp(τ)). Then

ωp(f, ε) ≤ ωp(g, ε) + ωp(h, ε) by (2.6)

= ωs
p(g, ε) + ωs

p(h, ε) by (2.7) .
(2.36)

But if ϕ = g or h, then

ωs
p(ϕ, ε) ≤ ωs

p(f, ε) .(2.37)

Indeed, if P ∈ P , τ(P ) ≤ ε, then PfP = PgP + iPhP . But PgP and PhP are both self adjoint, hence
‖PϕP‖p ≤ ‖PfP‖p, yielding (2.37). Of course (2.36) and (2.37) yield the final inequality in (2.9).
Similarly, in case p = 1,

ω(f, ε) ≤ ω(g, ε) + ω(h, ε) by (2.6)

≤ 2ω(g, ε) + 2ω(h, ε) by (2.8)

≤ 4ω(f, ε)

(2.38)

since we also have for ϕ = g or h, that ω(ϕ, ε) ≤ ω(f, ε) (by an argument similar to that for (2.37)).
To obtain the final assertion of the lemma, let r = µ(f, ε), and let E = E|f |. Now if ε̄ = τ(E[r,∞))

then since

E([r,∞)) =
∧

{E([s,∞)) : s < r} ,(2.39)

we have ε ≤ ε̄. Thus

rpε ≤ rpε̄ ≤
∫

[r,∞)

tp dτ ◦ E(t) ≤
∫

[0,∞)

tp dτ ◦ E(t) = ‖f‖p
p .(2.40)

Hence

r ≤ ε−1/p‖f‖p .(2.41)

Now also by the definition of r, τ(E(r,∞)) ≤ ε, and so

τ(|f |pE(r,∞)) =

∫

(r,∞)

tpdτ ◦ E(t) ≤ ω̃p(f, ε)p .(2.42)

Finally, let f = U |f | be the polar decomposition of f . In particular, U is a partial isometry belonging to
N . Then P = E([0, r]) satisfies (2.11). Indeed, fP = U |f |P and ‖ |f |P‖∞ ≤ r, so also ‖U |f |P‖∞ ≤ r,
and

‖U |f |(I − P )‖p ≤ ‖ |f |(I − P )‖p = (τ(|f |pE(r,∞))
1/p

≤ ω̃p(f, ε) by (2.42).

Remarks. 1. We have given a self-contained proof of the basic inequality (2.27) for the sake of com-
pleteness. An alternate deduction may be obtained as follows. The remarks preceding (2.20) actually
yield that for any g ∈ Lp(τ), ‖g‖p = ‖µ(g, ·)‖p. Let f be as in the proof of (2.27) and fix a P ∈ P
with τ(P ) = ε. We apply this observation to g = fP . First, Proposition 1.1 of [CS] yields that for any
0 < x ≤ 1,

∫ x

0

µ(fP, t) dt ≤
∫ x

0

µ(f, t)µ(P, t) dt .
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Hence applying the Sublemma and the observation,

‖fP‖p
p =

∫ 1

0

µ(fP, t)p dt ≤
∫ 1

0

(µ(f, t)µ(P, t))p dt

=

∫ ε

0

µp(f, t) dt

which of course yields (2.26) and hence (2.27).
2. Rather than making use of the measure isomorphism of (Ω,S0, ν|S0) with ([0, 1],B,m), one can

use the following more elementary procedure, in demonstrating (2.20). Let r = µ(f, x). Then it follows
that setting P = E|f |((r,∞)), τ(P ) ≤ x and τ(E|f |([r,∞))) ≥ x. Using that τ |M is atomless, choose
Q ∈ P(M) with Q ≤ E|f |({r}) so that τ(Q) + τ(P ) = x. Then

τ(|f(P +Q)|p) = τ(|f |p(P +Q))

= rτ(Q) +

∫

(r,∞)

tp dτ ◦ E|f |(t)

=

∫ x

0

µp(f, t) dt .

Here, the first two equalities are trivial; however the third one follows by a direct elementary (but
somewhat involved) argument. (We are indebted to Ken Davidson for this Remark.)

We next use the modulus of uniform integrability to establish a criterion for relative weak compact-
ness.

Definition 2.4. A subset W of L1(τ) is called uniformly integrable if

lim
ε→0

sup
f∈W

ω(f, ε) = 0 .

Comment. The assumption that τ is atomless implies uniformly integrable subsets are bounded in
L1(τ). In fact, it then follows that if W satisfies that supf∈W ω(f, ε0) < ∞ for some ε0 > 0, W is
bounded.

Proposition 2.5. Let (fn) be a given sequence in L1(τ). The following are equivalent

(i) (fn) is relatively weakly compact in L1(τ).
(ii) (fn) is uniformly integrable.

(iii) (|fn|) is relatively weakly compact.
(iv) (fn) is bounded in L1(τ) and limε→0 supn ω̃1(fn, ε) = 0.
(v) For all ε > 0, there exists an r <∞ so that for all n,

dL1(τ)(fn, rBa(N )) < ε .

Moreover if (fn) is bounded in L1(τ) and

η = lim
ε→0

sup
n
ω(fn, ε) > 0 ,(2.43)

there exists a sequence P1, P2, . . . of pairwise orthogonal projections in P and n1 < n2 < · · · so that

|τ(fnk
Pk)| > η

5
for all k .(2.44)

Remark. Ba(N ) denotes the closed unit ball of N ; thus r · Ba(N ) = {f ∈ N : ‖f‖∞ ≤ r}. For
W ⊂ L1(τ) and f ∈ L1(τ), dL1(τ)(f,W ) = inf{‖f−w‖1 : w ∈ W} by definition. Our proof of (iv) =⇒
(v) reduces, via the proof of Lemma 2.3, to a standard truncation argument in the case of commutative
N .
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Proof. Once (i) ⇔ (ii) is established, the other equivalences in this Proposition follow easily from 2.3.
Indeed, we have by the equalities in (2.9) that

lim
ε→0

sup
n
ω(fn, t) = lim

ε→0
sup

n
ω(|fn|, ε) ,

whence we have the equivalence of (i)–(iii). Now trivially (ii) =⇒ (iv) since ω̃1(f, ε) ≤ ω(f, ε) for any
f ∈ L1(τ) and ε > 0 (see (2.11)). Suppose first that (fn) satisfies (v). Then given ε > 0, for each n we
may choose ψn ∈ N , ‖ψn‖∞ ≤ r, with

‖fn − ψn‖L1(τ) < ε .(2.45)

But then for any δ < ε,

ω(fn, δ) ≤ ω(fn − ψn, δ) + ω(ψn, δ) < ε+ rδ .(2.46)

Hence lim δ→0 supn ω(fn, δ) ≤ ε, proving (ii). On the other hand, suppose (iv) holds. Let ε > 0, and
choose δ > 0 so that

ω̃1(fn, δ) < ε for all n .(2.47)

Also, let M = sup ‖fn‖L1(τ). Then setting r = δ−1M , it follows by the final statement of Lemma 2.3
that for each n, we may choose ψn ∈ r Ba N with

‖ψn − fn‖L1(τ) ≤ ω̃1(f, δ) < ε ,

proving (iv) =⇒ (v).
To prove the equivalences of (i) and (ii), we use the following classical criterion due to C. Akemann

[A]: A bounded set W in the predual of a von-Neumann algebra M is relatively compact if and only if
for any sequence P1, P2, . . . of disjoint projections in M,

lim
j→∞

sup
w∈W

|Pj(w)| = 0 .(2.48)

Now suppose first that (fn) is not relatively weakly compact; then choosing disjoint Pj ’s as in the
above criteria, we obtain that

lim
j→∞

sup
n

|τ(Pjfn)| = δ > 0 .(2.49)

But lim τ(Pj) = 0, since the Pj ’s are disjoint. It follows immediately that

lim
ε→0

sup
n
ω(fn, ε) ≥ δ ,(2.50)

which together with (2.10), proves that (ii) =⇒ (i).
Finally, to show that (i) =⇒ (ii), assume instead that η > 0, where η is given in (2.43). It now

suffices to demonstrate the final assertion of 2.5, for then (fn) is not relatively weakly compact by
Akemann’s criterion. Let 0 < ε < η with η

4 − ε > η
5 . By (2.43), choose n1 with

ω

(
fn1

,
1

2

)
> η − ε .(2.51)

Then choose (by (2.10) of Lemma 2.3), Q1 ∈ P with τ(Q1) ≤ 1/2 and

|τ(fn1
Q1)| > η − ε

4
.(2.52)

Since fn1
is integrable, {fn1

} is uniformly integrable, so we may choose 0 < ε2 < 1 so that

ω(fn1
, ε2) <

ε

2
.(2.53)

Next by (2.43), choose n2 > n1 with

ω(fn2
, ε2) > η − ε .(2.54)
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(It is easily seen, thanks to the uniform integrability of finite sets in L1(τ), that in fact η =

limε→0 lim n→∞ω(fn, ε); thus we may insure that n2 may be chosen larger than n1.) Again using
(2.54) and (2.10), choose Q2 ∈ P with τ(Q2) ≤ ε2

22 and

|τ(fn2
Q2)| > η − ε

4
.(2.55)

Then choose ε3 < ε2 so that

ω(fn2
, ε3) <

ε

2
.(2.56)

Continuing by induction, we obtain n1 < n2 < · · · , 1 = ε1 > ε2 > · · · , and projections Q1, Q2, . . . in
P so that for all k,

τ(Qk) ≤ εk

2k
(2.57)

ω(fnk
, εk+1) <

ε

2
(2.58)

and

|τ(fnk
Qk)| > η − ε

4
.(2.59)

Now set Pk = Qk ∧ (∧j>k(1 −Qj)), for k = 1, 2, . . . . Evidently the Pk’s are pairwise orthogonal. For

each i, let Q̃i = Qi − Pi. Now by subadditivity of τ ,

τ(Pi) ≥ τ(Qi) −
(

1 − τ
∧

j>i

(1 −Qj)

)

≥ τ(Qi) −
∑

j>i

τ(Qj) .

But
∑

j>i

τ(Qj) ≤
∑

j>i

εj

2j
< εi+1

∑

j>i

1

2j
by (2.57)

< εi+1 .

Hence we have

τ(Q̃i) ≤
∑

j>i

τ(Qj) < εi+1 .(2.60)

Thus by (2.58),

‖fni
Q̃i‖1 ≤ ω(fni

, εi+1) <
ε

2
.(2.61)

Hence

|τ(fni
Pi)| = |τ(fni

Qi − fni
Q̃i)|

≥ η − ε

4
− ε

2
by (2.61)

≥ η

5
.

Remark. The proof of the implication (i) =⇒ (ii) itself, may quickly be achieved, using instead
Theorem 3.5 of [DSS].

The following result is an immediate consequence of 2.5.

Corollary 2.6. A subset of L1(τ) is relatively weakly compact if and only if it is uniformly integrable.
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Proof. LetW be the subset, and suppose firstW is relatively weakly compact, yet limε→0 supf∈W ω(f, ε)
def
= η > 0. Then for each n, choose fn ∈ W with ω(fn,

1
2n ) > η − 1

2n . It follows immediately that also
limε→0 supn ω(fn, ε) = η, hence (fn) is not relatively weakly compact by Proposition 2.5. If W is
uniformly integrable, then W is bounded, and then W is relatively weakly compact by Akemann’s
criterion, (stated preceding (2.48)).

Remark. Suppose ‖fi‖1 ≤ 1 for all i, and (fi) satisfies (2.43). Letting the n1 < n2 < · · · be as in the
proof of 2.5, we show in Section 3, using arguments in [R1], that there exists a subsequence (f ′

i) of (fni
)

so that (f ′
i) is 5

η -equivalent to the usual ℓ1-basis, with also [f ′
i ]

5
η -complemented in L1(τ). Hence (fi)

has a subsequence equivalent to the ℓ1-basis, so of course (fi) is not relatively weakly compact.

We note finally a consequence of the proof of 2.5, valid for all 1 ≤ p < ∞ and arbitrary (not
necessarily atomic) finite von Neumann algebras.

Corollary 2.7. Let 1 ≤ p <∞, let M be a finite von Neumann algebra endowed with a faithful normal
tracial state τ , and let W be a bounded subset of Lp(τ). Then the following are equivalent.

(i) {|w|p : w ∈W} is uniformly integrable.
(ii) limε→0 supf∈W ω̃p(f, ε) = 0.

(iii) limr→∞ gW (r) = 0,

where the function gW is defined by

gW (r) = sup
w∈W

dLp(τ)(w, r Ba(M)) for r > 0 .(2.62)

Proof. (i) =⇒ (ii) follows immediately from the (obvious) inequality ω̃p(f, ε) ≤ ωp(f, ε) (stated as
part of (2.11) in Lemma 2.3).

(ii) =⇒ (iii). Assume that ‖w‖p ≤M for all w ∈W . For r sufficiently large, define ε(r) = ε > 0 by

r = ε−1/pM .(2.63)

Let f ∈ W . Since ε−1/p‖f‖p ≤ r, by the final assertion of Lemma 2.3, we may choose P a spectral
projection for |f | so that

fP ∈ r Ba(M) and ‖f(I − P )‖p ≤ ω̃p(f, ε) .(2.64)

It follows immediately that

gW (r) ≤ sup
f∈W

ω̃p(f, ε) .(2.65)

Thus (iii) holds by (ii), since ε(r) → 0 as r → ∞. (Note also that the final assertion of 2.3 does not
involve the “atomless” hypothesis, since ω̃p(f, ε) is defined in terms of the spectral measure for |f |.)

(iii) =⇒ (i). Given f ∈W and ε > 0, choose ψ ∈ r · Ba(M) with

‖f − ψ‖Lp(τ) < ε .(2.66)

Then for any δ < ε,

ωp(f, δ) ≤ ωp(f − ψ, δ) + ωp(ψ, δ) < ε+ rδ .(2.67)

Hence lim δ→0 supf∈W ωp(f, δ) ≤ ε, proving that (i) holds, since ε > 0 is arbitrary and ωp(f, t) =

(ω(|f |p, t))1/p for any f and t, by (2.9) of Lemma 2.3.



15

3. Proof of the Main Theorem

We first assemble some preliminary lemmas, perhaps useful in a wider context. N and τ are as-
sumed to be as in Section 2. Let r1, r2, . . . denote the Rademacher functions on [0, 1]; equivalently, an
independent sequence of {1,−1}-valued random variables (rj) with P (rj = 1) = P (rj = −1) = 1

2 for
all j.

Lemma 3.1. Let 1 ≤ p < 2 and (fn) be a bounded unconditional basic sequence in Lp(τ), so that
(|fi|p)∞i=1 is uniformly integrable. Then limn→∞ n−1/p‖f1 + · · · + fn‖Lp(τ) = 0.

Remark. Recall from the introduction that a sequence (xn) in a Banach space is called unconditional
if there is a constant u so that

{∥∥∥
n∑

i=1

αicixi

∥∥∥ ≤ u
∥∥∥

n∑

i=1

cixi

∥∥∥
}

for all n and scalars

c1, . . . , cn and α1, . . . , αn with |αi| = 1 for all i .

(3.1)

(xn) is called u-unconditional if (3.1) holds.

Proof of 3.1. Suppose (fn) is u-unconditional. Then (fn) is u-equivalent to (fn ⊗ rn) in Lp(N⊗̄L∞),
so it suffices to prove the same conclusion for (fn ⊗ rn) instead. Let β = τ ⊗m, where m is Lebesgue
measure on [0, 1). We may also assume without loss of generality that ‖fn‖Lp(τ) ≤ 1 for all n. Now let
ε > 0, and choose δ > 0 so that

ω(|fn|p, δ) ≤ ε for all n(3.2)

(using that (|fn|p) is uniformly integrable). By the final statement of Lemma 2.3, we may by (3.2)
choose for each j a Pj ∈ P = P(N ) so that fjPj ∈ N with

‖fjPj‖∞ ≤ 1

δ
and ‖fj(I − Pj)‖p

p ≤ ε .(3.3)

Then fixing n,

∥∥∥
n∑

i=1

fi ⊗ ri

∥∥∥
Lp(β)

≤
∥∥∥

n∑

i=1

fiPi ⊗ ri

∥∥∥
Lp(β)

+
∥∥∥

n∑

i=1

fi(I − Pi) ⊗ ri

∥∥∥
Lp(β)

.(3.4)

But
∥∥∥

n∑

i=1

fiPi ⊗ ri

∥∥∥
Lp(β)

≤
∥∥∥

n∑

i=1

fiPi ⊗ ri

∥∥∥
L2(β)

≤
√
n

δ
(3.5)

since ‖fiPi‖∞ ≤ 1
δ for all i.

On the other hand, since Lp(M) is type p with type p constant 1 for any von-Neumann algebra M,

∥∥∥
n∑

i=1

fi(I − Pi) ⊗ ri

∥∥∥
Lp(β)

≤
( n∑

i=1

‖fi(I − Pi)‖p
Lp(τ)

)1/p

≤ εn1/p by (3.3).

(3.6)

(This fact follows by Clarkson’s inequalities — see the discussion in the proof of the next lemma.) We
thus have that

lim
n→∞

n−1/p
∥∥∥

n∑

i=1

fi ⊗ ri

∥∥∥
Lp(β)

≤ lim
n→∞

n1/2

δn1/p
+ ε = ε(3.7)

by (3.5) and (3.6). Since ε > 0 is arbitrary, the conclusion of the lemma follows.
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Remarks. 1. It follows easily from the above proof that in fact if (fn) satisfies the hypothesis of 3.1,
then limn→∞ n−1/p‖f ′

1 + · · · + f ′
n‖p = 0 uniformly over all subsequences (f ′

n) of fn.
2. The proof of Lemma 3.1 yields the following quantitative result. Fix ε > 0, and let (fj) be a

bounded sequence in Lp(τ) so that there exists an r < ∞ with dLp(τ)(fj , rBa N ) < ε for all j. Then

lim n→∞Eωn
−1/p‖∑n

j=1 rj(w)fj‖Lp(τ) ≤ ε. Indeed, for each j, choose ϕj ∈ rBa N with ‖fj−ϕj‖Lp(τ) ≤
ε. Then fixing n, (3.4)–(3.6) yield

∥∥∥
n∑

i=1

fi ⊗ ri

∥∥∥
Lp(β)

≤
∥∥∥

n∑

i=1

ϕi ⊗ ri

∥∥∥
Lp(β)

+
∥∥∥

n∑

i=1

(fi − ϕi) ⊗ ri

∥∥∥
Lp(β)

≤ r
√
n+ εn1/p .

Hence lim n→∞n
−1/p‖∑n

i=1 fi ⊗ ri‖Lp(β) ≤ ε as desired.

We next give a criterion for a finite or infinite sequence in Lp(τ) to be equivalent to the usual ℓp

basis.

Lemma 3.2. Let u ≥ 1, δ > 0, 1 ≤ p < 2, and f1, . . . , fn elements of Ba(Lp(N )) be given so that
(fi)

n
i=1 is u-unconditional. Assume there exist pairwise orthogonal projections P1, . . . , Pn in P so that

τ(|PjfjPj |p) ≥ δp for all 1 ≤ j ≤ n .(3.8)

Then (fi)
n
i=1 is C-equivalent to the usual ℓpn basis, where C = u

√
3 δ−1.

Proof. We first note that (using interpolation), Lp(τ) satisfies Clarkson’s inequalities: for all x, y ∈
Lp(τ),

‖x+ y‖p
p + ‖x− y‖p

p ≤ 2(‖x‖p
p + ‖y‖p

p) .(3.9)

It follows immediately by induction on n that Lp(τ) is type p with constant one; that is, for any
x1, . . . , xn in Lp(τ),

∑

A∨±

‖ ± x1 ± · · · ± xn‖p
p =

∫ 1

0

∥∥∥
n∑

i=1

ri(ω)xi

∥∥∥
p

p
dω

≤
( n∑

i=1

‖xi‖p
p

)
.

(3.10)

Now let scalars a1, . . . , an be given, and let f =
∑n

i=1 aifi. We obtain from (3.10) that since (fi) is
u-unconditional,

‖f‖p ≤ u

( n∑

i=1

|ai|p
)1/p

.(3.11)

Now fix ω and set fω =
∑n

i=1 airi(ω)fi. Then

‖fω‖p
p ≥

n∑

j=1

‖PjfωPj‖p
p .(3.12)

Thus integrating over ω and again using unconditionality,

‖f‖p
p ≥ 1

up

∫ 1

0

‖fω‖p
p dω

≥ 1

up

n∑

j=1

∫ 1

0

‖PjfωPj‖p
p dω by (3.12).

(3.13)
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But fixing j, since Lp(τ) is cotype 2 with constant at most 31/2,

∫ 1

0

‖PjfωPj‖p
p dω ≥ 1

3p/2

(∑

i

‖PjaifiPj‖2
p

)p/2

≥ 1

3p/2
‖PjajfjPj‖p

p

≥ 1

3p/2
|aj |pδp by (3.8).

(3.14)

Thus in view of (3.13),

‖f‖p
p ≥ δp

up3p/2

( n∑

j=1

|aj |p
)
,(3.15)

so (3.11) and (3.15) now imply the conclusion of Lemma 3.2.

Our last preliminary result yields an estimate for equivalence to the ℓpn basis in terms of p-moduli.

Lemma 3.3. Let 0 < ε < η/2, n ≥ 1, and f1, . . . , fn ∈ Ba L
p(τ) be such that (f1, . . . , fn) is u-

unconditional and there are δ1 ≥ δ2 ≥ · · · ≥ δn > 0 so that for all 1 ≤ j ≤ n and all k with j < k (if
j < n)

ωp(fj , δj) > η and ωp(fj , δk + δk+1 + · · · + δn) <
ε

2
.(3.16)

Then (f1, . . . , fn) is C-equivalent to the ℓpn basis where

C ≤ u
√

3
(η

2
− ε

)−1

.

Proof. By Lemma 2.3, (see (2.9)), we have, fixing 1 ≤ j ≤ n, that

ωs
p(fj , δj) >

η

2
.(3.17)

Hence we may choose Qj ∈ P with

‖QjfjQj‖p >
η

2
and τ(Qj) ≤ δj .(3.18)

Define projections Pj and Q̃j by

Pj = Qj ∧
∧

k>j

(1 −Qk) and Q̃j = Qj − Pj .(3.19)

Then

QjfjQj = PjfjPj + Q̃jfjPj +QjfjQ̃j .(3.20)

Now we have by subadditivity of τ that τ(
∧

k>j(1−Qk)) ≥ 1−∑
k>j δk, and so again by subadditivity,

τ(Pj) ≥ τ(Qj) −
(

1 − τ

( ∧

k>j

1 −Qk

))

≥ τ(Qj) −
∑

k>j

δk .
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Thus τ(Q̃j) <
∑

k>j δk. Hence we have

‖Q̃jfjPj‖p ≤ ‖Q̃jfj‖p ≤ ωp

(
f∗

j ,
∑

k>j

δk

)

= ωp

(
fj ,

∑

k>j

δk

)
≤ ε

2
by (3.16)).

(3.21)

By the same argument,

‖QjfjQ̃j‖p ≤ ε

2
.(3.22)

Thus from (3.18), (3.20), (3.21) and (3.22), we obtain

‖PjfjPj‖p ≥ η

2
− ε .(3.23)

Of course P1, . . . , Pn are pairwise orthogonal ; hence Lemma 3.2 now immediately yields the conclusion
of 3.3.

Lemma 3.3 immediately yields an infinite dimensional conclusion as well. Combining this and
Lemma 3.1 we obtain the following definitive result.

Corollary 3.4. Let (fn) be a bounded unconditional sequence in Lp(τ), 1 ≤ p < 2. The following are
equivalent:

(a) (fn) has a subsequence equivalent to the usual ℓp basis.
(b) (|fn|p) is not uniformly integrable.

Proof. (a) =⇒ (b) follows immediately from Lemma 3.1. Assume that (b) holds and also assume
without loss of generality that ‖fn‖p ≤ 1 for all n. Then by Lemma 3.1,

η
def
= lim

ε→0
sup

n
ωp(fn, ε) > 0 .(3.24)

Now Lemma 3.3 yields that there is a subsequence (f ′
n) of (fn) so that

(f ′
n) is

cu

η
-equivalent to the ℓp basis,(3.25)

where c is an absolute constant.
Indeed, fix 0 < ε < η

2 . Choose δ1 ≤ 1 and n1 so that

ωp(fn1
, δ1) > η − ε .(3.26)

Suppose n1 < · · · < nj and δ1 > δ2 · · · > δj chosen so that

ωp(fni
, δi+1 + · · · + δj) <

ε

2
for all 1 ≤ i < j .

By continuity of the functions t → ωp(fni
, t) for i < j and the fact that fnj

∈ Lp(τ), choose δ̄j+1 < δj
so that

ωp(fni
, δi+1 + · · · + δj + δ̄j+1) <

ε

2
for all 1 ≤ i ≤ j .(3.27)

Then choose δj+1 ≤ δ̄j+1 and nj+1 > nj so that

ωp(fnj+1
, δj+1) > η − ε .(3.28)

This completes the inductive choice of n1 < n2 < · · · .
Setting f ′

k = fnk
, then (f ′

1, . . . , f
′
n) satisfies the hypotheses of Lemma 3.3 for all n, and hence (f ′

n) is

u
√

3(η
2 −ε)−1-equivalent to the ℓp basis by 3.3. By taking ε small enough, we obtain c ≤ 7 in (3.25).
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Remark. The hypothesis that (fn) is unconditional may be omitted when p = 1, as pointed out in
the remark following the proof of Proposition 2.5. Also, it’s not hard to show that the sequence (f ′

n)
constructed above has its closed linear span complemented in Lp(τ). Finally, it follows from known
(rather non-trivial) results that if 1 < p <∞ and N is hyperfinite, then every semi-normalized weakly
null sequence in Lp(N ) has an unconditional subsequence. Indeed, assuming (as we may) that N acts
on a separable Hilbert space, Lp(N ) has an unconditional finite dimensional decomposition (see [SF],
[PX1]), which yields the above statement. Thus also in the hyperfinite case, the hypothesis that (fn)
is unconditional may be omitted. We do not know, however, if this is so for general N .

Corollary 3.5. Let (fn) be a bounded unconditional sequence in Lp(τ), 1 ≤ p < 2. The following are
equivalent.

(a) For every subsequence (f ′
n) of (fn)

lim
n→∞

n−1/p
∥∥∥

n∑

i=1

f ′
i

∥∥∥
Lp(τ)

= 0 .

(b) (|fn|p) is uniformly integrable.

Proof. (a) =⇒ (b): Assume (b) is false. Then by Corollary 3.4 there exists a subsequence (f ′
n)

equivalent to the usual ℓp-basis. In particular

lim inf
n→∞

n−1/p
∥∥∥

n∑

i=1

f ′
i

∥∥∥
Lp(τ)

> 0 .

which contradicts (a).
(b) =⇒ (a). This follows from Lemma 3.1, since condition (b) implies that (|f ′

n|)p is uniformly
integrable for any subsequence (f ′

n) of (fn).

We now turn to the proof of the Main Theorem. First we give some preliminary results concerning
ultrapowers of Banach spaces and the standard construction of the ultrapower of a finite von Neumann
algebra (cf. [McD], [V]).

Fix U a free ultrafilter on N. For a given Banach space X , let ℓ∞(X) denote the set of bounded
sequences in X , under the norm ‖(xn)‖ = supn ‖xn‖, and set

EU = {(xn) ∈ ℓ∞(X) : lim
n∈U

‖xn‖ = 0} .(3.29)

Then XU , the ultrapower of X with respect to U , is given by

XU = ℓ∞(X)/EU .(3.30)

Now fix N a finite von Neumann algebra with a normal faithful tracial state τ , and define IU by

IU = {(xn) ∈ ℓ∞(N ) : lim
n∈U

τ(x∗nxn) = 0} .(3.31)

Then IU is a norm-closed two-sided ideal in ℓ∞(X); we define NU (a different object than NU !) by

NU = ℓ∞(N )/IU .(3.32)

Then by the references cited above, NU is a W ∗-algebra (i.e., an abstract von Neumann algebra) with
a normal faithful tracial state τU given by

τU (π(xn)) = lim
n∈U

τ(xn)(3.33)

where π : ℓ∞(N ) → NU is the quotient map.
The next result yields that Lp(NU ) may be regarded as a subspace of the Banach space ultrapower

Lp(N )U .
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Lemma 3.6. Let 1 ≤ p <∞ and let Yp denote the closure of ℓ∞(N ) in the Banach space ℓ∞(Lp(N )).
Then π has a unique extension to a bounded linear map π̃ : Yp → Lp(NU ). Moreover, for (xn) ∈ Yp,

‖π̃((xn))‖Lp(τU ) = lim
n∈U

‖xn‖Lp(τ) .(3.34)

Fixing p as in 3.6 and letting ρ : ℓ∞(Lp(N )) → Lp(N )U be the quotient map, Lemma 3.6 yields
there is a unique isometric embedding i : Lp(NU ) → Lp(N )U so that the following diagram commutes:

Lp(NU )

π̃ i

ρ
�

�
��7

?
- Lp(N )UYp

.

(3.35)

Proof. Since π is a ∗-homomorphism of ℓ∞(N ) onto NU , we have for any continuous function f :
[0,∞) → C and any x = (xn) ∈ ℓ∞(N ),

π ((f(x∗nxn))∞n=1) = f(π(x∗)π(x)) .(3.36)

Applying this to f(t) = |t|p/2, we get by the trace formula (3.33) that

‖π(x)‖Lp(τU ) = lim
n∈U

‖xn‖Lp(τ) .(3.37)

In particular,

‖π(x)‖Lp(τU ) ≤ sup
n

‖xn‖Lp(τ)

= ‖x‖ℓ∞(Lp(N )) .
(3.38)

Thus π extends by continuity to a contraction π̃ : Yp → Lp(NU ). Now let x = (xn) belong to Yp, and
let ε > 0. Then choose y = (yn) in ℓ∞(N ) so that

‖x− y‖ℓ∞(Lp(N )) < ε .(3.39)

It follows from (3.39) that
∣∣∣ ‖π(x)‖Lp(τU ) − ‖π(y)‖Lp(τU )

∣∣∣ < ε(3.40)

and
∣∣∣ lim

n∈U
‖xn‖Lp(τ) − lim

n∈U
‖yn‖Lp(τ)

∣∣∣ < ε .(3.41)

Since (3.37) holds, replacing “x” by “y” in its statement, we have from (3.40) and (3.41) that
∣∣∣ ‖π(x)‖Lp(τU ) − lim

n∈U
‖xn‖Lp(τ)

∣∣∣ < 2ε .(3.42)

Since ε > 0 is arbitrary, (3.34) holds for all x = (xn) in Yp.

Lemma 3.7. Let 1 ≤ p < 2, and let (xij) be an infinite matrix in Lp(N ) so that for some C ≥ 1, each
row and each column of (xij) is C-equivalent to the usual ℓ2-basis. Then for every free ultrafilter U on
N

sup
j∈N

lim
i∈U

dLp(τ)(xij , rBa(N )) → 0 as r → ∞(3.43)
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Proof. Define for each j ∈ N a function gj : R+ → R+ by

gj(r) = sup
i
dLp(τ)(xij , rBa(N )) .

For fixed j, (xij)∞i=1 is C-equivalent to the usual ℓ2-basis, so by Corollary 3.4 and Corollary 2.7,
(|xij |p)∞i=1 is uniformly integrable and

lim
r→∞

gj(r) = 0 .(3.44)

Now (3.44) implies that (xij)∞i=1 belongs to Yp. Let π̃ be as in the statement of Lemma 3.6 and define
xj by

xj = π̃
(

(xij)∞i=1

)
∈ Lp(NU ) .

Now we claim that

(xj) is C-equivalent to the ℓ2-basis.(3.45)

Indeed, using the hypotheses of Theorem 1.1 and Lemma 3.6, we have for any n and scalars c1, . . . , cn,
that

∥∥∥
n∑

j=1

cjxj

∥∥∥
Lp(τU )

=
∥∥∥π̃




( n∑

j=1

cjxij

)∞

i=1




∥∥∥
Lp(τU )

= lim
i∈U

∥∥∥
n∑

j=1

cjxij

∥∥∥
Lp(τ)

by (3.34)

C∼
(∑

|cj |2
)1/2

.

Now define g : R+ → R+ by

g(r) = sup
j
dLp(τU )(xj , rBa(NU )) .

Again by (3.45) and Corollary 3.4, (|xj |p)∞j=1 is uniformly integrable in Lp(τU ), so by Corollary 2.7 we
have that

lim
r→∞

g(r) = 0 .(3.46)

Now let ε > 0. Since π is a quotient map of ℓ∞(N ) onto NU , it follows that fixing j, there exists for
every r > 0, (yij)∞i=1 ∈ rBa(N ) so that

‖xj − π((yij)∞i=1)‖Lp(τU ) < g(r) + ε .

Hence by Lemma 3.6,

lim
i∈U

‖xij − yij‖Lp(τ) < g(r) + ε ,

which implies that

lim
i∈U

dLp(τ)(xij , r Ba(N )) < g(r) + ε .

Hence by (3.46)

lim sup
r→∞

(
sup
j∈N

lim
i∈U

dLp(τ)(xij , r Ba(N ))

)
≤ ε .

Since ε > 0 was arbitrary, we get (3.43).
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Proof of Theorem 1.1. Let 1 ≤ p < 2, and let (xij) be as in Theorem 1.1, and let U be a free ultrafilter
on N. Put

h(r) = sup
j

lim
i∈U

dLp(τ)(xij , rBa(N )), r ∈ R+ .(3.47)

Then h : R+ → R+ is a decreasing function and by (3.43)

lim
r→∞

h(r) = 0 .(3.48)

We claim that (3.47) and (3.48) imply that for a suitable choice of natural numbers i1 < i2 < · · · one
has

(|xij ,j |p)∞j=1 is uniformly integrable.(3.49)

To prove (3.49) put for j ∈ N

Gj =

j⋂

r=1

Gj,r(3.50)

where for j, r ∈ N,

Gj,r =

{
i ∈ N | dLp(τ)(xij , r Ba(N )) < h(r) +

1

r

}
.(3.51)

By (3.47) each Gj,r ∈ U , and hence also Gj ∈ U for all j ∈ N. Since U is a free ultrafilter, each Gj is
infinite, so we can choose successively i1 < i2 < · · · such that ij ∈ Gj for all j. Put yj = xij ,j, j ∈ N

and W = {yj, j ∈ N}, and put as in Corollary 2.7

gW (r) = sup
j∈N

dLp(τ)(yj , rBa(N )) , r ∈ R+ .(3.52)

To prove (3.49) we just have to show that gW (r) → 0 when r → ∞ (cf. Corollary 2.7). Let ε > 0. By
(3.48) we can choose r0 ∈ N such that

h(r0) +
1

r0
< ε .(3.53)

When j ≥ r0, ij ∈ Gj ⊆ Gj,r0
. Hence by (3.51) and (3.53)

dLp(τ)(yj , r0 Ba(N )) < ε , j ≥ r0 .(3.54)

Since N =
⋃

r>0 r Ba(N ) is dense in Lp(τ) we have for every j ∈ N,

lim
r→∞

dLp(τ)(yj , rBa(N )) = 0 .

Hence, we may choose r1 ≥ r0, such that

dLp(τ)(yj , r1 Ba(N )) < ε , j = 1, . . . , r0 − 1 .(3.55)

By (3.54) and (3.55), gW (r) < ε for all r ≥ r1. This shows that limr→∞ gW (r) = 0 and hence by
Corollary 2.7, (|yj |p)∞j=1 is uniformly integrable, i.e., (3.49) holds. Thus by the assumption that (yj) is

unconditional, Corollary 3.5 yields that for any subsequence (y′j) of (yj),

lim
n→∞

n−1/p
∥∥∥

n∑

j=1

y′j

∥∥∥
Lp(τ)

= 0 .(3.56)

Putting now jk = k, we have yk = xik ,jk
and Theorem 1.1 follows.
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4. Improvements to the Main Theorem

We obtain here results that are stronger than the Main Theorem. In particular, Theorem 4.1 is also
needed in Section 6 (specifically, for the proof of Theorem 6.9). The arguments in this section do not
use the ultraproduct construction and technique of Section 3. They are in a sense more elementary,
and also more delicate, than those of Section 3.

We use the following terminology: given a matrix (xij), a sequence (xik ,jk
) of elements of the matrix

is called a generalized diagonal if i1 < i2 < · · · and j1 < j2 < · · · . A set W (or matrix (xij)) in a
Banach space is called semi-normalized if there are 0 < δ ≤ K <∞ with δ ≤ ‖w‖ ≤ K for all w ∈ W .
The main theorem follows also immediately from the following result.

Theorem 4.1. Let N be a finite von-Neumann algebra, 1 ≤ p < 2, and (xij) be an infinite semi-
normalized matrix in Lp(N ). Assume that every column and generalized diagonal is unconditional, and
there is a u ≥ 1 so that every row is u-unconditional. Then one of the following three alternatives holds.

I. Some column has a subsequence equivalent to the usual ℓp basis.
II. There is a C ≥ 1 so that for all n, there exists a row which contains n elements C-equivalent to

the usual ℓpn basis.
III. There is a generalized diagonal (yk) so that

n−1/p
∥∥∥

n∑

i=1

y′i

∥∥∥
p
→ 0 as n→ ∞

for all subsequences (y′i) of (yi).

To recover the Main Theorem from 4.1, let (xij) be as in the hypotheses of the Main Theorem, and
simply note that Cases I and II of 4.1 are impossible, since otherwise one would obtain a constant λ
so that the ℓpn and ℓ2n bases are λ-equivalent for all n. Case III now yields the conclusion of the Main
Theorem.

Remark. Let us say that the rows of (xij) contain ℓpn-sequences if condition II of 4.1 holds, with a similar
definition for the columns. Since obviously we can interchange rows and columns in the statement of
4.1, we then obtain the following immediate consequence: Let N , p and (xij) be as in the first sentence
of Theorem 4.1. Assume that every generalized diagonal is unconditional and there is a u ≥ 1 so that
every row and column are u-unconditional. Then one of the following holds.

I. Some column or some row has a subsequence equivalent to the usual ℓp basis.
II. Both the rows and the columns contain ℓpn-sequences.

III. Condition III of 4.1 holds.

Proof of Theorem 4.1

We may assume without loss of generality that ‖xij‖p ≤ 1 for all i and j. We introduce the following
notation, for all ε > 0 and all i, j = 1, 2, . . . .

ωij(ε) = ωp(xij , ε)(4.1)

ωj(ε) = sup
i
ωij(ε) .(4.2)

Now assume that Case I of Theorem 4.1 does not occur. We then have by Corollary 3.4 (and
Lemma 2.3) that (|xij |p)∞i=1 is uniformly integrable for all j, and hence

lim
ε→0

ωj(ε) = 0 for all j .(4.3)

We now use the following (hopefully intuitive) convention. A set of rows R of (xij) is identified with
a set J ⊂ {1, 2, . . .} via R = {Ri : i ∈ J } where Ri = {xij : j = 1, 2, . . . } for all i ∈ J . Columns are
just identified with j ∈ N; i.e., j ∼ Cj = {xij : i = 1, 2, . . . }.
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Case II. There is an η > 0 and an infinite set of rows J so that for all further infinite sets of rows
J ′ ⊂ J , all δ > 0, and all columns j0, there is a column j > j0 so that

{i ∈ J ′ : ωi,j(δ) > η} is infinite.(4.4)

Intuitively, the final statement means that looking down the jth column of the submatrix with rows
J ′, then infinitely many of the moduli ωi,j(δ) are bigger than η.

We shall show that Case II yields II of Theorem 4.1. In fact, we shall show that then, via Lemma 3.3,




for every n, there exists a row Ri and elements xij1 , . . . , xijn
in

Ri, j1 < · · · < jn, with (xijk
)n
k=1

7u

η
-equivalent to the ℓpn basis.

(4.5)

Let J0 be the initial set of rows satisfying Case II. Let δ1 = 1/2, and choose j1 so that

J1
def
={i ∈ J0 : ωij1(δ1) > η} if infinite.(4.6)

Next, using (4.3), choose δ̄2 < δ1 so that

ωj1(δ̄2) <
ε

2
,(4.7)

and choose δ2 < δ̄2. Now using the assumptions of Case II, choose j2 > j1 so that

J2
def
={i ∈ J1 : ωij2(δ2) > η} is infinite.(4.8)

For the general inductive step, suppose n > 1, infinite J1 ⊃ · · · ⊃ Jn−1 and j1 < · · · < jn−1,
δ1 > δ̄2 > δ2 > · · · > δ̄n−1 > δn−1 > 0 have been chosen so that for all 1 ≤ ℓ < n − 1, ωjℓ

(δ̄ℓ+1) < ε
2

and δℓ+1 + · · · + δn−1 < δ̄ℓ+1. Using (4.3), choose 0 < δ̄n < δn−1 so that ωjn−1
(δ̄n) < ε

2 ; then choose

0 < δn < δ̄n so that also δℓ+1 + · · · + δn < δ̄ℓ+1 for all 1 ≤ ℓ < n− 1. We thus have that

ωjℓ
(δℓ+1 + · · · + δn) <

ε

2
for all 1 ≤ ℓ ≤ n− 1 .(4.9)

Then choose jn > jn−1 so that

Jn
def
={i ∈ Jn−1 : ωijn

(δn) > η} is infinite.(4.10)

This completes the inductive construction. Now fix n, let i ∈ Jn, and let fk = xijk
for 1 ≤ k ≤ n.

Then (f1, . . . , fn) satisfies the assumption of Lemma 3.3. Indeed, the fi’s are u-unconditional by
hypothesis, and for each k, 1 ≤ k ≤ n

ωijk
(δk) = ωp(fk, δk) > η(4.11)

and

ωp(fk, δm + δm+1 + · · · + δn) ≤ ωjk
(δm + δm+1 + · · · + δn) <

ε

2
for k < m ≤ n .(4.12)

Thus (xijk
)n
k=1 satisfies the conclusion of (4.5) in view of Lemma 3.3, proving Case II of 4.1 holds.

We now suppose that Case II does not hold, i.e., we have

Case III. For all η > 0 and infinite sets of rows J , there exists an infinite set of rows J ′ ⊂ J , a δ > 0,
and a column j so that for all columns j ≥ j,

ωi′j(δ) ≤ η for all but finitely many i′ ∈ J ′ .(4.13)

(Note that we get j ≥ j instead of j > j by just replacing j by j + 1).
Intuitively, the final statement means that now, looking down the jth column of the submatrix with

rows J ′, then all but finitely many of the moduli ωi′,j(δ) are no bigger than η.
We shall now construct i1 < i2 < · · · and j1 < j2 < · · · so that

lim
ε→0

sup
k
ωik,jk

(ε) = 0 .(4.14)
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Thus we obtain that (|xikjk
|p)∞k=1 is uniformly integrable, and hence Case III of Theorem 4.1 holds by

Corollary 3.5.
We first claim that we may choose infinite sets of rows J1 ⊃ J2 ⊃ · · · , columns j1 < j2 < · · · , and

numbers 1 ≥ δ1, 1
2 ≥ δ2, 1

3 ≥ δ3 · · · so that for all k,

for all j ≥ jk, ωij(δk) ≤ 1

2k
for all but finitely many i ∈ Jk .(4.15)

Indeed, first choose J1 an infinite set of rows, j1 ∈ N and δ1 > 0 so that for all j ≥ j1, (4.13) holds,
where J ′ = J , η = 1/2, and δ1 = δ.

Now suppose Jk, jk, and δk have been chosen. Setting η = 1/2k+1, choose an infinite Jk+1 ⊂ Jk,
j > jk and a δ > 0 so that for all j ≥ j, (4.13) holds for J ′ = Jk+1. Now simply let δk+1 =
min{δ, 2−1δk,

1
k+1}. Since the functions ωiℓ are non-decreasing, we have that also for all j > j,

ωij(δk+1) ≤ 1/2k+1 for all but finitely many i ∈ Jk+1. This completes the inductive construction,
with (4.15) holding for all k.

Now choose i1 ∈ J1 with ωi1,j1(δ1) ≤ 1/2. Then also for all but finitely many i ∈ J2, ωi,j2(δ1) ≤ 1/2
and ωi,j2(δ2) ≤ 1/4. Hence we can choose i2 > i1 (i2 ∈ J2), with

ωi2,j2(δ1) ≤ 1

2
and ωi2,j2(δ2) ≤ 1

4
.(4.16)

But we can also choose 0 < ε2 ≤ δ2 so that

ωi1,j1(ε2) ≤ 1

4
.(4.17)

Thus also

ωi2,j2(ε2) ≤ 1

4
.(4.18)

Now suppose i1 < · · · < in and δ1 = ε1, . . . , εn have been chosen so that εj ≤ δj for all j ≤ n and

ωik,jk
(εi) ≤

1

2i
for all 1 ≤ k ≤ n, 1 ≤ i ≤ n .(4.19)

Now by (4.15), choose in+1 > in (in+1 ∈ Jn+1) so that

ωin+1,jn+1
(δℓ) ≤

1

2ℓ
for all 1 ≤ ℓ ≤ n+ 1 .(4.20)

This is possible, since for each ℓ, ωi,jn+1
(δℓ) ≤ 1/2ℓ for all but finitely many i ∈ Jn+1.

Again, since the εℓ’s are smaller than the δℓ’s,

ωin+1,jn+1
(εℓ) ≤

1

2ℓ
for all 1 ≤ ℓ ≤ n .(4.21)

Finally, choose εn+1 ≤ δn+1 so that

ωiℓ,jℓ
(εn+1) ≤ 1

2n+1
for all 1 ≤ ℓ ≤ n .(4.22)

Again, we also have

ωin+1,jn+1
(εn+1) ≤ 1

2n+1
.(4.23)

This completes the inductive construction of i1 < i2 < · · · and ε1, ε2, . . . . Then for each i, we have

sup
k
ωik,jk

(εi) ≤
1

2i
.(4.24)

It then follows immediately that (4.14) holds, since if ε ≤ εi, then also

sup
k
ωik,jk

(ε) ≤ 1

2i
.(4.25)
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This completes the proof of Theorem 4.1, in view of the comment after (4.14).

Using theorems from Banach space theory, we next obtain a stronger version of 4.1.

Theorem 4.2. Let N , p and (xij) be as in 4.1. The conclusion of 4.1 holds under the following
assumptions:

(a) 1 < p, and every column is an unconditional basic sequence, every generalized diagonal is a basic
sequence, and there is a λ ≥ 1 so that every row is a λ-basic sequence

or

(b) p = 1 and every generalized diagonal is a basic sequence.

Moreover the unconditional assumption in (a) may be dropped if N is hyperfinite.

Remark. We do not know if the unconditional assumption in (a) may be dropped in general. However
our proof of 4.2 yields the following result, for arbitrary finite N and 1 < p < 2. Assume (a) with
“unconditional” deleted. Then the following three alternatives hold: II or III of Theorem 4.1, or
I′. There is a C ≥ 1 and a column so that for all n, the column contains n elements C-equivalent to
the usual ℓpn basis .

To obtain the case p > 1, we require the following remarkable result, due to Brunel and Sucheston
([BrS1], [BrS2]; see also [G]). (A sequence (xj) of non-zero elements in a Banach space is called
β-suppression unconditional if for all n, scalars c1, . . . , cn, and F ⊂ {1, . . . , n}, ‖∑

j=F cjxj‖ ≤
β‖∑n

j=1 cjxj‖. It is easily seen that if (xj) is λ-suppression unconditional, it is 2λ-unconditional
over real scalars and 4λ-unconditional over complex scalars. Actually, a neat result of Kaufman-Rickert
yields that such a sequence is πλ-unconditional (over complex scalars) [KR].)

Lemma 4.3. Let (xn) be a semi-normalized weakly null sequence in a Banach space X, and let ε > 0.

Then there exists a subsequence (yj) of (xj) so that for any k ≤ j1 < j2 < · · · < j2k , (yji
)2

k

i=1 is
(1 + ε)-suppression unconditional (and hence π(1 + ε)-unconditional).

Remarks. 1. Actually, the results of Brunel-Sucheston yield much more than this. They obtain that
under the hypotheses of Lemma 4.3, there exists a Banach space E with a suppression 1-unconditional
semi-normalized basis (ej) and a basic subsequence (yj) of (xj) so that:

(i) (ej) is isometrically equivalent to all of its subsequences and

(ii) for all ε > 0 and k large enough, and any k ≤ j1 < · · · < j2k , (yji
)2

k

i=1 is (1 + ε)-equivalent to
(e1, . . . , e2k).

In the standard Banach space terminology, (ej) is called a subsymmetric basis for E, and a spreading
model for (xj).

2. A classical result of Bessaga-Pe lczyński yields that any seminormalized weakly null sequence
in a Banach space has a basic subsequence (in fact, for every ε > 0, a subsequence which is (1 +
ε)-basic). However it is obtained in [MR] that there exists a normalized weakly null sequence in a
certain Banach space with no unconditional subsequence, and in [GM] that there exists an (infinite
dimensional) reflexive Banach space with no (infinite) unconditional basic sequences at all. Thus in a
sense, Lemma 4.3 is the best possible positive result in this direction.

We now give consequences of this lemma that are needed for Theorem 4.2. The first one follows from
Lemma 3.1 and Lemma 4.3.

Corollary 4.4. Let 1 ≤ p < 2 and (fn) be a weakly null sequence in Lp(τ) so that (|fi|p)∞i=1 is uniformly
integrable. Then there is a subsequence (f ′

i) of (fi) so that

lim
n→∞

n−1/p‖ε1y1 + · · · + εnyn‖Lp(τ) = 0

uniformly over all subsequences (yi) of (f ′
i) and all choices (εj) of scalars with |εj | ≤ 1 for all j.
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Remark. The result shows (and also follows from): any spreading model for (fj) is not equivalent to the
ℓp-basis.

Proof of 4.4. We may assume without loss of generality that ‖fj‖p ≤ 1 for all j. Let ε > 0 be such
that π(1 + ε) ≤ 4, and choose (yj) a subsequence of (fj) satisfying the conclusion of Lemma 4.3. Let

(rj) denote the Rademacher functions on [0, 1] (as defined in Section 3), set Ñ = N⊗̄L∞, and let
gj = yj ⊗ rj for all j. Then (gj) is 2-unconditional (over complex scalars) and of course (|gj|p) is also

uniformly integrable in L1(Ñ ), whence by Lemma 3.1,

lim
n→∞

n−1/p‖g1 + · · · + gn‖Lp(Ñ ) = 0 .(4.26)

Let ε > 0, and choose N so that if n ≥ N , then

n−1/p‖g1 + · · · + gn‖Lp(Ñ ) <
ε

16
(4.27)

and

n−1/p(1 + log2 n) <
ε

2
.(4.28)

Now fix n, and choose k with

2k−1 ≤ n < 2k .(4.29)

Of course then

k ≤ 1 + log2 n .(4.30)

Now if ε1, . . . , εn are given scalars of modulus at most one, then

∥∥∥
n∑

j=k+1

εjyj

∥∥∥
Lp(N )

≤ 16
∥∥∥

n∑

j=k+1

gj

∥∥∥
Lp(Ñ )

.(4.31)

Indeed, yk+1, . . . , yn is 4-unconditional by the conclusion of Lemma 4.3 (since n−k < n < 2k), yielding
(4.31). On the other hand,

∥∥∥
k∑

j=1

εjyj

∥∥∥
Lp(N )

≤ k ≤ 1 + log2 n by (4.30).(4.32)

Thus we have

n−1/p
∥∥∥

n∑

j=1

εjyj

∥∥∥
p
≤ n−1/p

∥∥∥
k∑

j=1

εjyj

∥∥
p

+ n−1/p
∥∥∥

n∑

j=k+1

εjyj

∥∥∥
p

≤ n−1/p(1 + log2 n) + 8n−1/p
∥∥∥

n∑

j=k+1

gj

∥∥∥
Lp(Ñ )

≤ ε

2
+ 8n−1/p

∥∥∥
n∑

j=1

gj

∥∥∥
Lp(Ñ )

≤ ε

2
+
ε

2
= ε .

(4.33)

(The last inequality holds by (4.27); the next to the last by (4.28) and the fact that (gj) is 1-unconditional
over real scalars.) The uniformity of the limit over all subsequences of (yi) follows from the fact that
the limit in (4.26) is uniform over all subsequences of (gi), thanks to the proof of Lemma 3.1.

We next note a general consequence of Lemma 4.3, which follows from ultraproducts.



28

Corollary 4.5. Let X be a uniformly convex Banach space and let λ ≥ 1, ε > 0, and k be given. Then
there is an n ≥ k so that for any λ-basic sequence (x1, . . . , xn) in X, there exist 1 ≤ j1 < j2 < · · · < jk
so that (xj1 , . . . , xjk

) is suppression (1 + ε)-unconditional (and hence π(1 + ε)-unconditional).

Proof. Suppose the conclusion were false. Then we could find for every n ≥ k, an n-tuple (xn
1 , . . . , x

n
n)

of elements in X so that (xn
1 , . . . , x

n
n) is λ-basic, yet no k terms are suppression (1 + ε)-unconditional.

By homogeneity, we may assume that ‖xn
i ‖ = 1 for all n and i ≤ n. Now let U be a non-trivial

ultrafilter on N and let XU denote the ultrapower of X with respect to U . (That is, we let EU denote
the subspace of ℓ∞(X) consisting of all bounded sequences (xj) in X with limj∈U ‖xj‖ = 0, and then
set XU = ℓ∞(X)/EU .) Since X is uniformly convex, so is XU . Now define a sequence (x̃j) in XU by
x̃j = π(xn

j )∞n=1, for all j, where π : ℓ∞(x) → XU is the quotient map and we set xn
j = 0 if n < j. It

then follows that (x̃j) is also λ-basic and normalized; since XU is reflexive, (x̃j) is weakly null. But
then by Lemma 4.3, there exist k terms x̃j1 , . . . , x̃jk

of this sequence with (x̃ji
)k
i=1 (1 + ε

2 )-suppression
unconditional. Standard ultraproduct techniques yield that η > 0 given, there exists an n > jk so that
(x̃j1 , . . . , x̃jk

) is (1 + η)-equivalent to (xn
j1 , . . . , x

n
jk

) and hence the latter is (1 + η) (1 + ε
2 )-suppression

unconditional. Of course we have a contradiction if (1 + η)(1 + ε
2 ) < 1 + ε.

Proof of Theorem 4.2(a). We use the same notations and assumptions as in the proof of Theorem 4.1
(e.g., we assume that ‖xij‖p ≤ 1 for all i and j). Assume that Case I of 4.1 does not occur. Then again
we have that (|xij |p)∞i=1 is uniformly integrable for all j, and hence (3.23) holds. This is also the case
if N is hyperfinite and the unconditional assumption in (a) is dropped. For suppose to the contrary

that for some i, (fj)
def
=(xij) has the property that (|fj |p) is not uniformly integrable. Then setting

gj = fj ⊗ rj in Lp(Ñ ) (as defined in the proof of Corollary 4.4), (gj) is unconditional and again (|gj |p)
is not uniformly integrable, hence there exist n1 < n2 < · · · with (gnj

) equivalent to the usual ℓp-basis,
by Corollary 3.4). But (fnj

) has an unconditional subsequence (f ′
j) by [SF], [PX1]. Of course then (f ′

j)

is equivalent to (g′j)
def
=(f ′

j ⊗ rj), a subsequence of (gnj
), whence (f ′

j) is equivalent to the ℓp basis.

Now replace the entire matrix (xij) by (x̃ij)
def
=(xij ⊗rij) in Lp(Ñ ) (where Ñ = N⊗̄L∞), where rij is

just a “renumbering” of (rj) via N×N (precisely, let ϕ : N×N → N be a bijection, and set rij = rϕ(i,j)).
Now ωp(xij , ε) = ωp(x̃ij , ε) for all i, j, and ε; hence assuming Case II in the proof of Theorem 4.1 occurs,
we have that II of 4.1 holds for the matrix (x̃ij). But then since Lp(N ) is uniformly convex, II holds for
(xij) itself, by Corollary 4.5. Indeed, let C be as in II of 4.1, let k be given. Choose n ≥ k satisfying the
conclusion of 4.5 for X = Lp(N ) (with π(1 + ε) ≤ 4, say). Choose i and m1 < · · · < mn with (x̃j)n

j=1

C-equivalent to the ℓpn basis where we set xj = ximj
and x̃j = x̃imj

for all j. Then choose j1 < · · · jk
with (xji

) 4-unconditional. But then (xji
) is 8-equivalent to (x̃ji

), and is hence 8C-equivalent to the ℓpk
basis.

If Case II in the proof of 4.1 does not occur, we have by Case III that there exists a generalized diago-
nal (x̃in,jn

)∞n=1 of (xij) so that (|x̃in,jn
|p)∞n=1 is uniformly integrable. Hence immediately, (|xin,jn

|p)∞n=1

is uniformly integrable, and so by Corollary 4.4, (xin,jn
) has a subsequence (yk) (which is of course also

a generalized diagonal) satisfying III of 4.1. This completes the proof of Theorem 4.2(a).
To obtain 4.2(b), we need two further “Banach” properties of preduals of von Neumann algebras.

The first one holds in complete generality.

Lemma 4.6. Let M be a von-Neumann algebra, and let (fn) be a bounded sequence in M∗ such that
(fn) is not relatively weakly compact. Then (fn) has a subsequence equivalent to the ℓ1-basis.

We give a “quantitative” proof of this result at the end of this section, using the case for commutative
N established in [R1]. In fact, Lemma 4.6 is due to H. Pfitzner [Pf]. However, the second result we need
is a “localization” of our proof, which does not seem to follow directly from previously known material.
This result yields that if n elements of Ba(N∗) (N finite) have mass at least η on pairwise orthogonal
projections, then k of these are C-equivalent to the ℓ1k-basis. Here, C depends only on η, n on k and
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η. To make this more manageable, let us simply say that n elements f1, . . . , fn of the predual of a
von-Neumann algebra M are η-disjoint provided there exist pairwise orthogonal projections P1, . . . , Pn

in M such that

‖PifiPi‖1 ≥ η for all i .(4.34)

(Here, if P ∈ M and f ∈ M∗, PfP is defined by: 〈T, PfP 〉 = 〈PTP, f〉 for all T ∈ M. Also, ‖ · ‖1

denotes the predual norm on M∗.) (We shall also say f1, . . . , fn are disjoint provided there are pairwise
orthogonal projections P1, . . . , Pn in M with fi = PifiPi for all i. Evidently if the fi’s are normalized,
they are disjoint iff they are 1-disjoint.)

Lemma 4.7. Given η > 0, then if C > 1
η , then for all k ≥ 1, there is an n ≥ k so that for any

von-Neumann algebra N and η-disjoint elements f1, . . . , fn in Ba(N∗), there exist j1 < · · · < jk with
(fji

)k
i=1 C-equivalent to the ℓ1k basis.

We delay the proof of this result, and complete the proof of Theorem 4.2, i.e., the case p = 1. Again
we make the same assumptions and use the same notation as in the proof of 4.1(a). Now suppose that
Case I of Theorem 4.1 does not occur. We now have, immediately from Proposition 2.5 and Lemma 4.6,
that (xij)∞j=1 is uniformly integrable for all j, and hence again (3.23) holds. Now again assume Case II
of the proof 4.1 holds. Then the proof of 4.1II yields that for all n, there exists a row i and j1 < · · · < jn
so that (fk)n

k=1 is η
3 -disjoint, where fk = xijk

for all k.
Indeed, we obtain there (following formula (4.3)), that for all n, there is a sequence (f1, . . . , fn)

satisfying the assumptions of Lemma 3.3 (for η > 0 and 0 < ε < η
2 ) except for the u-unconditionality

assumption. But the proof of Lemma 3.3 yields precisely that (f1, . . . , fn) is η
2 − ε disjoint; the

unconditionality assumption was only used, in invoking Lemma 3.2. Of course we may choose ε = η
6 ,

and so (f1, . . . , fn) is then η
3 -disjoint.

Then Lemma 4.7 immediately yields Case II of Theorem 4.1. Finally, assuming Case II of the proof
of 4.1 does not occur, we obtain again from the proof of Case III that there exists a generalized diagonal
(gk) of (xij) with (gk) uniformly integrable. Hence there exists a weakly convergent subsequence (fj)
of (gk), by Proposition 2.5. But since we assume the generalized diagonals of (xij) are basic sequences,
(fj) must be weakly null. Now Corollary 4.4 immediately yields Case III of Theorem 4.1.

Remark. The case p = 1 of Theorem 4.2 may be alternatively formulated as follows (with essentially
no assumptions at all on the matrix (xij)).

Theorem 4.2(b)′. Let N be a finite von-Neumann algebra and let (xij) be an infinite semi-normalized
matrix in N∗. Then one of the following holds.

I. Some column has a subsequence equivalent to the usual ℓ1 basis.
II. There is a C ≥ 1 so that for all n, there exists a row with n elements C-equivalent to the usual

ℓ1n basis.
III. Some generalized diagonal of (xij) is weakly convergent.

It remains to prove Lemma 4.7. This is an immediate consequence of the following two results, which
in turn follow from the techniques in [R1]. (We denote the “predual norm” of a general von-Neumann
algebra by ‖ · ‖1.)

Lemma 4.8. Let N be an arbitrary von-Neumann algebra, and f1, f2, . . . be a finite or infinite sequence
in N∗ with ‖fi‖1 ≤ 1 for all i. Assume there are pairwise orthogonal projections P1, P2, . . . in N and
0 < ε < δ ≤ 1 so that for all i,

‖PifiPi‖1 ≥ δ and
∑

j 6=i

‖PjfiPj‖1 ≤ ε .(4.35)

Then f1, f2, . . . is 1
δ−ε equivalent to the usual basis of ℓ1 (resp. ℓ1n if the sequence has n terms).
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Lemma 4.9. Let k ≥ 1 and 0 < ε < 1 be given. There is an n ≥ k so that given any von Neumann
algebra N , f1, . . . , fn ∈ Ba(N∗), and pairwise orthogonal projections P1, . . . , Pn in N , there exist
j1 < j2 < · · · < jk so that for all 1 ≤ i ≤ k,

∑

r 6=i

‖Pjr
fji
Pjr

‖1 < ε .(4.36)

Remark. We obtain that we may choose n = kℓ where ℓ = [1/ε] + 1.

Proof of Lemma 4.7. Let C > 1
η and choose 0 < ε < η with 1

η−ε < C. Let n be as in Lemma 4.9,

f1, . . . , fn as in the hypotheses of 4.7, and choose j1, . . . , jk satisfying the conclusion of 4.9. Then
(fji

)k
i=1 is C-equivalent to the ℓ1k basis by Lemma 4.8.

Proof of Lemma 4.8. Let n <∞ be less than or equal to the number of terms in the sequence, and let
c1, . . . , cn be given scalars with

n∑

i=1

|ci| = 1 .(4.37)

Let g =
∑n

i=1 cifi. Since the Pj ’s are pairwise orthogonal, we have that

‖g‖1 ≥
n∑

j=1

‖PjgPj‖1 .(4.38)

Now fixing j,

‖PjgPj‖1 ≥ ‖PjcjfjPj + Pj

∑

i6=j

cifiPj‖1

≥ |cj |δ −
∑

i6=j

|ci| ‖PjfiPj‖1

(4.39)

by (4.35) and the triangle inequality. Hence using (4.38) and (4.39),

‖g‖1 ≥
n∑

j=1

|cj |δ −
n∑

j=1

∑

i6=j

|ci| ‖PjfiPj‖1

= δ −
n∑

i=1

|ci|
∑

j 6=i

‖PjfiPj‖1 by (4.37)

≥ δ − ε by (4.37) and (4.35).

(4.40)

This completes the proof.

We finally deal with Lemma 4.9. This result follows from the simplest possible setting: N = ℓ∞n ,
the fi’s are in ℓ1+n (i.e., the positive part of N∗ = ℓ1n), and the orthogonal projections Pi correspond to
multiplication by χ{i} for all i. That is, we finally have the following elementary disjointness result.

Lemma 4.10. A. Let f1, f2, . . . be a bounded infinite subset of ℓ1+, and let ε > 0. There exist n1 <
n2 < · · · so that for all i,

∑

j 6=i

fni
(nj) < ε .(4.41)

B. Let k ∈ N and ε > 0 be given. There exists an N ≥ k so that given f1, . . . , fN ∈ Ba ℓ
1+
N , there exist

n1 < n2 < · · · < nk so that for all 1 ≤ i ≤ k, (4.41) holds.

Remark. Part A is a special case of Lemma 1.1 of [R1]. Part B appears to be new. We obtain in fact
that we may let N = kℓ where ℓ = [1/ε] + 1.
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Proof of Lemma 4.9. Let ε > 0 and N be as in the conclusion of 4.10B. Let the fi’s and Pi’s be as in
the statement of 4.9. For each i, define f̃i in ℓ1+ by f̃i(j) = ‖PjfiPj‖1 for all 1 ≤ j ≤ N . Then

N∑

j=1

‖PjfiPj‖1 = ‖f̃i‖1 ≤ ‖fi‖1 ≤ 1(4.42)

for all i. Now the conclusion of B yields j1 < · · · < jk so that
∑

r 6=i

f̃ji
(jr) < ε for all 1 ≤ i ≤ k .(4.43)

Then fj1 , . . . , fjk
satisfies the conclusion of Lemma 4.9.

At last, we give the proof of Lemma 4.10.
We first prove A, using an argument due to J. Kupka [Ku]. We then adapt this argument to

obtain Part B. We regard elements of ℓ1+ as finite measures on subsets of N and use the notation:
f(E) =

∑
j∈E f(j) for f ∈ ℓ1+ and E ⊂ N. Thus, the conclusion of A may be restated: There exists

an infinite M ⊂ N so that

fi(M ∼ {i}) < ε for all i ∈M .(4.44)

Let N1, N2, . . . be pairwise disjoint infinite subsets of N with N =
⋃∞

j=1Nj .

Case I. For each i, there exists ni ∈ Ni so that

fni
(N ∼ Ni) < ε .(4.45)

It then follows that M = {n1, n2, . . . } satisfies (4.44). Indeed, for all i,

{n1, n2, . . . , ni−1, ni+1, . . . } ⊂ N ∼ Ni(4.46)

since the Ni are disjoint, so (4.44) follows from (4.45) and (4.46).

Case II. Case I fails. Thus we may choose i1 so that

fj(N ∼ Ni1) ≥ ε for all j ∈ Ni1 .(4.47)

Now repeat the same procedure; let M1 = Ni1 , and choose M1
1 ,M

2
1 , . . . disjoint infinite subsets of M1

with M1 =
⋃∞

j=1M
j
1 . If Case I fails for M1, we will obtain M2

def
= M j

1 (for some j) so that

fj(M1 ∼M2) ≥ ε for all j ∈M2 .(4.48)

Again divide up M2. This “failure of Case I” must terminate before ℓ steps, where ‖fj‖1 < ℓε for all j.
Indeed, otherwise, we finally obtain N = M0 ⊃M1 ⊃M2 ⊃ · · ·Mℓ and a j ∈Mℓ with

fj(Mi−1 ∼Mi) ≥ ε for all i ,(4.49)

whence ‖fj‖ ≥ ℓε, a contradiction.

Proof of Part B. Let ℓ = [1/ε] + 1 and let N = kℓ. Let then f1, . . . , fN ∈ Ba(ℓ1+N ) be given. Of course
the conclusion of Part B may be restated: There exists an M ⊂ {1, . . . , N} with #M = k so that (4.44)
holds.

Let N1, . . . , Nk be disjoint subsets of {1, . . . , N}, each of cardinality kℓ−1, and just repeat the
argument for Part A, Case I. If Case I fails, we repeat again the rest of the argument: that is, we
find i1 satisfying (4.47) and set M1 = Ni1 . Now we just choose M1

1 , . . . ,M
k
1 disjoint subsets of M1,

each of cardinality kℓ−2; if Case I fails for M1, we continue as before, with M2 satisfying (4.48) and
M2 ⊂ M1, #M2 = kℓ−2. If Case I fails for ℓ steps, we obtain finally {1, . . . , N} = M0 ⊃ M1 ⊃ · · ·Mℓ

with #Mi = kℓ−i for all i, so #Mℓ = 1; and for j the unique number of Mℓ, (4.49) holds, whence again
‖fj‖ ≥ ℓε > 1, a contradiction.
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Let us say that a finite or infinite sequence (fi) satisfying the hypotheses of Lemma 4.8 is (δ, ε)-
relatively disjoint . It then follows from arguments in [R1] that the closed linear span of such a sequence
is K-complemented in N∗, where K depends only on δ and ε. Indeed, let W denote the closed linear
span of the fi’s; let P1, P2, . . . be as in the statement of 4.8, and let gj = PjfjPj for all j, then let Z
denote the closed linear span of the gj ’s. Of course then Z is isometric to ℓ1 (or ℓ1n if the sequence has
n terms). We may easily define a contractive projection R : N∗ → Z as follows. For each j, choose by
duality an element ϕj ∈ N of norm one with ϕj = PjϕjPj and

〈ϕj , gj〉 = ‖gj‖1 .(4.50)

(Note that 1 ≥ ‖gj‖1 ≥ δ for all j.) Then define

R(f) =
∑

〈ϕj , f〉‖gj‖−1
1 gj(4.51)

for f ∈ N∗. Next, define an operator U : W → Z by

U(
∑

cjfj) =
∑

cjgj(4.52)

for all cj ’s with
∑ |cj | <∞. Then Lemma 4.8 yields that U is invertible with

‖U−1‖ ≤ (δ − ε)−1 .(4.53)

Now a simple computation yields that

‖U(w) −R(w)‖ ≤ ε

δ
‖U(w)‖ for all w ∈ W .(4.54)

It then follows that R|W is an isomorphism mapping W onto Z, with

‖(R|W )−1‖ ≤
[(

1 − ε

δ

)
(δ − ε)

]−1 def
= K .(4.55)

Finally, Q
def
=(R|W )−1R is thus a projection from N onto W , with ‖Q‖ ≤ K. It then follows that the

elements satisfying the conclusion of Lemma 4.7 have a “well-complemented” linear span.
We also obtain finally, a quantitative proof of Lemma 4.6, yielding also the result of H. Pfitzner [Pf]

that the preduals of von Neumann algebras have Pe lczyński’s property (V ∗).

Lemma 4.6′. Let N be an arbitrary von Neumann algebra, and W be a subset of Ba N∗ so that there
exists a sequence P1, P2, . . . of orthogonal projections in N with

lim j sup
w∈W

|〈Pj , w〉| def= η > 0 .(4.56)

Then given C > 1
η , there exists a sequence w1, w2, . . . in W which is C-equivalent to the usual ℓ1-basis,

with closed linear span C-complemented in N∗.

Remark. By Akemann’s criterion [A], it thus follows that any bounded non-relatively weakly compact
subset of N∗ contains a sequence equivalent to the ℓ1-basis, with complemented span. This is an
equivalent formulation of property (V ∗).

Proof. It follows easily that we may choose (fi) a sequence in W and n1 < n2 < · · · so that

lim |〈Pnj
, fj〉| ≥ η .(4.57)

Then given 0 < ε < η′ < η, Lemma 4.10A yields a subsequence (f ′
j) of (fj) so that (f ′

j) is (η′, ε)-

relatively disjoint. Finally, since η′ may be arbitrarily close to η and ε arbitrarily small, we deduce from
Lemma 4.8 and (4.55) that given C > 1

η , (f ′
i) may be chosen C-equivalent to the ℓ1-basis with span

C-complemented in N∗.
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5. Complements on the Banach/operator space structure of Lp(N )-spaces

We give here several applications of our main result, and the techniques used in its proof. For the first
one, we let Row (resp. Col) denote the operator row (resp. column) space. We also follow the notation
in [Pi2]: for a given operator space X , Xop (the “opposite” of X) denotes the following operator space:

if X ⊂ B(H) and (xij) is an element of K⊗opX , regarded as a matrix, then Xop def
={(xji) : (xij) ∈ K⊗op

X}, where K denotes the space of compact opertors on ℓ2. One then has that Row∗ = Rowop = Col.

Proposition 5.1. Let N be a finite von Neumann algebra. Then neither Row nor Col is completely
isomorphic to a subspace of L1(N ).

Proof. Suppose to the contrary that there exists an X ⊂ L1(N ) with X completely isomorphic to Row.
But then Xop ⊂ L1(N op) is completely isomorphic to Col. Let then M = N op⊗̄N . M is again a finite
von-Neumann algebra, and now Xop⊗̂X is a subspace of L1(M); that is, Col ⊗̂Row is completely
isomorphic to a subspace of L1(M). But Col ⊗̂Row is (completely isometric to) C1; this contradicts
our main result.

Remark. An operator spaceX is called homogeneous if every bounded linear operator onX is completely
bounded; X is called Hilbertian if it is Banach isomorphic to a Hilbert space. The above argument then
yields the following generalization (since Row is indeed a homogeneous Hilbertian operator space).

Proposition. Let X be an infinite dimensional Hilbertian homogeneous operator space so that X∗ is
completely isomorphic to Xop, and let N be a finite von Neumann algebra. Then X is not completely
isomorphic to a subspace of L1(N ).

To obtain this, first observe that the hypotheses yield that X∗ ⊗op X is Banach isomorphic to
K. Hence X∗⊗̂X is Banach isomorphic to C1. But X∗⊗̂X is completely isomorphic to Xop⊗̂X by
hypothesis; as above, if we then assume that X ⊂ L1(N ), we obtain that C1 Banach embeds in L1(M),
again contradicting our main result.

Our next result yields characterizations of those subspaces of Lp(N ) which contain ℓp isomorphically
(1 ≤ p < 2, N finite). We have need of the following concept. (For isomorphic Banach spaces X and
Y , d(X,Y ) = inf{‖T ‖ ‖T−1‖ : T : X → Y is a surjective isomorphism).

Definition 5.2. Let 1 ≤ p ≤ ∞. A Banach space X is said to contain ℓpn’s if there is a C ≥ 1 so that
for all n, there exists a subspace Xn of X with d(Xn, ℓ

p
n) ≤ C.

A remarkable result of J.L. Krivine yields that if a Banach space contains ℓpn’s, it contains them
almost isometrically ([Kr]; cf. also [R3], [L]). That is, then for every ε and n, one can choose Xn ⊂ X
with d(Xn, ℓ

p
n) < 1+ε. (Of course the famous Dvoretzky theorem yields that every infinite dimensional

Banach space contains ℓ2n’s almost isometrically; also the case p = 1 or ∞ in Krivine’s Theorem was
established previously by Giesy-James [GJ].)

We also need the following natural notion.

Definition 5.3. Let N be a von Neumann algebra and 1 ≤ p <∞. A sequence (gn) in Lp(N ) is called
disjointly supported provided there exists a sequence P1, P2, . . . of pairwise orthogonal projections in N
so that gj = PjgjPj for all j. A semi-normalized sequence (fn) in Lp(N ) is called almost disjointly
supported if there exists a disjointly supported sequence (gj) in Lp(N ) so that limn→∞ ‖fn−gn‖Lp(N ) =
0.

Of course a disjointly supported sequence of non-zero elements spans a subspace isometric to ℓp. A
standard elementary perturbation argument then yields that an almost disjointly supported sequence
in Lp(N ) has, for every ε > 0, a subsequence spanning a subspace (1 + ε)-isomorphic to ℓp. The next
result yields in particular that for N finite, and 1 ≤ p < 2, subspaces of Lp(N ) which are isomorphic
to ℓp always contain almost disjointly supported sequences.
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Theorem 5.4. Let 1 ≤ p < 2 and N be a finite von Neumann algebra; let τ be a faithful normal tracial
state on N . Let X be a closed linear subspace of Lp(N ). The following assertions are equivalent.

1. X contains a subspace isomorphic to ℓp.
2. X contains ℓpn’s.
3. {|x|p : x ∈ Ba(X)} is not uniformly integrable.
4. supf∈Ba(X) ωp(f, ε) = supf∈Ba(X) ω̃p(f, ε) = 1 for all ε > 0.

5. The p and 1 norms on X are not equivalent (in case p > 1).
6. X contains an almost disjointly supported sequence.
7. For all ε > 0, X contains a subspace (1 + ε)-isomorphic to ℓp.

Remarks. 1. This result is established for the commutative case in [R2]; the case p > 2 is also valid,
and follows (with some extra work for assertion 5) from the results in [S1]. Again, the commutative
case for p > 2 is immediate from the classical work of Kadec-Pe lczyński [KP]. Also, condition 5 may
be replaced by the following one, valid also for p = 1:

5′. The p and q quasi-norms are not equivalent on X for all 0 < q < p.

2. The equivalences of 1, 5, 6 and 7 of Theorem 5.4 follow also from recent work of N. Randrianantoanina,
which establishes these also for semi-finite von-Neumann algebras N and 1 ≤ p <∞, p 6= 2 ([Ra1] and
[Ra2]).

Proof. We show 1 =⇒ 2 =⇒ 4 =⇒ 6 =⇒ 7 =⇒ 1, 4 =⇒ 3 =⇒ 2, and 4 =⇒ 5 =⇒ 3 in case
p > 1. Of course 1 =⇒ 2 and 7 =⇒ 1 are trivial. So is 4 =⇒ 3, in virtue of Lemma 2.3.

2 =⇒ 4. Fix δ > 0. Choosing an “almost isometric” copy of ℓpn in X by Krivine’s theorem, we shall
show that for n large enough, one of the natural basis elements fi of this copy is such that ω̃p(fi, δ) is
almost equal to 1.

Define λ by

λ = sup{ω̃p(x, δ) : x ∈ X, ‖x‖ ≤ 1} .(5.1)

Let C > 1, and using Krivine’s theorem, choose f1, . . . , fn ∈ Ba(X) with (f1, . . . , fn) C-equivalent to
the ℓpn basis. In particular, we have that

∥∥∥
n∑

i=1

±fi

∥∥∥
p
≥ 1

C
n1/p for all choices of ± .(5.2)

Again by the final assertion of Lemma 2.3, we may choose for each i a ψi ∈ N so that

‖ψi‖∞ ≤ δ−1/p and ‖fi − ψi‖ ≤ ω̃p(fi, δ) ≤ λ .(5.3)

Thus letting β be as in the proof of Lemma 3.1, again we have

1

C
n1/p ≤ ‖

∑
fi ⊗ ri‖Lp(β) by (5.2)

≤ ‖
∑

ψi ⊗ ri‖L2(β) + ‖
∑

(fi − ψi) ⊗ ri‖Lp(β)

≤ δ−1/p√n+ λn1/p

(5.4)

by (5.3) and the fact that Lp(β) is type p with constant one.
Thus

1

C
− 1

δ1/pn
1
p
− 1

2

≤ λ .(5.5)

Since C > 1 and n are arbitrary, we obtain that λ = 1, proving 2 =⇒ 4.
4 =⇒ 6. We first note that assuming 4, then given 1 > ε > 0, we may choose f ∈ X with ‖f‖p = 1

and P ∈ P(N ) with τ(P ) < ε so that

‖fP‖p > 1 − ε and ‖f(I − P )‖p < ε .(5.6)
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Indeed, choose f in X of norm one so that ω̃p(f, ε) > 1 − ε. Then choose P a spectral projection for

|f | with ‖fP‖p > (1 − εp)1/p. But then since P commutes with |f |,
‖fP‖p

p = τ(|f |pP ) and ‖f(I − P )‖p
p = τ(|f |p(I − P )) ,(5.7)

whence

1 ≥ τ(|f |pP ) + τ(|f |p(I − P )) ≥ (1 − ε) + ‖f(I − P )‖p
p(5.8)

1 ≥ τ(|f |pP ) + τ(|f |p(I − P ))(5.9)

≥ 1 − εp + ‖f(I − P )‖p
p ,

so ‖f(I − P )‖p < ε as desired. Now since |f | and |f∗| are unitarily equivalent in N , we also obtain the
existence of a Q ∈ P (N ) with τ(Q) < ε so that

‖Qf‖p > 1 − ε and ‖f(I −Q)‖p < ε .(5.10)

Then let R = P ∨Q. We have

τ(R) < 2ε and ‖f −RfR‖ < 2ε .(5.11)

Indeed, the first estimate is trivial; but

f −RfR = f(I −R) + (I −R)fR = f(I − P )(I −R) + (I −R)(I −Q)fR

and so (5.11) follows from (5.6) and (5.10).
Now using that for ε > 0, f of norm 1 in X and R may be chosen satisfying (5.11) we choose

inductively f1, f2, . . . in X of norm one, 1 > δ1 > δ2 > · · · > 0, and Q1, Q2, . . . in P(N ) so that for all
j,

‖fj −QjfjQj‖p <
1

2j
and τ(Qj) ≤ δj

2j
(5.12)

ωp(fj , δj+1) <
1

2j
.(5.13)

To see this is possible, just choose δ1 = 1/2, then choose f1 and Q1 thanks to (5.11). Suppose f1, . . . , fn,
and δn chosen. By uniform integrability of {|fn|p}, choose δn+1 < δn so that ωp(fn, δn+1) < 1/2n+1.
Then choose fn+1 and Qn+1 satisfying (5.12) for j = n+ 1.

Now define projections Pj and Q̃j by (3.19). The Pj ’s are orthogonal and by the argument for the
last part of Proposition 2.5, fixing j, we have

τ(Q̃j) ≤
∑

k>j

τ(Qk) ≤ δj+1

∑

k>j

1

2k
by (5.12)

< δj+1 .

(5.14)

Hence

‖Q̃jfj‖p ≤ ωp(f∗
j , δj+1) = ωp(fj , δj+1) <

1

2j

(by (5.13)) and also

‖fjQ̃j‖p ≤ ωp(fj , δj+1) <
1

2j
.

Hence

‖Q̃jfjQj‖p <
1

2j
and ‖QjfjQ̃j‖p <

1

2j
.(5.15)

Hence finally we have by (5.12) and (5.15),

‖fj − PjfjPj‖ ≤ 3

2j
for all j .(5.16)
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Thus (fj) is almost disjointly supported, proving that 6 holds.
6 =⇒ 7 is a standard perturbation argument in Banach space theory. Assuming 6 holds, we may

choose a normalized disjointly supported sequence (gn) in Lp(N ) and a sequence (fn) in X so that
∑

‖gn − fn‖p <∞ .(5.17)

But now (gn) is 1-equivalent to the ℓp-basis, and a simple perturbation argument gives that given ε > 0,
there is an N so that (fn)n≥N is (1 + ε)-equivalent to the ℓp basis. (Thus (fn) is “almost isometrically
equivalent” to the ℓp basis.)

3 =⇒ 2. We have that if p = 1, X contains a subspace isomorphic to ℓ1 by Lemma 4.6, so assume
p > 1. We may choose a sequence (fn) of norm-1 elements of X , δ1 > δ2 > · · · with δn → 0 and η > 0
so that

ωp(fn, δn) > η for all n .(5.18)

By passing to a subsequence, we may assume without loss of generality that (fn) is weakly convergent,
with weak limit f , say. But

ωp(fn − f, δn) ≥ ωp(fn, δn) − ωp(f, δn)(5.19)

and hence

lim n→∞ωp(fn − f, δn) ≥ η .(5.20)

That is, we have now obtained a weakly null sequence (gn) in X so that

(|gn|p) is not uniformly integrable.(5.21)

By Corollary 3.4, after passing to a subsequence of (gn), we may assume

(gn ⊗ rn) is C-equivalent to the usual ℓp-basis in Lp(β) for some C.(5.22)

Now Lemma 4.3 yields that for all n, there exist m1 < m2 < · · · < mn so that gm1
, . . . , gmn

is
4-unconditional, and hence

(gmi
)n
i=1 is 4C-equivalent to the ℓpn-basis.(5.23)

This proves that 2 holds. Now assume p > 1.
4 =⇒ 5. Let ε > 0 and choose f ∈ X with ‖f‖p = 1 and P ∈ P(N ) with τ(P ) < ε so that (5.6)

holds. Then of course

‖f(I − P )‖1 < ε .(5.24)

Now letting 1
p + 1

q = 1,

‖fP‖1 ≤ ‖f‖p‖P‖q ≤ ε1/q by Hölder’s inequality.(5.25)

Thus

‖f‖1 < ε+ ε1/q .(5.26)

Since ‖f‖p = 1 and ε > 0 is arbitrary, 5 holds.
5 =⇒ 3. Suppose 5 holds, yet 3 were false. Choose 0 < δ so that

ω̃p(f, δ) ≤ 1

2
for all f ∈ Ba(X) .(5.27)

Let f ∈ X , ‖f‖p = 1. By the last statement of Lemma 2.3, choose P a spectral projection for |f | so
that fP ∈ N with

‖f(I − P )‖p ≤ 1

2
and ‖fP‖∞ ≤ δ−1/p .(5.28)
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Then

1

2p
≤ ‖fP‖p

p = τ(|f |pP ) (since P ↔ |f |)

= τ(|f | |f |p−1P )

≤ ‖f‖1δ
1− 1

p .

(5.29)

That is,

‖f‖1 ≥ 2−1/pδ
1
p
−1 def

= C .(5.30)

(5.30) yields that ‖g‖p ≤ C‖g‖1 for all g ∈ X ; i.e., 5 does not hold, a contradiction. This completes the
proof of the theorem.

The final result of this section deals with the Banach-Saks property.

Definition 5.5. Let X be a Banach space, and 1 < p <∞.
(a) Let (xn) be a weakly null sequence in X. (xn) is called

(i) a Banach-Saks sequence if

lim
n→∞

n−1
∥∥∥

n∑

j=1

yj

∥∥∥ = 0 for all subsequences (yj) of (xj) .(5.31)

(ii) a p-Banach-Saks sequence if

there is a C <∞ so that lim n→∞n
−1/p

∥∥∥
n∑

j=1

yj

∥∥∥ ≤ C for all subsequences (yj) of (xj).(5.32)

(iii) a strong p-Banach-Saks sequence if

lim
n→∞

n−1/p
∥∥∥

n∑

j=1

yj

∥∥∥ = 0 for all subsequences (yj) of (xj).(5.33)

(b) X is said to have the Banach-Saks property (resp. the p-Banach-Saks property) (resp. the strong
p-Banach-Saks property) if every weakly null sequence in X has a Banach-Saks (resp. p-Banach-Saks)
(resp. strong p-Banach-Saks) subsequence.

The classical paper of Banach-Saks [BS] yields that commutative Lp spaces have the p-Banach-Saks
property, for 1 < p ≤ 2; the fact that L1-spaces have the Banach-Saks property was proved later by
Szlenk [Sz]. Our last result yields in particular a generalization to the spaces Lp(N ), N finite. Most of
its assertions follow very quickly from our previous results.

Proposition 5.6. Let N be a finite von-Neumann algebra and 1 < p < 2.

1. L1(N ) has the Banach-Saks property and Lp(N ) has the p-Banach-Saks property.
2. A weakly null sequence (fn) in Lp(N ) has a strong p-Banach-Saks subsequence if (|fn|p) is uni-

formly integrable. If (|fn|p) is not uniformly integrable, (fn) has a subsequence (f ′
n) so that for

some c > 0 and all subsequences (yj) of (f ′
j),

limn−1/p
∥∥∥

n∑

j=1

yj

∥∥∥ ≥ c .(5.34)

3. A closed linear subspace X of Lp(N ) has the strong p-Banach-Saks property if and only if X has
no subspace isomorphic to ℓp.
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Proof. Corollary 4.4 together with Proposition 2.5 yields that L1(N ) has the Banach-Saks property.
It also yields the first assertion in 2. Suppose (|fn|p) is not uniformly integrable and assume (without
loss of generality) that ‖fn‖p ≤ 1 for all n. Applying Corollary 3.4 and Lemma 4.3, we may choose a
subsequence (f ′

n) of (fn) so that for some C ≥ 1,

(f ′
n ⊗ rn) is C-equivalent to the usual ℓp-basis.(5.35)

and

(f ′
n1
, . . . , f ′

n
2k

) is 4-unconditional for all k ≤ n1 < n2 < · · · < n2k .(5.36)

Suppose (yj) is a subsequence of (f ′
j). Then it follows that for all k,

(yk+1, . . . , yk+2k) is (4C)-equivalent to the ℓp
2k -basis.(5.37)

Let n be a “large” integer and choose k with

2k−1 ≤ n < 2k .(5.38)

Then
∥∥∥

n∑

j=k+1

yj

∥∥∥ ≥ (n− k)1/p

4C
by (5.37) .(5.39)

Thus
∥∥∥

n∑

j=1

yj

∥∥∥
p
≥ (n− k)1/p

4C
− k ≥ (n− log2 n− 1)1/p

4C
− log2 n− 1 .(5.40)

Hence

lim n→∞n
−1/p

∥∥∥
n∑

j=1

yj

∥∥∥
p
≥ 1

4C
.(5.41)

This completes the proof of assertion 2 of the Proposition. But we also have that

∥∥∥
n∑

j=k+1

yj

∥∥∥
p
≤ 4C(n− k)1/p by (5.37),(5.42)

and so
∥∥∥

n∑

j=1

yj

∥∥∥
p
≤ 4C(n− log2 n)1/p + log2 n+ 1 ,(5.43)

thus

lim n→∞n
−1/p

∥∥∥
n∑

j=1

yj

∥∥∥
p
≤ 4C .(5.44)

This proves that Lp(N ) has the p-Banach-Saks property, for any weakly null sequence (fn) in Lp(N )
either has (|fn|p) uniformly integrable (and hence a strong p-Banach-Saks subsequence), or a subse-
quence (f ′

n) as above.
The final assertion of the Proposition follows immediately from Theorem 5.4 and assertion 2.

Remark. Of course Hilbert space has the 2-Banach Saks property. Actually, it can be shown that
Lp(N ) has the 2-Banach Saks property for p > 2 and N finite, and this is best possible (in general).
Indeed, if (fj) is a weakly null sequence in Lp(N ), then if ‖fj‖p → 0, (fj) trivially has a p-Banach Saks
subsequence; the same is true if (fj) has a subsequence equivalent to the ℓp-basis (and of course a p-
Banach Saks sequence is a 2-Banach Saks sequence). Otherwise, combining arguments in [S1] Theorem
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2.4 with the arguments in Proposition 5.6, we see that there exists a subsequence (f ′
j) of (fj) such that

its all subsequences (yn) are 2-Banach Saks.

We conclude this section with a brief discussion of the following open

Problem. Let 1 < p < 2 and (fn) be a seminormalized weakly null sequence in Lp(N ) (N a finite
von Neumann algebra) such that (|fn|p) is not uniformly integrable. Does (fn) have a subsequence
equivalent to the usual ℓp basis?

As pointed out previously, the answer is affirmative if (fn) has an unconditional subsequence. Ac-
tually, it can be proved that if (fn) satisfies the hypotheses of this Problem, it has a subsequence (f ′

n)
which dominates the ℓp-basis and moreover has spreading model equivalent to the ℓp-basis . (The last
assertion follows immediately from our proof of Proposition 5.6.) It may then be shown that the above
Problem is equivalent to the following one (in which the hypothesis concerning (|fn|p) no longer enters).

Problem′. Let (fn) be a seminormalized basic sequence in Lp(N ), p and N as above. Does (fn) have
a subsequence (f ′

n) which is dominated by the ℓp-basis? i.e., such that
∑
cjf

′
j converges in Lp(N )

whenever
∑ |cj |p <∞?

6. The Banach isomorphic classification of the spaces Lp(N ) for N hyperfinite
semi-finite

We first fix some notation. Let 1 ≤ p < ∞. We let Sp = (
⊕∞

n=1 C
n
p )p (= Lp(⊕Mn)∞). To avoid

confusion, we denote by Lp ⊗p X the Bochner space Lp(X,m), where m is Lebesgue measure and X is
a Banach space. Thus e.g., Lp⊗pCp = Lp(Cp) = Lp(L∞(m)⊗̄B(ℓ2)). R denotes the hyperfinite type II
factor, and Lp(R) ⊗p Cp denotes Lp(R⊗̄B(ℓ2)) (so R⊗̄B(ℓ2) is the hyperfinite type II∞ factor).

The main motivating result of this section is as follows.

Theorem 6.1. Let N be a hyperfinite semi-finite infinite dimensional von-Neumann algebra, and let
1 ≤ p < ∞, p 6= 2. Then Lp(N ) is (completely) isomorphic to precisely one of the following thirteen
Banach spaces.

ℓp , Sp , Lp , Cp , Sp ⊕ Lp , Cp ⊕ Lp , Lp ⊗p Sp , Cp ⊕ (Lp ⊗p Sp)

Lp(R) , Lp ⊗p Cp , Cp ⊕ Lp(R) , Lp(R) ⊕ (Lp ⊗p Cp) , Lp(R) ⊗p Cp .

Theorem 6.1 is an immediate consequence of the following finer result concerning embeddings.

Theorem 6.2. Let 1 ≤ p < 2. If N is as in 6.1, then Lp(N ) is (completely) isomorphic to one of the
thirteen spaces in the tree in Figure 1. If X 6= Y are listed in the tree, then X is Banach isomorphic
to a subspace of Y if and only if X can be joined to Y through a descending branch (in which case X
is completely isometric to a subspace of Y ).

Remark. In the language of graph theory, Theorem 6.2 asserts that the tree in Figure 1 is the Hasse
diagram for the partially ordered set consisting of the equivalence classes of Lp(N ) under Banach
isomorphism (over N as in 6.1), with the order relation: [X ] ≤ [Y ] provided X is isomorphic to a
subspace of Y .

Parts of Theorem 6.2 require previously known results, some of which are very recent. It is established
in [S2] that the first nine spaces in the list in Theorem 6.1 are isomorphically distinct when p = 1, and
exhaust the list of the possible Banach isomorphism types of Lp(N ) for N type I (N as in 6.1), p 6= 2.

Theorem 6.2 yields the new result in the type I case: Lp⊗pCp does not embed in Cp ⊕ (Lp⊗pSp) for
1 ≤ p < 2; (another new result in this case, that Cp does not embed in Lp ⊗p Sp, follows immediately
from Corollary 1.2); the other embedding results stated in 6.2 for the type I case are given in [S2]. We
give here a new proof of the particular case that Lp ⊗p Sp does not embed in Lp ⊕Cp, using the Main
Result of this paper.
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Figure 1.

We first proceed with the non-embedding results required for Theorem 6.2. The following theorem
is crucial.

Theorem 6.3. Let N be a finite von Neumann algebra and 1 ≤ p < 2. Then Lp⊗pCp is not isomorphic
to a subspace of Cp ⊕ Lp(N ).

We now fix 1 ≤ p < 2 for the remainder of this section.
We first require

Lemma 6.4. Let T : Lp → Cp be a given bounded linear operator, and let ε > 0. Then there exists an
f ∈ Lp with f {1,−1}-valued so that ‖Tf‖ < ε.

Sublemma. The conclusion of 6.4 holds, replacing Cp by ℓ2 in its hypotheses.

Proof. Fix n a positive integer. Using the generalized parallelogram identity,

av±

∥∥∥T
n∑

j=1

±χ[ j−1

n
, j

n
)

∥∥∥
2

2
=

n∑

j=1

‖T (χ[ j−1

n
, j

n
))‖2

2

≤ ‖T ‖2
n∑

j=1

‖χ[ j−1

n
, j

n
)‖2

p

= ‖T ‖2 n

n2/p
= ‖T ‖2 1

n2/p−1
.

(6.1)
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It follows that we may choose ηj = ±1 for all j so that

∥∥∥T
( n∑

j=1

ηj
χ

[ j−1

n
, j

n
)

)∥∥∥
2
≤ ‖T ‖
n

1
p
− 1

2

.(6.2)

Now simply choose n so that ‖T‖

n
1
p
−

1
2

< ε and let f =
∑n

j=1 ηj
χ

[ j−1

n
, j

n
).

Proof of Lemma 6.4. Let (eij) be the matrix units basis for Cp, and define for each n,

Hn = [eij : 1 ≤ i ≤ n and 1 ≤ j <∞ or 1 ≤ i <∞ and 1 ≤ j ≤ n] .(6.3)

Let Pn be the natural basis projection onto Hn; i.e., Pn : Cp → Cp is the projection with Pn(eij) = 0 if
eij /∈ Hn, Pn(eij) = eij if eij ∈ Hn (so ‖Pn‖ ≤ 2). Then Hn is isomorphic to ℓ2, so by the sub-lemma
we may choose fn in Lp with fn {1,−1}-valued and

‖PnTfn‖ ≤ 1

2n
.(6.4)

We claim that

lim
n→∞

‖Tfn‖ = 0 .(6.5)

Of course (6.5) yields the conclusion of the Lemma. Suppose (6.5) were false. It follows that (fn) has
a subsequence (f ′

n) so that

(Tf ′
n) is equivalent to the usual ℓp-basis(6.6)

and

(f ′
n) converges weakly in L2 .(6.7)

((6.6) follows because (f ′
n) may be chosen to be a small perturbation of a “block-off-diagonal sequence”,

by 6.4).
Of course (f ′

n) converges weakly in Lp as well, hence (Tf ′
n) also converges weakly, a contradiction

when p = 1 since then (Tf ′
n) is equivalent to the ℓ1-basis.

When p > 1, letting f be the weak limit of (fn), we have that Tf = 0 since Tf ′
n → 0 weakly.

Moreover ‖f‖∞ ≤ 2, so letting f ′′
n = f ′

n − f for all n, (f ′′
n ) is a uniformly bounded weakly null sequence

in Lp with (Tf ′′
n) = (Tf ′

n) equivalent to the ℓp-basis. Finally, since (f ′′
n ) is also semi-normalized in Lp,

(f ′′
n ) has a subsequence (gn) equivalent to the usual ℓ2-basis. (Indeed, we may choose (gn) equivalent

to the ℓ2-basis in L2-norm, and unconditional. But then since Lp has cotype 2, (gn) is equivalent to the
ℓ2-basis in the Lp-norm). Still, (Tgn) is equivalent to the ℓp-basis; this is impossible since p < 2.

We now apply our Main Result and Lemma 6.4, to give the

Proof of Theorem 6.3. Suppose to the contrary that N is a finite von Neumann algebra and T : Lp ⊗p

Cp → Cp⊕Lp(N ) is an isomorphic embedding. Of course we may assume that ‖T ‖ = 1; let ε = ‖T−1‖−1.
Thus we have

‖Tf‖ ≥ ε‖f‖ for all f ∈ Lp ⊗p Cp .(6.8)

Let P be the projection of Cp ⊕ Lp(N ) onto Cp with kernel Lp(N ), and set Q = I − P . Also, for each
i and j, let Qij be the natural projection of Lp ⊗p Cp onto the space

Eij
def
={f ⊗ eij : f ∈ Lp} .(6.9)
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(As before, eij denotes the i, jth matrix unit for Cp. Visualizing Cp as matrices of scalars and Lp ⊗pCp

as all matrices (fij) of functions in Lp with

‖(fij)‖ =

(∫
‖(fij(w))‖p

Cp
dw

)1/p

<∞ ,

then Qij((fkℓ)) = fij ⊗ eij . Eij is just the space of matrices with all entries zero except in the ijth

slot). Now fix i and j. Of course Eij is isometric to Lp.
Thus by Lemma 6.4, we may choose fij ∈ Lp with fij {1,−1}-valued so that

‖PTfij ⊗ eij‖ <
ε

2i+j+2
.(6.10)

Now letting X = [fij ⊗ eij : i, j = 1, 2, . . . ], then X is a 1-GCp space, in the terminology of the
Introduction. That is, every row and column of (fij ⊗ eij) is 1-equivalent to the ℓ2 basis, while every
generalized diagonal is 1-equivalent to the ℓp basis. Hence X is not isomorphic to a subspace of Lp(N )
by our Main Theorem (i.e. Corollary 1.2). However

QT |X is an isomorphic embedding.(6.11)

Indeed, if x =
∑
cij(fij ⊗ eij) with only finitely many cij ’s non zero, and ‖x‖ = 1, then |cij | ≤ 1 for all

i and j (since the Qij ’s are contractive and ‖fij‖ = 1 for all i and j), and so

‖PTx‖ ≤ max
i,j

|cij |
∑

i,j

‖T (fij ⊗ eij)‖

≤
∞∑

i=1

∞∑

j=1

ε

2i+j+2
=
ε

2

(6.12)

using (6.10) and our assumption that T is a contraction. Hence

‖QTx‖ ≥ ε

2
by (6.8).(6.13)

This proves (6.11), and completes the proof by contradiction.

Our localization result, Corollary 1.4, and the preceding proof, yield an alternate proof of the following
result, obtained in [S2].

Proposition 6.5. Lp ⊗p Sp is not isomorphic to a subspace of Cp ⊕ Lp.

Proof. We have that Lp ⊗p Sp is (linearly isometric to) (
⊕∞

n=1 Lp ⊗p C
n
p )p. Thus it suffices to prove

that

lim
n→∞

λn = ∞(6.14)

where

λn = inf{d(Lp ⊗p C
n
p , Y ) : Y is a subspace of Cp ⊕ Lp}(6.15)

and “d” denotes the Banach Mazur distance-coefficient (defined just preceding Corollary 1.4).
Now fix n, and let T : Lp ⊗p C

n
p → Y ⊂ Cp ⊕ Lp be an isomorphic embedding onto Y , with

‖T ‖ = 1 and ‖T−1‖ ≤ 2λn .(6.16)

Using the notation and reasoning in the proof of Theorem 6.3, and setting ε = 1/(2λn), we may
choose for each i and j with 1 ≤ i, j ≤ n, a {1,−1}-valued fij ∈ Lp satisfying (6.10). We thus obtain
that ‖PT |X‖ ≤ ε/2 by (6.12). Hence for all x ∈ X ,

‖QT (x)‖ ≥
(

1

2λn
− ε

2

)
‖x‖ =

1

4λn
‖x‖(6.17)
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using also (6.16). That is, setting Z = QT (X), we have that

d(X,Z) ≤ 4λn .(6.18)

Now X is a 1-GCn
p -space; thus

4λn ≥ βn,1 for all n(6.19)

(in the notation of Corollary 1.4), so (6.14) holds by Corollary 1.4.

We also require the following rather deep result, due to M. Junge [J].

Theorem 6.6. Cq is isomorphic to a subspace of Lp(R) for all p < q < 2.

Finally, we require the following (unpublished) result, due to G. Pisier and Q. Xu [PX2].

Lemma 6.7. Let X be a (closed linear) subspace of Lp ⊗p Cp. Then either X embeds in Lp or ℓp

embeds in X.

For the sake of completeness, we sketch a proof. First, we give an important, quick consequence of
these last two results.

Corollary 6.8. Lp(R) is not isomorphic to a subspace of Lp ⊗p Cp.

Proof. By Theorem 6.6, it suffices to prove that Cq does not embed in Lp ⊗p Cp if p < q < 2. If Cq did
embed, then since it does not embed in Lp, it would have a subspace isomorphic to ℓp, by Lemma 6.7.
However it is a standard fact that every infinite-dimensional subspace of Cp is either isomorphic to ℓ2

or contains a subspace isomorphic to ℓp, a contradiction.
We next sketch the proof of Lemma 6.7 (which also yields the above mentioned standard fact).
Let (xij) be a given matrix in a linear space X . Call a sequence (fk) in X a generalized block diagonal

of (xij) if there exist i1 < i2 < · · · and j1 < j2 < · · · so that for all k,

fk ∈ [xij : ik ≤ i < ik+1 and jk ≤ j < jk+1] .(6.20)

Now if (fk) is a generalized block diagonal of the matrix (eij) consisting of non-zero terms, eij the
matrix units for Cp (as above), then (fk/‖fk‖) is isometrically equivalent to the ℓp-basis. But then it
follows immediately that if (fk) is a normalized generalized block diagonal of (1 ⊗ eij) (in Lp ⊗p Cp)
consisting of non-zero terms, (fk) is also isometrically equivalent to the ℓp-basis. Indeed, for any scalars
c1, c2, . . . with only finitely many non-zero terms, and any 0 ≤ cj ≤ 1,

‖
∑

cjfj(w)‖p
Cp

=
∑

|cj |p |fj(w)|p .(6.21)

Hence

‖
∑

cjfj‖p =

∫
‖

∑
cjfj(w)‖p

Cp
dw =

∑
|cj |p .(6.22)

Now fix n, and let Hn be the subspace of Cp defined in the proof of Lemma 6.4 (specifically, in (6.3)).
Standard results yield that Lp ⊗p Hn embeds in Lp (actually, Lp ⊗p Hn is isomorphic to Lp if p > 1),
and of course I ⊗ Pn is a projection onto Lp ⊗p Hn with ‖I ⊗ Pn‖ ≤ 2 (Pn as defined in the proof of
6.4). Now let X be as in Lemma 6.7, and suppose X does not embed in Lp. Then for each n, we may
choose an xn ∈ X with

‖xn‖ = 1 and ‖(I ⊗ Pn)xn‖ <
1

2n
.(6.23)

But it follows that for any f ∈ Lp ⊗p Cp,

(I ⊗ Pn)(f) → f as n→ ∞ .(6.24)
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A standard travelling hump argument now yields a normalized generalized block diagonal (fk) of (1⊗eij)
and a subsequence (x′j) of (xj) so that

‖x′k − fk‖ <
1

2k
for all k .(6.25)

It follows immediately that (x′k) is equivalent to the ℓp-basis.

Remark. The last part of this proof also yields the fact (due to Y. Friedman [F]) that if X is an infinite-
dimensional subspace of Cp, then X is isomorphic to ℓ2 or ℓp embeds in X . Indeed, assuming X is not
isomorphic to ℓ2, then since Hn is isomorphic to ℓ2, we obtain for each n and xn ∈ X with ‖xn‖ = 1
and ‖Pnxn‖ < 1

2n . Again we then obtain a normalized block diagonal (fk) of (eij) and a subsequence
(x′j) of (xj) satisfying (6.25), and then (x′k) is equivalent to the ℓp basis.

We now give the last and perhaps most delicate of the needed non-embedding results; its proof
requires Theorem 4.1, the “fine” version of our Main Result.

Theorem 6.9. Let N be a finite von Neumann algebra. Then Lp(R) ⊗p Cp is not isomorphic to a
subspace of Lp(N ) ⊕ (Lp ⊗p Cp).

We first give some notation used in the proof. As always, eij ’s denote the matrix units for Cp. Thus
Lp(R) ⊗p Cp = Lp(R⊗̄B(ℓ2)) = the closed linear span of the elementary tensors f ⊗ eij , f ∈ Lp(R), i
and j arbitrary. We denote also the norm on Lp(R) ⊗p Cp as ‖ · ‖p. If X is a closed linear subspace of
Lp(R),

X ⊗p Cp
def
=[x⊗ eij : x ∈ X, i, j ∈ N](6.26)

(where the closed linear span above is taken in Lp(R) ⊗p Cp). Next, we need expressions for the norm
on Lp(R) ⊗ Row, Lp(R)⊗ Column. We easily see that given x1, . . . , xn in Lp(R), then for any i,

∥∥∥
n∑

j=1

xj ⊗ eij

∥∥∥
p

=
∥∥∥
( n∑

j=1

xjx
∗
j

)1/2∥∥∥
p

(6.27)

and

∥∥∥
n∑

j=1

xj ⊗ eji

∥∥∥
p

=
∥∥∥
( n∑

j=1

x∗jxj

)1/2∥∥∥
p
.(6.28)

Evidently (6.27) and (6.28) show that if we consider a matrix of the form (xij ⊗ eij) with xij non-
zero elements of Lp(R) for all i and j, then all rows and columns of this matrix are 1-unconditional
sequences.

The next result is really a “localization” of Lemma 3.1 (and could be formulated instead for Lp(N ),
N any finite von Neumann algebra).

Lemma 6.10. Let X be a closed linear subspace of Lp(R) containing no subspace isomorphic to ℓp.
Then given ε > 0, there is an N so that given any n ≥ N and x1, . . . , xn in Ba(X),

n−1/p
∥∥∥
( n∑

i=1

xix
∗
i

)1/2∥∥∥
p
≤ ε and n−1/p

∥∥∥
( n∑

i=1

x∗i xi

)1/2∥∥∥
p
≤ ε .(6.29)

Proof. Let τ be the normal faithful tracial state in R. By Theorem 5.4, {|x|p : x ∈ Ba(X)} is uniformly
integrable. Let η > 0, to be decided later. Choose δ > 0 so that

ω(|x|p, δ) ≤ ηp for all x ∈ Ba(X) .(6.30)
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Let x1, . . . , xn be elements of Ba(X). By the final statement of Lemma 2.3, we may choose for each j
a Pj ∈ P(R) so that xjPj ∈ R with

‖xjPj‖∞ ≤ δ−1/p and ‖xj(I − Pj)‖p ≤ η .(6.31)

Then
∥∥∥
( n∑

j=1

xjx
∗
j

)1/2∥∥∥
p

=
∥∥∥

n∑

j=1

xj ⊗ eij

∥∥∥
p

by (6.27)

≤
∥∥∥

n∑

j=1

xjPj ⊗ e1j

∥∥∥
p

+
∥∥∥

n∑

j=1

xj(I − Pj) ⊗ e1j

∥∥∥
p
.

(6.32)

Since (xj(I − Pj) ⊗ e1j)n
j=1 is 1-unconditional and Lp(R) ⊗p Cp is type p with constant one,

n∑

j=1

‖xj(I − Pj) ⊗ e1j‖p ≤
( n∑

j=1

‖xj(I − Pj)‖p
p

)1/p

≤ ηn1/p by (6.31) .

(6.33)

Now

∥∥∥
n∑

j=1

xjPj ⊗ e1j

∥∥∥
p

=


τ

( n∑

j=1

xjPjx
∗
j

)p/2



1/p

≤


τ

( n∑

j=1

xjPjx
∗
j

)


1/2

(since p < 2)

≤ n1/2δ−1/p by (6.31).

(6.34)

Thus (6.32)–(6.34) yield that

n−1/p
∥∥∥
( n∑

j=1

xjx
∗
j

)1/2∥∥∥
p
≤ η +

1

n
1
p
− 1

2

δ−1/p .(6.35)

Evidently we now need only take η ≤ ε
2 ; then choose N so that N−( 1

p
− 1

2
)δ−1/p ≤ ε

2 ; the identical
argument for (x∗i xi)

n
i=1 now yields that (6.29) holds for all n ≥ N .

We may now easily obtain our final needed preliminary result. (See the Remark following Theorem 4.1
for the definition of: the rows or columns of a matrix contain ℓpn-sequences.)

Corollary 6.11. Let X be a closed linear subspace of Lp(R) containing no subspace isomorphic to ℓp,
and let (xij) be a seminormalized matrix whose terms lie in X. Then the matrix (xij ⊗ eij) in X ⊗pCp

has the following properties:

(i) Neither the rows nor the columns contain ℓpn-sequences.
(ii) Every row and column is 1-unconditional.

(iii) Every generalized diagonal is equivalent to the usual ℓp basis.

Proof. (i) follows immediately from Lemma 6.10 and (6.27), and the latter also immediately yields (ii).
If (fi) is a generalized diagonal of the matrix, then there exist projections P1, P2, . . . , Q1, Q2, . . . in
R⊗̄B(ℓ2) so that the Pj ’s and the Qj ’s are pairwise orthogonal, with fj = PjfjQj for all j. (That is,
(fj) is “right and left disjointly supported”.) It then follows that for any n and scalars c1, . . . , cn,

∥∥∥
n∑

j=1

cjfj

∥∥∥
p

=

( n∑

j=1

|cj |p‖fj‖p
p

)1/p

,(6.36)
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which immediately yields (iii) since (xij ⊗ eij) is semi-normalized.

We are finally prepared for the

Proof of Theorem 6.9. Let p < q < 2 and let X be a subspace of Lp(R) so that X is isomorphic to Cq

(using Junge’s result, formulated as Theorem 6.6 above). We claim that X ⊗p Cp is not isomorphic to
a subspace of Lp(N )⊕ (Lp ⊗p Cp) (which of course proves Theorem 6.9). Suppose to the contrary that
T : X ⊗p Cp → Lp(N ) ⊕ (Lp ⊗p Cp) is an isomorphic embedding. Assume without loss of generality
that ‖T ‖ = 1. Let ε > 0 be chosen so that ‖Tf‖ ≥ ε‖f‖ for all f ∈ X ⊗p Cp. Let P denote the
projection of Lp(N ) ⊕ (Lp ⊗p Cp) onto Lp(N ), with kernel Lp ⊗p Cp; and set Q = I − P . Now fix i
and j. Then of course X ⊗ eij is isometric to X . Thus by Lemma 6.7, QT |(X ⊗ eij) cannot be an
isomorphic embedding (that is, Cq does not embed in Lp ⊗p Cp). Hence we may choose xij ∈ X with

‖xij‖ = 1 and ‖QT (xij ⊗ eij)‖ < ε

2i+j+2
.(6.37)

Now let Y = [xij⊗eij : i, j = 1, 2, . . . ]. Since ℓp does not embed in X , the conclusion of Corollary 6.11
holds for the matrix (xij ⊗ eij).

It follows from (6.37) that

‖QT |Y ‖ < ε

2
.(6.38)

Hence we obtain that

‖PT (y)‖ ≥ ε

2
‖y‖ for all y ∈ Y .(6.39)

Thus Y is isomorphic to a subspace Z of Lp(N ). Let zij = PT (xij ⊗ eij) for all i and j. Now since
PT |Y is an isomorphism, Corollary 6.11 yields that there is a u so that every row and column of (zij)
is u-conditional, every generalized diagonal of (zij) is equivalent to the ℓp-basis, yet neither the rows
nor the columns of (zij) contain ℓpn-sequences. This is impossible by Theorem 4.1.

The following result is an immediate consequence of Theorem 6.9 and known structural results for
von-Neumann algebras.

Corollary 6.12. Let N ,M be von Neumann algebras so that M has a direct summand of type II∞ or
of type III. If Lp(M) is Banach isomorphic to a subspace of Lp(N ), then also N has a direct summand
of type II∞ or of type III.

Proof. The hypotheses imply (via known results, cf. [HS]) that R⊗̄B(ℓ2) is isomorphic to a von Neu-
mann subalgebra of M, which is the range of a normal conditional expectation, whence Lp(R)⊗p Cp is
completely isometric to a subspace of Lp(M). Since Lp(R) ⊗ Cp is separable, we can assume without
loss of generality that N acts on a separable Hilbert space. Then if N fails the conclusion, there exists a
finite von Neumann algebra Ñ so that N is isomorphic to a subalgebra of Ñ ⊕ (L∞⊗̄B(ℓ2)), and hence

Lp(N ) is completely isometric to a subspace of Lp(Ñ )⊕ (Lp ⊗pCp). But then Lp(M) does not Banach

embed in Lp(N ), since Lp(R) ⊗p Cp does not embed in Lp(Ñ ) ⊕ (Lp ⊗p Cp) by Theorem 6.9.

Remark. Of course Corollary 6.8 (i.e., the results of Junge and Pisier-Xu cited above) also immediately
yields that if M and N are von Neumann algebras so that M has a type II1 summand, and Lp(M)
embeds in Lp(N ), then N must have also have a summand of type II or type III. Combining these two
results, we have that if Lp(M) is Banach isomorphic to a subspace of Lp(N ) and M has no type III
summand, then N has a direct summand of type at least as large as these of the summands of N . It
remains a most intriguing problem to see if one can eliminate the non-type III summand hypothesis in
this statement.
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We now complete the proof of Theorem 6.2. We shall formulate the “positive” results in the language
of operator spaces; the reader unfamiliar with the relevant terms may just ignore the adjective “com-
plete” in all the statements, for of course all positive operator space claims imply the pure Banach space
ones. Given operator spaces X and Y , let us say that X completely contractively factors through Y if X
is completely isometric to a subspace X ′ of Y such that there exists a completely contractive projection
mapping Y onto X ′. Equivalently, there exist complete contractions U : X → Y and V : Y → X such
that V ◦ U = IX , IX the identity operator on X , that is,

Y

�
�
��

U

X

A
A
AU
V

-IX

X
.

(6.40)

Now we easily see that

(Lp(R) ⊕ Lp(R) ⊕ · · · )p completely contractively factors through Lp(R) .(6.41)

Indeed, simply let P1, P2, . . . be pairwise orthogonal non-zero projections in R. As is well known, then
PiRPi is isomorphic to R and hence PiL

p(R)Pi is completely isometric to Lp(R) for all i; then the
map on Lp(R) defined by f → ∑

PifPi witnesses (6.41).
Since R⊗̄R is isomorphic to R,

Lp(R) ⊗p L
p(R)

def
= Lp(R⊗̄R) is completely isometric to Lp(R) .(6.42)

Using (6.41) and (6.42), we may now easily see that if Y is immediately below X in the tree (and lying

on a branch), then X completely contractively factors through Y . Using the notation X
cc→֒ Y to mean

that X completely contractively factors through Y , we see, e.g., that Lp
cc→֒ Lp(R) =⇒ Lp ⊗p C

p
n

cc→֒
Lp(R) ⊗p C

n
p

cc→֒ Lp(R) ⊗p L
p(R), whence

Lp ⊗p Sp =

( ∞⊕

n=1

(Lp ⊗p C
n
p )

)

p

cc→֒
( ∞⊕

n=1

Lp ⊗p L
p(R)

)

p

cc→֒ Lp(R) ,

i.e.,

Lp ⊗p Sp
cc→֒ Lp(R) .(6.43)

Writing X ≈ Y to mean: X is completely isometric to Y , we have

Cp ⊕ (Lp ⊗p Sp)
cc→֒ Cp ⊕ Lp ⊗p Cp

cc→֒ (Lp ⊗ Cp) ⊗ (Lp ⊗ Cp) ≈ Lp ⊗ Cp(6.44)

(where we use ℓp-direct sums).

X
cc→֒ Y if X is the level 7 space and Y is the level 8 space, since the same argument for (6.41) yields

also
(

(Lp(R) ⊗p Cp) ⊕ (Lp(R) ⊗p Cp) ⊕ · · ·
)

cc→֒ Lp(R) ⊗p Cp .(6.45)

The reader may now easily check that the remaining “positive” assertions on the tree. For the far
deeper negative assertions, let us use the notation: X 6 →֒ Y to mean that the Banach space X is not
isomorphic to a subspace of Y .

Now suppose X 6= Y are on the tree and Y cannot be connected to X by a descending branch; we
claim that X 6 →֒ Y .
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It suffices to prove this assertion by showing by induction on j = 2, 3, . . . that X lies at level j and

there is a k ≥ j so that Y is at the kth level, but if Z is a higher(6.46)

level than k, connected to Y , Z 6= X , then X is connected to Z

and moreover there is no X ′ connected to X but not to Y with

level X ′ < j

or

Y is at the (j − 1)st level, but if Y is connected to Z at level k ≥ j(6.47)

with Z 6= X , then X is connected to Z and moreover if Z is connected

to X with level Z < j, then Z is connected to Y .

j = 2. Sp 6 →֒ Lp is classical (and also follows from our Corollary 1.4). Lp 6 →֒ Cp since ℓq →֒ Lp if p < q < 2
but ℓq 6 →֒ Cp.

j = 3. Cp 6 →֒ Lp(R), the main result of the paper.
j = 4. Lp ⊗p Sp 6 →֒ Cp ⊕ Lp by Proposition 6.5.
j = 5. Lp(R) 6 →֒ Lp ⊗p Cp by Corollary 6.8.
j = 6. Lp ⊗p Cp 6 →֒ Cp ⊕ Lp(R) by Theorem 6.3.
j = 7. There is no Y satisfying (6.46) or (6.47).
j = 8. Theorem 6.9 gives the one required non-embedding result.

This completes the proof of the final statement of Theorem 6.2. It remains to prove the first state-
ment. This follows via the known type-decomposition and structure of hyperfinite von-Neumann alge-
bras, and the following operator space version of the Pe lczyński decomposition method (whose proof is
exactly as Pe lczyński’s proof for the Banach space case [P]; see also p.54 of [LT] and [Ar]).

Lemma 6.13. Let X and Y be operator spaces so that

(i) each completely factors through the other

and so that either

(ii) X is completely isomorphic to X ⊕X and Y is completely isomorphic to Y ⊕ Y

or

(ii′) X is completely isomorphic to (X ⊕X ⊕ · · · )q for some q ∈ [1,∞].

Then X and Y are completely isomorphic.

(We say that X completely factors through Y if X is completely isomorphic to a completely com-
plemented subspace of Y .)

Corollary 6.14. If (X⊕X⊕· · · )p completely factors through the operator space X, then X is completely
isomorphic to (X ⊕X ⊕ · · · )p.

End of the proof of Theorem 6.2. (X ⊕X ⊕ · · · )p completely contractively factors through X for all of
the 13 spaces X listed in Theorem 6.2 (applying (6.41), (6.45), and the analogous results for Cp, Lp,
and Lp ⊗p Cp). Thus the conclusion of 6.14 applies.

Now let N be as in the statement of Theorem 6.2. If N is type I, then by the results in [S2] Lp(N )
is completely isomorphic to one of the first nine spaces listed in Theorem 6.1, so assume that N is not
type I. Then we have that

N = NI ⊕NII1 ⊕NII∞ ,

where for each i, Ni = {0} or Ni is a hyperfinite von Neumann algebra of type i, so that also NII1 ⊕
NII∞ 6= 0.
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Now suppose that N is finite. It then follows from work of A. Connes [C2] that

NI ⊕NII1 is isomorphic to a von-Neumann subalgebra of R .(6.48)

Indeed, by disintegration and Proposition 6.5 of [C2], any finite hyperfinite von Neumann algebra (with
separable predual) is a countable ℓ∞-direct sum of von Neumann algebras of the form A⊗̄B, where A
is abelian and B is either Mn for some n < ∞ or R. But such an algebra A⊗̄B can be realized as
a sub-algebra of R; since also R⊗̄R is isomorphic to R, and (R ⊕ R ⊕ · · · )ℓ∞ is (isomorphic to) a
von Neumann subalgebra of R, (6.48) holds. Since NII1 6= 0, we have by the above discussion that also

R is isomorphic to a von-Neumann subalgebra of N .(6.49)

Thus, we have that if A or B equals N or R, then

A is (isomorphic to) a subalgebra of B, which is(6.50)

the range of a normal conditional expectation.

Now if (6.49) holds for any two von Neumann algebras A and B, then Lp(A) completely contractively
factors through Lp(B). Thus by Lemma 6.13 and Corollary 6.14 applied to X = Lp(R), we obtain that
Lp(N ) is isomorphic to Lp(R).

Now if NII∞ 6= 0, again using the deep results in [C2], NII∞ is (isomorphic to) M⊗̄B(ℓ2) where
M is a finite hyperfinite von Neumann algebra, whence letting A and B equal N or R⊗̄B(ℓ2), (6.48)
holds, whence Lp(N ) is completely isomorphic to Lp(R)⊗pCp again by Lemma 6.13 and Corollary 6.14
applied to Lp(R) ⊗p Cp.

Now assume NII∞ = {0}, so NII1 6= {0}, and suppose N is infinite; since NII∞ = {0}, we must have
that NI is infinite. But then by the classification of the Lp spaces of type I algebras, we have that
Lp(NI) is completely isomorphic to either Cp, Lp ⊗ Cp, Cp ⊕ Lp, or Cp ⊕ (Lp ⊗p Sp).

But Cp ⊕ Lp ⊕Lp(R) and Cp ⊕ (Lp ⊗p Sp) ⊕Lp(R) are both completely isomorphic to Cp ⊕Lp(R),
by our analysis of the finite case. Hence Lp(N ) is completely isomorphic either to Cp ⊕ Lp(R) or to
(Lp ⊗p Cp) ⊕ Lp(R), completing the entire proof.

7. Lp(N )-isomorphism results for N type III hyperfinite or a free group von Neumann
algebra

We first formulate the results of this section for the case of preduals of von Neumann algebras N ,
i.e., L1(N ), and then show they hold also for the spaces Lp(N ) for 1 < p < ∞, as in the preceding
sections. The following result is an immediate consequence of Corollary 6.12. We prefer to give a quick
proof just using Corollary 1.2.

Theorem 7.1. Let N be a factor of type II1 and let M be a factor of type II∞ or type III. Then the
preduals N∗ and M∗ are not Banach space isomorphic.

Proof. By the assumptions M is a properly infinite von Neumann algebra, i.e., M ∼= M⊗̄B(ℓ2) as
von Neumann algebras (where ⊗̄ is the standard von Neumann algebra tensor product). In particular
M∗ is isometrically isomorphic to M∗ ⊗γ C1 for some crossnorm γ on the algebraic tensor product
M∗ ⊗ C1, and therefore C1 imbeds isometrically in M∗. By Corollary 1.2, C1 does not Banach space
imbed in N∗.

It would be interesting to know, whether a type II∞-factor and a type III-factor can be distinguished
by the Banach space isomorphism classes of their preduals. (As noted in the Introduction, we do not
know the answer for the special case of injective factors.) In [C1] Connes introduced a subclassification
of factors of type III into factors of type IIIλ, where λ can take any value in the closed interval [0, 1].
Theorem 7.2 below shows that the number λ in this classification cannot be determined by the Banach
space isomorphism class (or even operator space isomorphism class) of the predual. Recall from [C2]
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and [H], that for each λ ∈ (0, 1], there is up to von Neumann algebra isomorphism only one injective
factor of type IIIλ acting on a separable Hilbert space. For 0 < λ < 1 it is the Powers factor

Rλ =
∞⊗

n=1

(M2(C), ϕλ)

where ϕλ is the state on the 2 × 2 complex matrices given by

ϕλ

(
x11 x12

x21 x22

)
=

λ

1 + λ
x11 +

1

1 + λ
x22

and for λ = 1 it is the Araki-Woods factor R∞, which can be obtained (up to von Neumann-
isomorphism) as the tensor product of two Powers factors

R∞
∼= Rλ1

⊗̄Rλ2

provided log λ1

log λ2
/∈ Q. On the hand there are uncountably many injective factors of type III0 acting on a

separable Hilbert space (cf. [C1], [C2]). We will consider the predual of a von Neumann algebra as an
operator space with the standard dual operator space structure (cf. [Bl]).

Theorem 7.2. Let for 0 < λ < 1, Rλ denote the Powers factor of type IIIλ and let R∞ denote the
Araki-Woods factor of type III1.

(a) For every λ ∈ (0, 1) the predual (Rλ)∗ is completely isomorphic to (R∞)∗.
(b) There is an uncountable family (Ni)i∈I of mutually non-isomorphic (in the von Neumann alge-

bra sense) injective type III0-factors on a separable Hilbert space for which (Ni)∗ is completely
isomorphic to (R∞)∗.

Remark. In [ChrS], Christensen and Sinclair proved that all injective infinite dimensional factors acting
on separable Hilbert space are completely isomorphic. This does not imply that their preduals are
completely isomorphic. Indeed the unique injective type II1-factor R and the unique injective type
II∞-factor R⊗̄B(ℓ2) have non-isomorphic preduals by Theorem 7.1. Theorem 7.2 as well as the results
in [ChrS] are based on the completely bounded version of the Pe lczyński decomposition method stated
as Lemma 6.13 above.

Proof of Theorem 7.2. (a) Let 0 < λ < 1 and put N = Rλ, M = R∞. Since N is a properly
infinite von Neumann algebra, there exists two isometries u1, u2 ∈ N , such that u1u

∗
1 and u2u

∗
2 are two

orthogonal projections with sum 1. Define now

Φ : N → N ⊕N by Φ(x) = (u∗1x, u
∗
2x)

and

Ψ : N ⊕N → N by Ψ(x, y) = (u, x+ u2y)

Then Φ◦Ψ = idN⊕N and Ψ◦Φ = idN . Since Φ and Ψ are normal (i.e., continuous) in the ω∗-topologies
on N and N ⊕N ) and also are completely bounded maps, it follows that N∗ ≈cb N∗⊗N∗. Similary we
have M∗ ≈cb M∗⊕M∗. Thus the pair (M∗,N∗) satisfies (ii) in Lemma 6.13. We next check condition
(i) in Lemma 6.13.

Since R∞
∼= Rλ⊗̄R∞ as von Neumann algebras (cf. [C1, Sect.3.6]), we can without loss of generality

assume that M = N⊗̄P where P ∼= R∞. Let ϕ be a normal faithful state on P and define

π : N → N⊗̄P by π(x) = x⊗ 1 ,

and let ρ : N⊗̄P → N be the left slice map given by ϕ, i.e., the unique normal linear map N⊗̄P → N
for which

ρ(x⊗ y) = ϕ(y)x , x ∈ N , y ∈ P .
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Thus ‖π‖cb = ‖ρ‖cb = 1 and ρ ◦ π = idN . Hence idN∗
has a completely bounded factorization through

M∗, i.e., N∗ is cb-isomorphic to a cb-complemented subspace of M∗. To prove the converse, we use that
if ϕ is a normal faithful state on the III1-factor M = R∞ and α = σϕ

t0 is the moduluar automorphism

associated with ϕ at t0 = − 2π
log λ , then the crossed product R∞ ⋊α Z is a factor of type IIIλ (cf. [HW,

proof of Lemma 2.9]). Moreover injectivity of R∞ implies that the crossed product is injective (cf.
[C2]). Hence R∞ ⋊α Z ∼= Rλ as von Neumann algebras, so in this part of the proof we may assume
that M⋊α Z = N . Further, after identifying M with its natural imbedding in the crossed product, we
have that N is generated as a von Neumann algebra by M and a certain unitary group {un | n ∈ Z}
coming from the crossed product construction (cf. [C1]). Let i : M →֒ M ⋊α Z be the imbedding and
let ε : M⋊α Z → i(M) be the unique normal faithful conditional expectation of M⋊α Z onto i(M) for
which ε(un) = 0, for n ∈ Z r {0} (see again [C1]). Then i and ε are normal maps and i−1 ◦ ε ◦ i = idM,
so as above, we obtain that M∗ is cb-isomorphic to a cb-complemented subspace of N∗. Hence a)
follows from Lemma 6.13.

(b) Put again M = R∞ and let G ⊆ R be a dense countable subgroup. Let ϕ be a normal faithful
state on R∞ and put N = R∞ ⋊α G where α : G → Aut(M) is the restriction of the modular
automorphism group (σϕ

t )t∈R to G. It follows from [C1] (see the proof of [HW, Lemma 2.9]) that NG

is a factor of type III0, which is also injective (by [C2]). Moreover T (NG) = G, where T is Connes
π-invariant. Hence G 6= G′ implies, that NG and NG′ are not von Neumann-algebra isomorphic. It is
easy to check, that there are uncountably many dense countable subgroups of R. Put P = NG⊗̄R∞.
Since R∞⊗̄Rλ ≃ R∞ for 0 < λ < 1, we have P⊗̄Rλ

∼= P , 0 < λ < 1, which by [C1, Theorem 3.6.1]
implies that P is a factor of type III1. Since P is also injective we have

NG⊗̄R∞
∼= R∞ = M

as von Neumann algebras. As in the proof of (a), it now follows, that M∗ is cb-isomorphic to a
cb-complemented subspace of (NG)∗. Moreover, since M ⋊α G is a crossed product with respect to
a discrete group, there is again an embedding i : M → M ⋊α G and a normal faithful conditional
expectation ε : M⋊α G→ i(M), and the rest of the proof of (b) follows now exactly as in the proof of
(a).

Let L(Fn) denote the von Neumann algebra associated with the free group Fn on n generators. Then
for 2 ≤ n ≤ ∞ L(Fn) is a factor of type II1. It is a long standing open problem to decide whether these
II1-factors are isomorphic as von Neumann algebras. Due to work of Voiculescu, Dykema and Radulescu,
it is known that either these factors are all isomorphic or L(Fn1

) 6∼= L(Fn2
) whenever 2 ≤ n1, n2 ≤ ∞

and n1 6= n2 (cf. [VDN]). In [Ar] Arias proved that the von Neumann algebras L(Fn), 2 ≤ n ≤ ∞
are isomorphic as operator spaces. We show below, that also their preduals are isomorphic as operator
spaces. While Arias’ proof uses mainly group theoretical considerations, the proof of Theorem 7.3 below
relies on one rather deep result of Voiculescu, that L(F∞) ∼= Mk(L(F∞)) as von Neumann algebras for
k = 2, 3, . . . (cf. [Vo] or [VDN]).

Theorem 7.3. L(Fn)∗ is cb-isomorphic to L(F∞)∗ for n = 2, 3, . . . .

Proof. Let n ∈ N, n ≥ 2 and put N = L(Fn) and M = L(F∞). Since Fn is isomorphic to a subgroup
of F∞ and vice versa, N is von Neumann-algebra isomorphic to a subfactor N1 of M and M is
von Neumann-algebra isomorphic to a subfactor M1 of N (see [Ar] for details). Moreover, let τM and
τN be the unique normal faithful tracial states on M and N respectively. Then there is a unique normal

faithful conditional expectation ε : M onto−−→ N1 preserving the trace τM (resp. a unique normal faithful

conditional expectation ε′ : N onto−−→ M, preserving the trace τN ). As in the proof of Theorem 7.2,
this implies that X = M∗ and Y = N∗ satisfy condition (i) in Lemma 6.13. We next prove that (ii′)
in Lemma 6.13 is satisfied with q = 1. Since M = L(F∞) is a II1-factor, we can choose a sequence
of orthogonal projections (pi)

∞
i=1 in M, such that τ(pi) = 2−i and

∑∞
i=1 pi = 1 (convergence in the
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strong operator topology). By Voiculescu’s result quoted above, L(F∞) ∼= M2i(L(F∞)) for i = 1, 2, . . .
as von Neumann-algebras, which implies that piMpi

∼= M as von Neumann-algebras.
Indeed, Voiculescu’s result yields that there are orthogonal equivalent projections q1, . . . , q2i in M

with
∑2i

j=1 qj = 1 so that q1Mq1 ∼= M. It follows (by uniqueness of τM) that τ(qj) = τ(qj′ ), for all j

and j′, and so τ(q1) = 2−i. Since also τM(Pi) = 2−i and M is a finite factor, q1 and pi are equivalent,
and hence piMpi

∼= q1Mq1 ∼= M as desired.
Put

Q = (M⊕M⊕ · · · )ℓ∞ = M⊗̄ℓ∞ .

Then Q is a von Neumann algebra isomorphic to Q1 =
∑⊕

piMpi, which is a von Neumann subalgebra

of M. Moreover, there is a τM-preserving normal faithful conditional expectation ε′′ : M onto−−→ Q1.
Hence Q∗ is cb-isomorphic to a cb-complemented subspace of M∗. Put as above X = M∗. Then
Q∗ = (X⊕X⊕· · · )ℓ1 as operator spaces. Hence we have shown that (X⊕X⊕· · · )ℓ1 completely factors
through X , so X and (X ⊕X ⊕ · · · )ℓ1 are completely isomorphic by Corollary 6.14. This proves (ii′)
iin Lemma 6.13 with q = 1. Hence X = M∗ and Y = N∗ are completely isomorphic.

In the rest of this section, we will show how Theorem 7.2 and Theorem 7.3 can be generalized
to the non-commutative Lp-spaces associated with the von Neumann algebras in question. In [Ko],
Kosaki proved, that the abstract Lp-spaces Lp(M), 1 < p <∞ associated with a σ-finite (= countably
decomposable) von Neumann algebra M, can be obtained by the complex interpolation method applied
to the pair (M,M∗) with the imbedding M →֒ M∗ given by the map x → xϕ, x ∈ M, for a fixed
normal faithful state ϕ on M. Assume next that N is a von Neumann subalgebra of M and ε : M → N
is a normal faithful conditional expectation of M onto N . By replacing ϕ by ϕ ◦ ε, we can assume,
that the state ϕ used in Kosaki’s imbedding is ε-invariant. Next, the adjoint of ε defines an imbedding
of N∗ in M∗ and i∗, the adjoint of the inclusion map i : N → M defines a cb-contraction of M∗ onto
N∗. Moreover, we have the following commuting diagram:

N i−→ M ε−→ Ny y y
N∗

ε∗

−→ M∗
i∗−→ N∗

where the vertical arrows are the Kosaki inclusions with respect to ϕ1N , ϕ and ϕ1N respectively. By the
complex interpolation method we now get contractions ip : Lp(N ) → Lp(M) and εp : Lp(M) → Lp(N ),
such that the following diagram commutes:

N i−→ M ε−→ Ny y y
Lp(N )

ip−→ Lp(M)
εp−→ Lp(N )y y y

N∗
ε∗

−→ M∗
i∗−→ N .

Further, if we consider Lp(N ) and Lp(M) as operator spaces with the operator spaces structure intro-
duce by Pisier in [Pi1], we get that ip and εp are complete contractions. Hence we have proved:

Lemma 7.4. Let M be a σ-finite von Neumann algebra, and N ⊆ M a sub von Neumann algebra,
which is the range of a normal faithful conditional expectation ε : M → N . Then for every 1 < p <∞,
Lp(N ) is cb-isometrically isomorphic to a cb-contractively complemented subspace of Lp(M).

Lemma 7.4 implies that the proofs of Theorem 7.2 and Theorem 7.3 can be repeated almost word
for word to cover the Lp-case. Note that the argument for N∗ ⊕N∗ ≈ N∗ and M∗ ⊕M∗ ≈ M∗ in the
beginning of Theorem 7.2 also works for the Lp-spaces, when Lp(N ) (resp. Lp(M)) are equipped with
the natural left M-module structure (resp. left N -module structure). Hence we get:
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Theorem 7.5. Let Rλ, 0 < λ < 1 and R∞ be as in Theorem 7.2 and let 1 ≤ p <∞. Then

(a) Lp(Rλ) ≈cb L
p(R∞).

(b) There is an uncountable family of mutually non-isomorphic (in the von Neumann algebra sense)
injective type III0-factors on a separable Hilbert space, for which Lp(Ni) ≈cb L

p(R∞) for all i ∈ I.
(c) For every n ∈ N, n ≥ 2, Lp(L(Fn)) ≈cb L

p(L(F∞)).
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