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1 Introduction

A C(K)-space is just the space of scalar valued continuous functions on a compact Haus-
dorff space K. We focus here mainly on the case where K is metrizable i.e., the case of
separable C(K)-spaces. Our main aim is to present the most striking discoveries about the
Banach space structure of C(K)-spaces, and at the same time to describe the beautiful,
deep intuitions which underlie these discoveries. At times, we go to some length to describe
the form and picture of an argument, without giving the full technical discussion. We have
also chosen to present proofs which seem the most illuminating, in favor of more advanced
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and sophisticated but (to us) less intuitive arguments. The following is a summary of our
exposition.

Section 2 deals with the by now classical isomorphic classification of the separable C(K)-
spaces, dating from the 50’s and 60’s. It begins with Milutin’s remarkable discovery: C(K)
is isomorphic to C([0, 1]) if K is an uncountable compact metric space. We give a fully
detailed proof, modulo some standard basic facts (summarized in Lemma 2.5), which follows
an argument due to S. Ditor. This yields that every separable C(K) space is isometric to a
contractively complemented subspace of C(K), D the Cantor discontinuum, (Theorem‘2.4),
through a natural inverse limit argument, given in Lemma 2.11 below. The way inverse
limits work (in the metrizable setting) is given in Lemma 2.12, and Theorem 2.4 is deduced
after this. The isomorphic classification of the C(K)-spaces with separable duals, due to
Bessaga and Pe�lczyński, occupies the balance of this section. Their remarkable result: The
spaces C(ωωα

+) form a complete set of representatives of the isomorphism classes, over all
countable ordinals (Theorem 2.14). We do give a detailed proof that C(K) is isomorphic
to one of these spaces, for all countable compact K (of course, we deal only with infinite-
dimensional C(K)-spaces here). This is achieved through Theorem 2.24 and Lemma 2.26.
We do not give the full proof that these spaces are all isomorphically distinct, although we
spend considerable time discussing the fundamental invariant which accomplishes this, the
Szlenk index, and the remarkable result of C. Samuel: Sz(C(ωωα

+) = ωα+1 for all countable
ordinals α (Theorem 2.15). We give a variation of Szlenk’s original formulation following
2.15, and show it is essentially the same as his in Proposition 2.17. We then summarize the
invariant properties of this index in Proposition 2.18, and give the relatively easy proof that
Sz(C(ωωα

+) ≥ ωα+1 in Corollary 2.21. We also show in Section 2 how the entire family of
spaces C(α+) (up to algebraic isometry) arises from a natural Banach space construction:
simply start with c0, then take the smallest family of commutative C∗-algebras containing
this, and closed under unitizations and c0-sums. (This is the family (Yα)1≤α<ω1 , given at the
beginning of part B of Section 1.) The isomorphic description, however, is achieved through
taking tensor products at successive ordinals and c0-sums and unitizations at limit ordinals.
(This is the transfinite family (Xα)α<ω1 given following Definition 2.22.)

Section 3 deals with three unrelated structural properties. The first, due to Pe�lczyński, is that
every separable C(K) space X is weakly injective, that is, any isomorph of X in a separable
Banach space Y , contains a subspace isomorphic to X and complemented in Y (Theorem 3.1).
The second one, due to Bessaga and Pe�lczyński, is that every C(K)-space with separable dual
is c0-saturated (Proposition 3.6). This follows quickly from our first transfinite description
of these spaces mentioned above. It is not a difficult result, but is certainly fundamental for
the structure of these spaces. We also briefly note the rather long standing open problem: is
every subspace of a quotient of C(α+) c0-saturated, for countable ordinals α? We note also:
it is unknown if �2 is isomorphic to a subspace of a quotient of C(ωω+).

The third result in Section 3 deals with Amir’s Theorem: C(ωω+) fails to be separably
injective. We also give a fully detailed proof of Milutin’s classical discovery; the Cantor
map of {0, 1}N onto [0, 1] induces an uncomplemented isometric embedding of C([0, 1]) in
C(D). We give a unified account of both of these results through the space rcl([0, 1]) of
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functions on [0, 1] wich are right continuous with left limits (also called cadlag by French
probabilists). For any countable compact subset K of [0, 1], we let rcl(K) be the analogous
function space, just defined on K. If K has enough two-sided cluster points, then C(K)
is uncomplemented in rcl(K). Similarly, if D is any countable dense subset of [0, 1], then
C([0, 1]) is uncomplemented in rcl([0, 1], D). (The latter is simply the space of all functions in
[0, 1] continuous at all x �= D, right continuous with left limits at all x ∈ D.) These results are
proved in Theorem 3.14. Section 3 concludes with the proof that if D is the dyadic rationals,
then the embedding of C([0, 1]) into C(D) via the Cantor map is essentially just the identity
injection of C([0, 1]) in rcl([0, 1], D), and so is uncomplemented (Proposition 3.18).

Section 4 deals mainly with several deep fixing results for operators on C(K)-spaces, all of
which heavily bear on the famous long standing problem discussed in the final section of this
article. An operator T between Banach spaces is said to fix a Banach space Z if there is an
isometric copy Z ′ of Z in the domain with T |Z ′ an isomorphism. In the present context, it
turns out there are isometric copies Z ′ of Z which are fixed. The first of these is Pe�lczyński’s
Theorem that non-weakly compact operators on C(K)-spaces fix c0, Theorem 4.5. We show
this follows quite naturally from Grothendieck’s classical description of weakly compact sets
in C(K)∗ (Theorem 4.29), and a relative disjointness result on families of measures, due
to the author (Proposition 4.30). Next, we take up characterizations of operators fixing
C(ωω+). Our main aim is to give an intuitive picture of the isometric copy of C0(ω

ω) which
is actually fixed. Theorem 4.25 itself states Alspach’s remarkable equivalences, which in
particular yield that an operator on a separable C(K) space fixes C(ωω+) if and only if
its ε-Szlenk index is at least ω for all ε > 0. We follow Bourgain’s approach here, stating
his deep extension of this result to arbitrary countable ordinals in Theorem 4.17. Bourgain
achieves his results on totally disconnected spaces K, obtaining the fixed copy as the span of
the characteristic functions of a regular family of clopen sets (Definition 4.15). In turn, the
direct Banach space description of C(α+) spaces is given by Bourgain’s formulation in terms
of trees (Definition 4.13); these yield an intuitive direct description of monotone bases for such
spaces, which are actually the clopen sets mentioned above, in the needed concrete realization
of these spaces (formulated in Proposition 4.15). We discuss in considerable detail Bourgain’s
remarkable result (which rests on 4.25): an operator on a C(K) space fixes C(ωω+) if and
only if it is a non Banach-Saks operator (see Definition 4.8). We first give Schreier’s proof
that C(ωω+) fails the Banach-Saks property, in Propositions 3.8 and 3.9. Next we recall
the author’s dichotomy: a weakly null sequence in an arbitrary Banach space either has a
subsequence whose arithmetic averages converge to zero in norm, or a subsequence which
generates a spreading model isomorphic to �1 (Theorem 4.23). We then use this to deduce
Bourgain’s non-Banach-Saks characterization (Theorem 4.22).

The final result discussed in Secton 4 is the author’s result: An operator on a separable C(K)-
space fixes C([0, 1]) if its adjoint has non-separable range. We formulate three basic steps in
the proof, Lemma 4.25, Lemma 4.29, and Proposition 4.30. These are then put together to
outline the proof, and finally the “almost isometric” Lemma 4.25 is explained somewhat, via
Lemma 4.31, to give a picture of the actual isometric copy of C(D) which is finally fixed.

Section 5 is purely expository; only obvious deductions are given. The remarkable partial
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progress on the Complemented Subspace Problem (CSP) illustrates the deep penetration into
the structure of C(K) spaces that has been achieved. The problem itself and especially certain
unresolved special cases show there is still much to be understood about their structure (see
Problems 1–4 in Section 5). L∞ spaces and L1(µ) preduals are briefly discussed. Zippin’s
fundamental lemma is presented in the context of the CSP as Lemma 5.11. Possibly the most
striking of the known results on the CSP, due to Benyamini, rests on Lemma 5.11. These
assert that every complemented subspace of a separable C(K) space is either isomorphic to
c0 or contains a subspace isomorphic to C(ωω+). Moreover every complemented subspace X
of a separable C(K) space with X∗ separable is isomorphic to a quotient space of C(α+) for
some countable ordinal α (Theorems 5.9 and 5.15). To prove this, Benyamini also establishes
an extension result for general separable Banach spaces which actually yields a new proof of
Milutin’s Theorem (Theorem 5.12). Section 5 concludes with a brief discussion of the positive
solution to the CSP in the isometric setting: every contractively complemened subspace of a
separable C(K)-space is isomorphic to a C(K)-space.

An exciting new research development deals with many of the issues discussed here in the
context of C∗-algebras. Neither time nor space was available to discuss this developement
here. We shall only briefly allude to two discoveries. The first is Kirchberg’s non-commutative
analogue of Milutin’s theorem: Every separable non-type I nuclear C∗-algebra is completely
isomorphic to the CAR algebra [Ki]. The second concerns quantized formulations of the sep-
arable extension property, due to the author [Ro7], and the joint theorem of T. Oikhberg
and the author: the space of compact operators on separable Hilbert space has the Com-
plete Separable Complentation Property [OR]. For a recent survey and perspective on these
developments, see [Ro8].

2 The isomorphic classification of separable C(K) spaces

A. Milutin’s Theorem

Our first main objective is the following remarkable result due to A. Milutin [M].

Theorem 2.1 Let K be an uncountable compact metric space. Then C(K) is isomorphic to
C([0, 1]).

Although this is not an isometric result, its proof is based on isometric considerations. Let
us introduce the following definitions and notations.

Definition 2.2 Let X and Y be given Banach spaces.

1) X ↪→ Y means that X is isomorphic to a subspace of Y .

2) X
c

↪→ Y means that X is isomorphic to a complemented subspace of Y .

3) X
cc
↪→ Y means that X is isometric to a contractively complemented subspace of Y .

4) X
c∼ Y means that X

c
↪→ Y and Y

c
↪→ X. We say X is complementably equivalent to

4



Y .
5) X

cc∼ Y means that X
cc
↪→ Y and Y

cc
↪→ X. We say X is contractively complementably

equivalent to Y .
6) X ∼ Y means that X is isomorphic to Y .

Of course one has that the first three relations are a kind of partial order on Banach spaces;
e.g., one easily has that

X
cc
↪→ Y and Y

cc
↪→ Z implies X

cc
↪→ Z . (2.1)

(The relation
c

↪→ was crystallized by D. Alspach in some unpublished work.) Of course

the relation
c

↪→ is implicit in the decomposition method given on page 14 of [JL], which
was developed by A. Pe�lczyński [Pe1]. The proof in [JL] (as well as that in [Pe1]) yields the
following result.

Proposition 2.3 Let X, Y be Banach spaces. Then X ∼ (X⊕X⊕· · ·)c0 and X
c∼ Y implies

X ∼ Y .

Milutin’s Theorem now easily reduces to the following fundamental result (known as Milutin’s
Lemma).

Theorem 2.4 Let K be a compact metric space. Then C(K)
cc
↪→ C(D) where D denotes

the Cantor discontinuum.

We give a proof due to S. Ditor [D1]. We first summarize some standard needed results.

Lemma 2.5 Let K be a given infinite compact metric space.

a) D is homeomorphic to a subset of K if K is uncountable.
b) Let L be a compact subset of K. Then there exists a linear isometry T : C(L) → C(K)

such that T1L = 1K and T (f |K) = f for all f ∈ C(K).
c) D is homeomorphic to K if K is perfect and totally disconnected.
d) c0 is isometric to a subspace of C(K).
e) C(K) ∼ C0(K, k0) where k0 ∈ K and C0(K, k0) = {f ∈ C(K) : f(k0) = 0}.

In fact, there is an absolute constant γ so that d(C(K), C0(k, k0)) ≤ γ.

Remark 2.6 d(X, Y ) denotes the multiplicative Banach-Mazur distance between Banach
spaces X and Y .

Proof. (b), the linear form of the Tietze-extension theorem, is due to Borsuk [B]. (a) and (c)
are standard topological results. To see (d) (which holds for any infinite compact Hausdorff
space), let U1, U2, . . . be disjoint non-empty open subsets of K, and for each j, choose 0 ≤
ϕj ≤ 1 in C(K) with ‖ϕj‖ = 1 and support ϕj ⊂ Uj for all j. One has immediately that
then (ϕj) is isometrically equivalent to the usual c0-basis. To obtain (e), let X be a subspace
of C(K) isometric to c0. In fact, our argument shows that we may choose X ⊂ C0(K, k0).
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Since K is separable, X is complemented in C(K) by Sobczyk’s theorem [Sob] Thus in fact
we may choose Y a closed linear subspace of C0(K, k0) with

C0(K, k0) = X ⊕ Y . (2.2)

Thus we have that

C(K) = [1] ⊕ C0(K, k0) = [1] ⊕ X ⊕ Y

∼ [1] ⊕ c0 ⊕ Y ∼ c0 ⊕ Y ∼ X ⊕ Y = C0(K, k0) .
(2.3)

(Note that [1] is simply Φ the 1-dimensional space of scalars.)

Now the existence of γ may be obtained by tracing through this argument quantitatively,
using Sobczyk’s result that in fact there is a projection of C(K) onto X of norm at least
two. Indeed, suppose Z is a separable Banach space containing a subspace X isometric to
c0. By Sobczyk’s theorem, there is a subspace Y of Z with d(Z, c0 ⊕ Y ) ≤ 6 (where we take
direct sums in the �∞-norm). But also if Z0 is any co-dimension 1 subspace of Z, then by
the Hahn-Banach theorem, d(Z0, Z ⊕ Φ) ≤ 6. Hence since d(Z ⊕ Φ), c0 ⊕ Φ ⊕ Y ) ≤ 6, and
c0 ⊕ Φ is isometric to c0, it follows that d(Z, Z0) ≤ 36.

Remark 2.7 It is unknown if 2.5(e) holds for non-metrizable compact Hausdorff spaces K.

Proof of Milutin’s Theorem (modulo 2.4)

We first note that for any k0 ∈ D,

(C(D) ⊕ C(D) ⊕ · · ·)c0
∼= C0(D, k0) ∼ C(D) (2.4)

(where X ∼= Y means X is isometric to Y ). Indeed this follows from Lemma 2.5 (c).

Thus, using Theorem 2.4 and Proposition 2.3, it suffices to show that given K uncountable
compact metric, then

C(D)
cc
↪→ C(K) . (2.5)

Indeed, we then obtain that C(K) ∼ C(D). So of course also C(K) ∼ C([0, 1]).

But 2.5 follows immediately from Lemma 2.5 (a) and (b). Indeed, choose L a compact subset
of K homeomorphic to D and choose T as in 2.5 (b); set X = T (C(L)). Then X is isometric
to C(D) and is contractively complemented in C(K) via the map: P (f) = T (f | L)

Remark. Actually, the above argument and the proof of Milutin’s Lemma gives even more
isometric information; namely one has

Theorem 2.8 Let K and L be compact metric spaces with K uncountable. Then there is a
unital isometry from C(L) onto a subspace X of C(K), which is contractively complemented
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in C(K). The unital isometry and contractive projection are thus positive maps.

We now present the proof of Theorem 2.4. We first formulate the
cc
↪→ order as follows,

leaving the simple proof to the reader.

Proposition 2.9 Let X and Y be given Banach spaces. The following are equivalent.

(a) X
cc
↪→ Y .

(b) There exist linear contractions U : X → Y and V : Y → X so that IX = V ◦ U That is,
the following diagram holds.

Y

X X

U V

I
�

�
�� �

�
��

� .

(2.6)

Definition 2.10 Let L and K be compact metric spaces and ϕ : L → K be a continuous
surjection.

(a) ϕ0 : C(K) → C(L) denotes the map

ϕ0f = f ◦ ϕ for all f ∈ C(K) .

(b) A linear map T : C(L) → C(K) is called a regular averaging operator for ϕ if ‖T‖ = 1
and (Tϕ0)f = f for all f ∈ C(K), i.e., (2.6) holds with X = C(K), U = ϕ0, V = T .

Note that ϕ0(C(K)) is in fact a unital subalgebra of C(L) isometric to C(K). It is easily
seen (via the argument for Proposition 2.9) that ϕ0(C(K)) is contractively complemented
in C(L) iff ϕ admits a regular averaging operator T . Thus Milutin’s Lemma means one
can choose a continuous surjection ϕ : D → K which admits a regular averaging operator.
Milutin did this by an explicit construction, while Ditor’s argument proceeds conceptually,
but indirectly. (For further results, see [D2], and especially [AA] for recent comprehensive
work on regular averaging operators in both the metric and non-metrizable setting.)

We first deal with the basic ingredient in the proof. Given X1, . . . , Xn topological spaces,
X1 ⊕ · · · ⊕ Xn denotes their topological disjoint sum. Of course if these are compact metric
spaces, so is X1 ⊕ · · · ⊕ Xn; we may formally identify X1 ⊕ · · · ⊕ Xn with the metric space

n⋃

i=1

Xi × {i} where dist((x, i), (y, j)) = 1 if i �= j

and dist((x, i), (y, i)) = dXi
(x, y) .

(where dXi
is the metric on Xi).

Lemma 2.11 Let K be a compact metric space, and K1, . . . , Kn be non-empty compact
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subsets such that

K =
n⋃

i=1

int Ki . (2.7)

Let τ : K1 ⊕ · · · ⊕ Kn → K be the map defined by

τ(k, i) = k for all i and k ∈ Ki . (2.8)

Then τ admits a regular averaging operator.

Remark. We obviously may assume that int Ki = interior Ki �= ∅ for all i. However we do
not insist that the Ki’s are distinct; in fact we may need repetitions in our application of
2.11. It is also clear that τ is a continuous surjection of ⊕n

i=1Ki onto K.

Proof of Lemma 2.11 We may choose ϕ1, . . . , ϕn a partition of unity fitting the open cover
of K, (int Ki)

n
i=1. That is, the ϕj ’s are in C(K) and satisfy

0 ≤ ϕj ≤ 1 for all j , (2.9)

supp ϕj ⊂ int Kj for all j , (2.10)

n∑

j=1

ϕj ≡ 1 . (2.11)

(supp ϕ = {x : |ϕ(x)| > 0}) .

Next, fix i, and for f ∈ C(⊕n
j=1Kj), define fi on K by

fi(k) = f(k, i) if k ∈ Ki (2.12)

fi(k) = 0 if k �∈ Ki . (2.13)

Then

fi · ϕi is continuous. (2.14)

Indeed, since τ maps Ki ×{i} homeomorphically into Ki, it follows that fi|Ki is continuous,
and so of course (fi · ϕi)|Ki is also continuous. Since ϕi(x) = 0 for all x �∈ Ki and ϕi is
continuous on K, it follows that if (xn) is a sequence in K ∼ Ki such that xn → x with
x ∈ Ki, then (fi · ϕi)(xn) = 0 for all n and also (fi · ϕi)(x) = 0, proving (2.14).

Finally, define T : C(⊕n
i=1Ki) → C(K) by

Tf =
n∑

i=1

fiϕi for all f ∈ C(⊕n
i=1Ki) . (2.15)

Then fixing f ∈ C(⊕n
i=1Ki) → C(K), we have that indeed Tf ∈ C(K) by (2.14) Moreover
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for any k ∈ K

|Tf(k)| ≤
n∑

i=1

|fi(k)|ϕi(k)

≤ max
i

|fi(k)|
∑

ϕi(k) (2.16)

≤ ‖f‖∞ .

Thus ‖T‖ = 1 and of course T is linear.

Finally, if f ∈ C(K), then for any k,

T (τ 0f)(k) =
n∑

i=1

(τ 0f)i(k)ϕi(k)

=
∑

f(k)ϕi(k) (2.17)

= f(k)
n∑

i=1

ϕi(k) = f(k) ,

completing the proof.

We need one more tool; inverse limit systems of topological spaces. We just formulate the
special case needed here (see Lemma 2 of [D1] for the general situation).

Lemma 2.12 Let (Kn)∞n=1 be a sequence of compact metric spaces, and for each n, let ϕn :
Kn+1 → Kn be a given continuous surjection. There exists a compact metrizable space K∞
satisfying the following for all n:

There exists a continuous surjection ϕ̃n : K∞ → Kn . (2.18)

ϕnϕ̃n+1 = ϕ̃n . (2.19)

Letting Yn = ϕ̃0
n(C(Kn)), then

∞⋃

n=1

Yn is dense in C(K) . (2.20)

If moreover ϕn admits a regular averaging operator for each n, then ϕ̃1 admits a regular
averaging operator.

Remark. The space K∞ is essentially determined by (2.16) and (2.17) and is called the
inverse limit of the system (Kn, ϕn)∞n=1.

PROOF. Let K∞ be the subset of
∏∞

n=1 Kn defined by

(kj) ∈ K∞ iff kj = ϕj(kj+1) for all j . (2.21)
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Of course the axiom of choice yields that K∞ is not only non-empty, but for all n, ϕ̃n :
K∞ → Kn is a surjection, where

ϕ̃n((kj)) = kn for any (kj) ∈ K∞ . (2.22)

K is also a closed subset of
∏∞

n=1 Kn, where the latter is endowed with the Tychonoff topology,
It also follows immediately that fixing n, then (2.17) holds. But this implies that

Yn ⊂ Yn+1 . (2.23)

Indeed, say y ∈ Yn and let y = ϕ̃0
n(f), for a (unique) f ∈ C(Kn). But

ϕ̃0
n(f) = f ◦ ϕ̃n = f ◦ ϕn ◦ ϕ̃n+1 = ϕ̃0

n+1(ϕ
0
nf) ∈ Yn+1 . (2.24)

Now it follows that ∪∞
n=1Yn is a unital subalgebra of C(K∞) separating its points, hence this

is dense in C(K∞) by the Stone-Weirstrauss theorem. Finally, if each ϕn admits a regular
averaging operator, then for all n there exists a contractive linear projection Pn : Yn+1 → Yn

from Yn+1 onto Yn. It follows that there exists a unique contractive linear projection P :
∪∞

j=1Yj → Y1 such that for all n and y ∈ Yn+1,

P (y) = P1P2 · · ·Pn−1Pn(y) . (2.25)

But then P uniquely extends to a unique contractive projection from C(K∞) onto P (Y1) by
(2.17), completing the proof via Proposition 2.9.

Finally, we give the

Proof of Theorem 2.4 Let K1 = K. We inductively define K2, K3, . . . , KN , . . . satisfying
the hypotheses of Lemma 2.5.

Step 1. Choose n1 > 1 and W 1
1 , . . . , W 1

n1
compact subsets of K1, each with non-empty interior

and diameter less than one, such that

K =
n1⋃

j=1

int W 1
j . (2.26)

Set K1 = ⊕n1
j=1W

1
j ; endow K1 with the metric described in the comments preceding Lemma

2.12, and let ϕ1 : K1 → K be the continuous surjection given by Lemma 2.11. Thus ϕj(W
1
j ×

{j}) = W 1
j for all j and ϕj admits a regular averaging operator by Lemma 2.11.

Step m. Assume that Km = ⊕nm
j=1W

m
j has been defined, and fix j, 1 ≤ j ≤ nm. Thus

WjW
m
j × {j} is a natural clopen subset of Km. Choose kj > 1 and Wj,1, . . . , Wj,kj

compact
subsets of Wj, each with non-empty interior, and diameter less than 1/(m + 1), with

Wj =
kj⋃

i=1

int Wj,i . (2.27)
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Next, let nm+1 =
∑nm

j=1 kj and

W n+1
i = Wψ(i) for 1 ≤ i ≤ nm+1 , (2.28)

where ψ : {1, . . . , nm+1} → {(j, i) : 1 ≤ i ≤ kj, 1 ≤ j ≤ nm} is a bijection.

Set Kn+1 = ⊕nm+1

j=1 W m+1
j , endow Km+1 with the metric described preceding Lemma 2.11 and

choose ϕm : Km+1 → Km the continuous surjection admitting a regular averaging operator
given by Lemma 2.11. Thus in fact ϕm(Wj,� × {�}) = Wj,i, where ψ(�) = (j, i) for all j and
i and moreover

Km =
nm+1⋃

j=1

int wm+1
j (2.29)

This completes the inductive construction of the Km’s and ϕm’s. Lemma 2.12 now yields the
existence of a continuous surjection ϕ : K∞ → K admitting a regular averaging operator,
where K∞ satisfies the conclusion of Lemma 2.12. It remains only to check that K∞ is perfect
and totally disconnected, hence homeomorphic to D. The details for this quite naturally
involve the further structure of inverse systems. For each 1 ≤ j ≤ n, define the map ϕj,n :
Kn+1 → Kj by ϕj,n = ϕj ◦ ϕn.

Now in our particular construction, we have that for all m and 1 ≤ j ≤ nm,

ϕm maps W m
j × {j} isometrically onto W m

j . (2.30)

But then it follows that

ϕj,m | W m
j × {j} is an isometry for all i ≤ m and 1 ≤ j ≤ nm . (2.31)

Let us endow K∞ with the metric

d((xj), (yj)) =
∞∑

j=1

dj(xj, yj)

2j
(2.32)

where dj is the metric on Kj.

Then it follows that for all m and 1 ≤ j ≤ nm;

diam W̃ m
j <

2

m
where W̃ m

j = ϕ̃j(W
m
j × {j}) . (2.33)

Indeed, suppose (xk) and (yk) belong to W̃ m
j . But then there are points x and y in W m

j ×{j}
such that xi = ϕi,m(x) and yi = ϕi,m(y) for all 1 ≤ i ≤ m, and have by (2.31),

d(xi, yi) ≤
⎛

⎝
m∑

j=1

1

2j

⎞

⎠ dm(xi, yi) +
∞∑

j=m+1

1

2j
≤ 1

m
+

1

2m
(2.34)
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since diam W m
j < 1

m
.

It then follows that the family of clopen subsets {W̃ m
j : 1 ≤ j ≤ nm; m = 1, 2, . . .} is a base

for the topology of K∞. Hence K∞ is totally disconnected. Finally, our insistence that at
each stage m we “label” at least 2 sets contained in W m

j × {j} (i.e., kj > 1), insures that

W̃ m
j contains at least two points for all m and 1 ≤ j ≤ nm, whence K∞ is indeed perfect.

B. C(K) spaces with separable dual via the Szlenk index.

Of course C(K)∗ is separable if and only if K is infinite countable compact metric. It is a
standard result in topology that every such K is homeomorphic to C(α+) for some countable
ordinal α ≥ ω. We use standard facts about ordinal numbers. An ordinal α denotes the set
of ordinals β with β < α; α+ denotes α +1. Finally, for α a limit ordinal, C0(α) denotes the
space of continuous functions on α vanishing at infinity, which of course can be identified
with {f ∈ C(α+) : f(α) = 0}.

The Banach spaces C(ωα+) arise quite naturally upon applying a natural inductive con-
struction to c = C(ω+) (the space of converging sequences). Indeed, for any locally compact
Hausdorff spaces X1, X2, . . ., we have that

(C0(X1) ⊕ C0(X2) ⊕ · · ·)c0
def
= Y (2.35)

is again algebraically isometric to C0(X) where X = ⊕∞
j=1Xj, the “direct sum” of the spaces

X1, X2, . . ..

Of course then Y has a unique “unitization” as the space of continuous functions on the one
point compactification of X, which we’ll denote by Y ⊕ [1]. The norm here is quite explicitly
given as

‖y ⊕ c · 1‖ = sup
j

sup
ω∈Xj

|yj(ω) + c| (2.36)

where y = (yj) ∈ Y .

Now define families of C(K) spaces (Yα)1≤α<ω1 as follows. Let Y 0
1 = c0 and Y1 = c = Y 0

1 ⊕ [1].
Let Y 0

2 = (c⊕c⊕· · ·)c0 and Y2 = Y 0
2 ⊕[1]. Suppose β is a countable ordinal and Xα, Yα defined

for all α < β. If β is a successor, say β = α+1, set Y 0
β = (Yα ⊕Yα ⊕· · ·)c0 and Yβ = Y 0

β ⊕ [1].
If β is a limit ordinal, choose αn < β with αn ↗ β and set Y 0

β = (Yα1 ⊕ Yα2 ⊕ · · ·)c0 and
Yβ = Y 0

β ⊕ [1]. It is not difficult to see that then for all 1 ≤ α < ω1,

Y 0
α is algebraically isometric to C0(ω

α)

and Yαis algebraically isometric to C(ωα+) .
(2.37)

Now the topological classification of infinite countable compact metric spaces K is known;
each such space is homeomorphic to exactly one of the ordinals (ωα+1)·n for some 1 ≤ α < ω1

and positive integer n ([MS]). Indeed, one has that α = Ca(K) and n = #K(α). (See the

12



comments following 2.19 below for the definition of Ca(K)). We thus obtain:

Proposition 2.13 Let K be an infinite countable compact metric space. Then there exists a
unique 1 ≤ α < ω1 and a unique n so that C(K) is (algebraically) isometric to Yα ⊕ · · ·⊕︸ ︷︷ ︸

n

Yα,

the direct sum taken in the sup norm.

The isomorphic classification of these spaces is far more delicate. The result is as follows
(C. Bessaga and A. Pe�lczyński [BP]).

Theorem 2.14 Let K be an infinite countable compact metric space.

(a) C(K) is isomorphic to C(ωωα
+) for some countable ordinal α ≥ 0.

(b) If 0 ≤ α < β < ω1, then C(ωωα
+) is not isomorphic to C(ωωβ

+).

It turns out that the Szlenk index actually distinguishes these spaces. This index was intro-
duced for Banach spaces with separable dual, by W. Szlenk [Sz], eight years after the seminal
work of [BP]. For X with X∗ separable, we denote its Szlenk index by Sz(X). The following
remarkable result was established by C. Samuel [Sa], based in part on work of D. E. Alspach
and Y. Benyamini [AB2].

Theorem 2.15 Let 0 ≤ α < ω1. Then Sz(C(ωωα
+) = ωα+1.

We give a detailed proof of 2.14(a), but only indicate some of the ideas involved in 2.15,
which of course yields 2.14(b). We first give an alternate derivation for the Szlenk index,
similar to that indicated in Section 1.3 of [AGR].

Fix X a separable Banach space, and let ε > 0. We define a derivation dε on the ω∗-compact
subsets K of X∗ as follows:

Let δε(K) denote the set of all x∗ ∈ K such that there exists a sequence (x∗
n) in K with

x∗
n → x∗ ω∗ and ‖x∗

n − x∗‖ ≥ ε for all n . (2.38)

Now define:

dε(K) = δε(K)
ω∗

. (2.39)

Now define a transfinite descending family of sets Kα,ε for 0 ≤ α < ω1 as follows. Let
K0,ε = K and K1,ε = dε(K). Let γ be a countable ordinal and suppose Kα,ε defined for all
α < γ. If γ is a successor, say γ = α + 1, set

Kγ,ε = dε(Kα,ε) . (2.40)

If γ is a limit ordinal, choose (αn) ordinals with αn < γ for all n and αn → γ; set

Kγ,ε =
∞⋂

n=1

Kαn,ε . (2.41)

13



We may now define ordinal indices as follows.

Definition 2.16 Let K be a ω∗-compact subset of X∗, with X a separable Banach space.

(a) βε(K) = sup{α ≤ ω1 : Kα,ε �= ∅}
(b) β(K) = supε>0 βε(K).
(c) Sz(X) = β(Ba X∗).

Now it is easily seen that in fact there is a (least) α < ω1 with Kα,ε = Kα+1,ε. Moreover one
has that then Kα,ε = ∅ iff K is norm separable iff βε(K) < ω1, and then α = βε(K) + 1.
Thus one obtains that Sz(X) < ω1 iff X∗ is norm-separable.

Szlenk’s index was really only originally defined for Banach spaces with separable dual. In
fact, however, one arrives at exactly the same final ordinal indices as he does, assuming that
�1 is not isomorphic to a subspace of X, in virtue of the �1-Theorem [Ro4].

The derivation in [Sz] is given by: K → τε(K) where τε(K) is the set of all x∗ in K so
that there is a sequence (x∗

n) in K and a weakly null sequence (xn) in Ba(X) such that
limn→∞ |x∗

n(xn)| ≥ ε. Now let Pα(ε, K) be the transfinite sequence of sets arising from this
derivation as defined in [Sz]. Let also ηε(K), the “ε-Szlenk index of K,” equal sup{α < ω1 :
Pα(ε, K) �= ∅} and η(K) = supε>0 ηε(K)}.

The following result shows the close connection between Szlenk’s derivation and ours; its
routine proof (modulo the �1-theorem) is omitted.

Proposition 2.17 Let X be a separable Banach space containing no isomorph of �1, and
let K be a ω∗-compact subset of X∗. Then for all ε > 0 and countable ordinals α,

Pα

(
ε

2
, K

)
⊃ Kα,ε ⊃ Pα(2ε, K) . (2.42)

Hence

η
(

ε

2
, K

)
≥ βε(K) ≥ η(2ε, K) (2.43)

and thus η(K) = β(K).

One may now easily deduce the following permanence properties.

Proposition 2.18 Let X, Y be given Banach spaces and K, L weak* compact norm separable
subsets of X∗.

(a) L ⊂ K implies β(L) ≤ β(K).
(b) If T : Y → X is a surjective isomorphism, then β(T ∗K) = β(K).
(c) If Y ⊂ X and π : X∗ → Y ∗ is the canonical quotient map, then β(πK) ≤ β(K).

In turn, this yields the following isomorphically invariant properties of the Szlenk index.
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Corollary 2.19 Let X and Y be given Banach spaces with norm-separable duals. Then if
Y is isomorphic to a subspace of a quotient space of X, Sz(Y ) ≤ Sz(X).

Remark. Of course this yields that Sz(X) = Sz(Y ) if X and Y are of the same Kolomogroff
dimension; i.e., each is isomorphic to a subspace of a quotient space of the other. This reveals
at once both the power and the limitation of the Szlenk index.

For the next consequence of our permanence properties of the Szlenk index, recall the Cantor-
Bendixon index Ca(K) of a compact metrizable space K, defined by the cluster point deriva-
tion. For W ⊂ K, let W ′ denote the set of cluster points of W . Then define K(α), the αth

derived set of K, by K(0) = K, K(α+1) = (K(α))′, and K(β) =
⋂

α<β K(α) for countable limit
ordinals α. Then define (for K �= ∅)

Ca(K) = sup{0 ≤ α ≤ ω1 : K(α) �= ∅} . (2.44)

One has that K is countable iff Ca(K) < ω1, and of course if α is the least γ with
K(α) = K(α+1), then either K(α) = ∅ and α = Ca(K) + 1, or K(α) is perfect. (Note: we are
unconventional here; the index of Cantor-Bendixon is traditionally defined as Ca(K) + 1.)

Corollary 2.20 (a) Let X be a separable Banach space and K be a countable ω∗-compact
subset of X∗ so that for some δ > 0, K is δ-separated, i.e.,

‖k − k′‖ ≥ δ for all k �= k′ in K . (2.45)

Then

βδ(K) = β(K) = Ca(K) . (2.46)

(b) Sz(C(ωα + 1)) ≥ α for any countable ordinal α.

PROOF. (a) We actually have that for any 0 < ε ≤ δ and any closed subset W of K,

δε(W ) = dε(W ) = W ′ . (2.47)

But then for all countable ordinals α,

Kα,ε = K(α) (2.48)

which immediately yields (2.46). As for (b), we have that

Ca(ωα+) = α . (2.49)

But ωα+ is obviously ω∗-homeomorphic to a 2-separated subset K of Ba(C(ωα+))∗. Thus
we have

Sz(Ca(ωα+)) = β(K) = β2(K) = α . (2.50)
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We may now obtain, via Theorem 2.14, the “easier” half of Theorem 2.15.

Corollary 2.21 Let 0 ≤ α < ω. Then

Sz(C(ωωα

+)) ≥ ωα+1 . (2.51)

PROOF. For each positive integer n, we have that

Sz(C(ωωα·n+)) ≥ ωα · n by 2.20(b). (2.52)

But C(ωn·ωα
+) is isomorphic to C(ωωα

+) by Theorem 2.14, and hence since the Szlenk index
is isomorphically invariant (by Corollary 2.19)

Sz(C(ωωα

+)) ≥ n · ωα for all integers n , (2.53)

which implies (2.51).

We next deal with (a) of Theorem 2.14. We first give a functional analytical presentation of
the spaces C(ωωα

), using injective tensor products. We first recall the definitions (see [DJP],
specifically pp. 485–486).

Definition 2.22 Given Banach spaces X and Y , the injective tensor norm, ‖ ·‖ε, is defined
on X ⊗ Y , the algebraic tensor product of X and Y , by

‖
n∑

k=1

xk ⊗ yk‖ε = sup
{
|

n∑

k=1

x∗(xk)y
∗(yk)| : x∗ ∈ Ba X∗, y ∈ Ba Y ∗

}
(2.54)

for any n, x1, . . . , xk in X and y1, . . . , yk in Y . The completion of X ⊗ Y under this norm

is called the injective tensor product of X and Y , denoted X
∨
⊗Y .

When K and L are compact Hausdorff spaces, then we have that C(K)
∨
⊗C(L) is canonically

isometric to C(K×L), where the elementary tensor x⊗y in C(K)⊗C(L) is simply identified
with the function (x ⊗ y)(k, �) = x(k)y(�) for all k, � ∈ K × L.

We then obtain the following natural tensor product construction of the spaces C(ωωα
+)

(where we use the “unitization” given in (2.36).

Define a family (Xα)α<ω1 as follows. Let X0 = c and also let X0,1 = c0. Suppose Xα has

been defined. Set Xα,n = Xα

∨
⊗ · · ·

∨
⊗Xα (n-times). Then set Xα+1,0 = (Xα,1 ⊕ Xα,2 ⊕ · · · ⊕

Xα,n ⊕ · · ·)c0, and Xα+1 = Xα+1,0 ⊕ [1]. Finally, suppose β is a countable limit ordinal,
and Xα has been defined for all α < β. Choose (αn) a sequence with αn ↗ β, set Xβ,0 =
(Xα1 ⊕ · · · ⊕ Xαn ⊕ · · ·)c0; then set Xβ = Xβ,0 ⊕ [1].

The following result now follows by transfinite induction.
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Proposition 2.23 Let α < ω1 and 1 ≤ n < ∞. Then Xα,0 is algebraically isometric to
C0(ω

ωα
), and Xα,n is algebraically isometric to C(ωωα·n+). In particular, Xα = C(ωωα

+).

We next give the main step in the proof of Theorem 2.14(a).

Theorem 2.24 There exists an absolute constant κ so that for any infinite countable com-
pact metric space K,

d(C(K), (C(K) ⊕ C(K) ⊕ · · ·)c0) ≤ κ .

Remark 2.25 Of course, it follows immediately from (a) that also for any n, d(C(K),
⊕n

1C(K)) ≤ κ where ⊕n
1X denotes the �∞-direct sum of n copies of X.

Proof It suffices to show this for all the spaces C(ωα+). Indeed, once this has been done,
it follows from Proposition 2.13 that given K, there exists a unique α and n with C(K)
isometric to ⊕n

1C(ωα+). But then (C(K)⊕C(K)⊕ · · ·)c0 is isometric to ⊕n
1c(ω

α+)⊕ · · ·)c0,
which of course is isometric to (C(ωα+)⊕· · ·)c0 ; hence we obtain that also d(C(K), (C(K)⊕
C(K) ⊕ C(K) ⊕ · · ·)c0 ≤ κ.

Let (Xβ)β<ω1 and (Yβ)β<ω1, be our transfinite presentation of these spaces, preceding 2.13.
Surprisingly, this proof is not by transfinite induction. Suppose β ≥ 1, and β is a successor,
β = α + 1. But then Xβ = (Yα ⊕ Yα⊕)c0 , and so Xβ is isometric to its c0 sum with itself.
Then letting γ be the constant in Lemma 2.5 (e),

d(Xβ ⊕ [1], Xβ) ≤ γ . (2.55)

Since also Yβ = Xβ ⊕ [1],

d((Yβ ⊕ Yβ ⊕ · · ·)c0, Xβ) ≤ γ , (2.56)

thus

d((Yβ ⊕ Yβ ⊕ · · ·)c0, Yβ) ≤ γ2 . (2.57)

Now suppose β is a limit ordinal; choose (αn) with αn ↗ β. Then

(Xβ ⊕ Xβ ⊕ · · ·) = ( ⊕∞
j=1 (Yαj

⊕ Yαj
⊕ · · ·)c0)c0

(2.58)

= (Xα1+1 ⊕ Xα2+2 ⊕ · · ·)c0 (2.59)

↪→ (Yα1+1 ⊕ Yα2+2 ⊕ · · ·)c0 (2.60)
∼= Xβ (2.61)

Here αn+1 < β too, and the final isometry follows from the invariance (isometric) in the
definition of the Xβ’s, while the “2-complementation” follows trivially, since Xαn+1 is codi-
mension 1 in Yαn+1 for all n. That is, (2.58) yields that (Xβ ⊕Xβ ⊕ · · ·)c0 is isometric to a 2
complemented subspace of Xβ. But then a quantitative version of the Pe�lczyński decompo-
sition method produces an absolute constant τ so that

d(Xβ ⊕ Xβ ⊕ · · · , Xβ) ≤ τ . (2.62)
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But then (2.55) yields immediately that

d((Yβ ⊕ · · ·)c0 , Yβ) ≤ γ2τ . (2.63)

This completes the proof.

We need one final ingredient, involving tensor products.

Lemma 2.26 Let α = 1 or α be a countable limit ordinal, and let n be a positive integer,
and let K = ωα+. Then

C(Kn) ∼ C(K) ,

Proof It really suffices to prove this for n = 2. For we obtain that setting X = C(K), then

X ∼ X
∨
⊗X . (2.64)

But now it follows immediately from induction that

X ∼
n∨
⊗
1

X (2.65)

where
n∨
⊗
1

X = X
∨
⊗ · · ·

∨
⊗X n-times, and of course

n∨
⊗
1

X ∼= C(Kn).

We first note an immediate consequence of Lemma 2.5(b) (the Borsuk theorem). Let M be
any compact metric space and L be a closed subset of M ; let C0(K, L) = {f ∈ C(K) :
f(�) = 0 for all � ∈ L}. Then

C(M) ∼ C0(M, L) ⊕ C(L) . (2.66)

Now suppose that α = 1. We wish to show that

C(ω+) ∼ C(ω2+) = C((ω+) × (ω+)) . (2.67)

To avoid confusing notation, set p = ω and denote {p} just by p. Set M = (ω+)× (ω+) and
let L = [(ω+) × p] ∪ [p × (ω+)]. Then C0(M, L) is isometric to c0, hence (2.66) yields that

C(ω2+) ∼ c ⊕ c0 ∼ c = C(ω+) . (2.68)

Now let α be a countable limit ordinal, and choose (αn) with αn < α for all n and αn → α.
Let M = K × K, set p = ωα, and let L = [K × p] ∪ [p × K]. Then it follows (via Theorem
2.24) that

C(L) ∼ C(K) . (2.69)

Now for each j, let Kj = ωαj+. Then

C0(M, L) ∼= ( ⊕1≤j,n<∞ C(Kj × Kn))c0
(2.70)
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∼=
(
⊕∞

n=1 ( ⊕∞
n=j C(Kj × Kn))c0

)

c0
. (2.71)

But for each j ≤ n,

C(Kj × Kn)
cc
↪→ C(Kn × Kn) . (2.72)

Hence

( ⊕∞
n=j C(Kj × Kn))c0

cc
↪→ ⊕∞

n=jC(Kn × Kn) (2.73)
∼= C0(K, p) . (2.74)

(Indeed, note that C(Kn ×Kn) ∼= C(ωαn·2+) and αn · 2 < α for all n. Thus finally, by (2.70)
and (2.73),

C0(M, L)
cc
↪→ (C(M, L) ⊕ C0(M, p) ⊕ · · · )c0

(2.75)

∼ C0(M, p) (2.76)

by Theorem 2.24.

Of course, C0(K, p)
cc
↪→ C0(M, L) for C0(K, p) ∼= (⊕∞

n=1C(1×Kn))c0. Then by the Pe�lczyński
decomposition method

C0(K, P ) ∼ C0(M, L) (2.77)

and so finally by (2.66),

C(M) ∼ C0(K, p) ⊕ C(K) ∼ C(K) . (2.78)

At last, we give the

Proof of Theorem 2.14(a) Let K be as in its statement. We know there is an infinite
countable ordinal β with C(K) ∼= C(β+). Define

α = sup{γ : ωωγ ≤ β} . (2.79)

Then

ωωα ≤ β < ωωα+1

. (2.80)

Since ωωα+1
= limn→∞ ωωα·n, there is a positive integer n with

β ≤ ωωα·n . (2.81)

Then evidently from (2.80) and (2.81),

C(ωωα

+)
cc
↪→ C(β+) and C(β+)

cc
↪→ C(ωωα·n) . (2.82)
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Now if α = 0, ωα = 1; otherwise, ωα is a limit ordinal. So setting M = ωωα
+, C(M) ∼ C(Mn)

by Lemma 2.26, and of course Mn = ωωα·n+, thus

C(ωωα·n+) ∼ C(ωωα

) , (2.83)

whence C(K) is isomorphic to C(ωωα
+) by the decomposition method.

We finally make some observations about the proof of the “harder” half of Theorem 2.14.
We first give the first of several arguments, here, showing that c = C(ω+) is not isomorphic
to C(ωω+), via the Szlenk index.

Proposition 2.27 Sz(c0) = ω.

Of course then Sz(c) = Sz(C(ωn+)) = ω also,(for all n < ∞), while Sz(C(ωω+)) ≥ ω2 by
Corollary 2.21.

The following elementary result easily yields 2.21, since of course Sz(c0) ≥ ω by (2.24).
We identify c∗0 with �1; of course then a sequence in Ba(�1) converges ω∗ precisely when it
converges pointwise on N.

Lemma 2.28 Let 0 < δ < 1 and let f , (fn) in Ba(�1) so that fn → f ω∗ and ‖fn − f‖ ≥ δ
for all n. Then ‖f‖ ≤ 1 − δ.

Proof Let 0 < ε, and choose M with

∞∑

j=M+1

|f(j)| < ε . (2.84)

Then choose n so that

M∑

j=1

|fn(j) − f(j)| < ε . (2.85)

But then

δ − ε <
∞∑

j=M+1

|fn(j) − f(j)| <
∞∑

j=M+1

|fn(j)| +
∞∑

j=M+1

|f(j)| (2.86)

so by (2.83)

∞∑

j=M+1

|fn(j)| > δ − 2ε , (2.87)

hence

∞∑

j=M+1

|fn(j)| > 1 − δ + 2ε , (2.88)
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and finally

M∑

j=1

|f(j)| ≤ (1 − δ) + 3ε (2.89)

by (2.85) and (2.88). Hence

∞∑

j=1

|f(j)| < 1 − δ + 4ε , (2.90)

proving the Lemma since ε > 0 is arbitrary.

Corollary 2.29 Let K = Ba(�1, ω∗), and 0 < δ < 1. Then if f ∈ Kn,δ (as defined following
(2.38)), ‖f‖ ≤ (1 − δ)n.

Proof By induction on n. n = 1 is the previous result. So, suppose proved for n, and
f ∈ Kn+1,δ. Choose (fm) in Kn,δ with fm → f ω∗ and ‖fm − f‖ ≥ δ for all m. But then by
induction hypothesis ‖fm/(1− δ)n‖ ≤ 1 for all m and since ‖(fm −f)/(1− δ)n‖ ≥ δ/(1− δ)n

for all m, ‖f/(1 − δ)n‖ ≤ 1 − δ by Lemma 2.28. Hence ‖f‖ ≤ (1 − δ)n+1, proving 2.29.

Proof of Proposition 2.27 Again let 0 < δ < 1. It follows from the preceding result
that if (1 − δ)n < δ, then Kn+1,δ = ∅, hence (c.f. Definition 2.16) βδ(K) ≤ n and so
β(K) = Sz(c0) ≤ ω.

The proof of Theorem 2.13 in [Sa] uses rather delicate properties of the ordinal numbers
and their reflection in properties of the spaces C(ωωα

+). In fact, it is first proved in [Sa]
that if α < β, then C(ωωβ

+) is not isomorphic to a quotient space of C(ωωα
+), and then

the desired inequality about the Szlenk index is deduced, using in part a result in [AB2]. Of
course this result is in turn a consequence of 2.13 via the natural properties of the Szlenk
index developed above. The present author “believes” a direct functional analytical proof of
2.13 should be possible, in the spirit of the presentation of the spaces C(ωωα

) given above.

3 Some Banach space properties of separable C(K)-spaces

A. Weak injectivity.

We first consider a separable weak injectivity result, due to A. Pe�lczyński [Pe4].

Theorem 3.1 Let Y be a subspace of a separable Banach space X, with Y isomorphic to
a separable C(K)-space. Then there exists a subspace Z of Y which is isomorphic to Y and
complemented in X.

We give a proof due to J. Hagler [H1], which yields nice quantitative information. We say that
Banach spaces X and Y are λ-isomorphic if there is a surjective isomorphism T : X → Y
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with ‖T‖‖T−1‖ ≤ λ. If X ⊂ Y , we say that X is λ-complemented in Y if there is a linear
projection P of Y onto X with ‖P‖ ≤ λ. The reader may then easily establish the if the
diagram 2.6 holds with linear maps U and V satisfying ‖U‖‖V ‖ ≤ λ, then X is λ-isomorphic
to a λ-complemented subspace of Y .

The quantitative version of 3.1 given in [H1] then goes as follows:

Theorem 3.2 Let K be an infinite compact metric space, X a separable Banach space, and
Y a subspace of X λ-isomorphic to C(K). If K is uncountable, let Ω = D, the Cantor
set. If K is countable, let Ω = K. Then Y contains a subspace λ-complemented in X and
λ-isomorphic to C(Ω).

Of course, 3.1 follows from 3.2 and Milutin’s Theorem (Theorem 2.1). We require a topolog-
ical lemma (due to Kuratowski in the uncountable case, Pe�lczyński in the countable case).

Lemma 3.3 Let M and L be compact metric spaces and τ : M → L be a continuous
surjection.

(a) If L is uncountable, there is a subset Ω of M homeomorphic to D with τ |Ω a homeomor-
phism of Ω with τ(Ω).

(b) If L is countable, there is a subset Ω of M homeomorphic to L with τ |Ω a homeomorphism
of Ω with τ(Ω).

Proof of Theorem 3.2 If W is a ω∗-compact subset of the dual B∗ of a Banach space B,
let RW : B → C(W ) be the continuous map (RW b)(w) = w(b) for all b ∈ B, w ∈ W . Now
choose T : C(K) → Y a surjective isomorphism with

‖T‖ = 1 and ‖T−1‖ ≤ λ . (3.1)

Let i : Y → X be the identity injection. Then

(iT )∗(λ Ba(X∗)) ⊃ Ba(C(K)∗) . (3.2)

Then regarding K as canonically embedded in C(K)∗, we have that setting M = [(iT )∗]−1(K)]
∩λ Ba(X∗) then M is ω∗ metrizable and setting τ = (iT )∗|M , then

τ : M → K is a continuous surjection. (3.3)

If K is uncountable, choose Ω ⊂ M homeomorphic to D satisfying (a) of Lemma 2.5; if
K is countable, choose Ω ⊂ M homeomorphic to K, satisfying (b) of 2.5. Set Ω′ = τ(Ω).
Finally, let β = τ−1. Recall (c.f. Definition 2.10) that β0 : C(Ω) → C(Ω′) is the canonical
(algebraic) isometry induced by β; since β is a homeomorphism. β0 is surjective. At last
let E : C(Ω′) → C(K) be an isometric linear extension operator (as provided by Lemma
2.5(h).) We then have that the following diagram is commutative.
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C(Ω′)

E
�

C(K)

T
�

��

Y �i X
RΩ� C(Ω′)

	

β0

C(Ω′) .�I

(To check this, let ω′ ∈ Ω′ and set β(ω′) = ω. Thus ω′ = τ(ω) = (iT )∗(ω). Let f ∈ C(Ω′).
Then β0RΩiTEf(ω′) = RΩiTEF (βω′) = iTEf(ω) = Ef(iT )∗(ω) = (Ef)(ω′) = f(ω′)).
Finally, let U = iTE and V = β0RΩ. Then ‖u‖ ≤ 1 and since Ω ⊂ λ Ba(X∗), ‖V ‖ ≤ λ.
Thus Z = U(C(Ω′)) is λ-isomorphic to C(Ω′) and λ-complemented in X. Of course Z ⊂ Y ,
thus completing the proof.

Theorem 3.1 has an interesting consequence for C(K) quotients of separable spaces.

Corollary 3.4 Let K be a compact metric space, and X be a separable Banach space. If
C(K) is isomorphic to a quotient of a subspace of X, then C(K) is isomorphic to a quotient
space of X.

Proof Let Y be a subspace of X such that C(K) is isomorphic to a quotient space of Y
and let Z be a subspace of �∞, isometric to C(K). We may thus choose a bounded linear
surjection T : Y → Z. Since �∞ is injective, we may choose T̃ : X → �∞ a bounded linear

operator extending T . But then W
def
= T̃ (X) is separable and of course Z ⊂ W . Hence we

may choose Z ′ ⊂ Z with Z ′ isomorphic to Z and a bounded linear projection P from W
onto Z ′. But then P T̃ maps X onto Z ′, completing the proof.

B. c0-saturation of spaces with separable dual.

We next discuss a “thin” property of C(K) spaces for K countable, due to Bessaga and
Pe�lczyński.

Definition 3.5 Let X be an infinite dimensional Banach space X. X is called c0-saturated
if c0 embeds (isomorphically) into every (closed linear) infinite dimensional subspace.

Proposition 3.6 [BP] Let K be a countable infinite compact metric space. Then C(K) is
c0-saturated.

It is unknown if every quotient space of such a C(K) space is c0-saturated. Actually, to “play
the devil’s advocate”, it is also unknown if �2 is isomorphic to a subspace of a quotient of
C(ωω+).

Proposition 3.6 is really an immediate consequence of our transfinite description of the
C(K)-spaces and the following natural permanence property of c0-saturated spaces.

Lemma 3.7 Let X1, X2, . . . be c0 saturated Banach spaces. Then X
def
= (X1 ⊕ X2 ⊕ · · ·)c0
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is c0 saturated.

Proof We first observe that for all n, X1 ⊕· · ·⊕Xn is c0 saturated. Indeed, it suffices, using
induction, to show this for n = 2. If Y is an infinite dimensional subspace of X1 ⊕X2 which
is not isomorphic to a subspace of X1, then letting P be the natural projection of X1 ⊕ X2

onto X1, we may choose a normalized basic sequence (yn) in Y with
∑ ‖Pyn‖ < ∞. It then

follows that for some N , (yj)
∞
j=N is isomorphic to a subspace of X2, whence [yj]

∞
j=N contains

a subspace isomorphic to c0. Now for each n, let Pn be the natural projection of X onto
X1 ⊕ · · · ⊕Xn, and let Y be an infinite dimensional subspace of X. Then if Y is isomorphic
to a subspace of X1 ⊕ · · · ⊕ Xn, c0 embeds in Y by what we proved initially. If this is false
for all n, we may choose a normalized basic sequence (yn) in Y so that

∑ ‖Pn(yn)| < ∞.
Well, a standard travelling hump argument now yields that there is a subsequence (y′

n) of
(yn) with (y′

n equivalent (almost isometrically) to the c0 basis.

Proof of Proposition 3.6 We may just use the transfinite description of the spaces Yα =
C(ωα+) given preceding proposition 2.13. It suffices to prove these spaces are c0 saturated,
since for every infinite countable ordinal β, C(β+) is isometric to the n-fold direct sum of
one of these, for some n.

Of course c0 is itself c0 saturated, and so then trivially so is c = Y1. Suppose β > 1 is a
countable ordinal, and it is proved that Yα is c0-saturated for all α < β. If β is a successor, say
β = α+1, then Y 0

β = (Yα⊕Yα⊕· · ·)c0 is c0-saturated by Lemma 3.7, and Yβ is isomorphic to
Y 0

β by Lemma 2.5(e). But if β is a limit ordinal, then choose (αn) with αn ↗ β. So then Yβ is
again isomorphic to Xβ = (Yα1 ⊕Yα2 ⊕· · ·)c0, which again is c0-saturated by Lemma 3.7.

C. Uncomplemented embeddings of C([0, 1]) and C(ωω+) in themselves.

The last result we discuss in some depth in this section, is D. Amir’s theorem: C(ωω+) is
not separably injective [A]. By the results of the preceding section, it follows that if K is an
infinite compact metric space, then C(K) is separably injective only if C(K) is isomorphic
to c0 (as also pointed out in [A]). (See ([JL, pp.18–19] for a short proof of the theorem that
c0 is separably injective.) Of course it follows that C([0, 1]) is not separably injective. A
concrete witness of this result: let φ{0, 1}N → [0, 1] be the Cantor map, φ((εj)) =

∑∞
j=1

εj

2j
.

Then φ0(C[0, 1]) is uncomplemented in C({0, 1}N) and of course {0, 1}N is homoemorphic
to D the Cantor discontinuum. This uncomplementation result is due to Milutin [M].

We give a proof of both of these results, by using a classical space of discontinuous functions
on [0, 1] which arises in probability theory; namely the space of all scalar-valued functions
on [0, 1] which are right continuous with left limits, denoted by rcl([0, 1]). We may easily
generalize this to arbitrary compact subsets of [0, 1].

Definition 3.8 Let K be an infinite compact subset of K. Let rcl(K, D) denote the family of
all scalar valued functions f on K so that f is continuous for each k ∈ K ∼ D, and so that f
is right continous with left limit at each point d ∈ D. In case D = K, let rcl(K) = rcl(K, K).

We shall show that if D is a countable dense subset of [0, 1], then C([0, 1]) is an uncomple-
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mented subspace of rcl([0, 1], D); and that this yields Milutin’s result concerning the Cantor
map, for D the set of all dyadic intervals. Finally, we show that there is a subset K of [0, 1]
homeomorphic to ωω+ such that C(K) is uncomplemented in rcl(K).

We first need the following concept.

Definition 3.9 Let K be a subset of [0, 1], and let K(1) denote the set of 2-sided cluster points
of K. That is, x ∈ K(1) provided there exist sequences (yj) and (zj) in K with yj < x < zj

for all j and limj→∞ yj = x = limj→∞ zj. Then for n ≥ 1, let K(n+1) = (K(n))(1). Finally let
K(ω) = ∩∞

n=1K(n).

Of course we could define K(α) for arbitrary countable ordinals, but we have no need of this.
Also, if K is not closed, we need not have that K(1) ⊂ K, and moreover, even if K is closed,
K(1) may not be; e.g. [0, 1](1) = (0, 1). We do, however, have the following simple result.

Proposition 3.10 Let K be a compact subset of [0, 1]. Then K(n+1) ⊂ K(n) for all n.

Proof. Set, for convenience, K(0) = K. So the result trivially holds for n = 0. Suppose
proved for n, and let x ∈ K(n+2). Then choosing (yj) and (zj) as in 3.9 with (yj), (zj) in
K(n+1), for all n, the yj’s and zj ’s also belong to K(n) by induction, thus x ∈ K(n+1).

Now we dig into the way in which C(K) is embedded in rcl(K), which after all, is alge-
braically isometric to C(M) for some comact Hausdorff M .

Proposition 3.11 Let K be a compact subset of [0, 1], and assume D is an infinite countable
subset of K(1). Set B = rcl(K, D). Then B is an algebra of bounded functions and B/C(K)
is isometric to c0.

Remark 3.12 Without the countability assumption we still get that B/C(K) is isometric
to c0(D).

Proof. For each f ∈ B, d ∈ D, let f(d−) = limx↑d f(x) (i.e., the left limit of f at d). Fix
f ∈ B. Now it is easily seen that f is bounded. In fact, a classical elementary argument
shows that for all ε > 0,

{d ∈ D : |f(d) − f(d−)| > ε} is finite. (3.4)

It then follows that defining T : B → �∞(D) by

(Tf)(d) =
f(d) − f(d−)

2
for all f ∈ B, d ∈ D (3.5)

then T is a linear contraction valued in c0(D). Now for each d ∈ D, define fd ∈ B by

fd(k) = 1 if k < d , fd(k) = −1 if k ≥ d (3.6)

Now since d ∈ K(1), it follows easily that dist(fd, C(K)) = 1. In fact, letting π : B → B/C(K)
be the quotient map, we have that for any n, k disjoint points d1, . . . , dn, and arbitrary scalars
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c1, . . . , cn,

‖π(
∑

cjfdj
)‖ = max

j
|cj| = ‖T (

∑
cjfdj

‖ . (3.7)

This easily yields that in fact T is a quotient map, and moreover if d1, d2, . . . is an enumeration
of D, then (

∏
fdj

) is isometrically equivalent to the usual c0 basis and [
∏

fdj
] = B/C(K).

The next lemma is the crucial tool for our non-complementation results.

Lemma 3.13 Let K be a compact subset of [0, 1] so that K(n) �= ∅. If K is countable, let
D = K(1). If K = [0, 1], let D be a countable dense subset of (0, 1) (the open unit interval).
Assume for each d ∈ D, there is given gd ∈ C(K). Then given ε > 0, there exist d1, . . . , dn

in D and v in K so that

|(fdj
+ gdj

)(ν)| > 1 − ε for all 1 ≤ j ≤ n. (3.8)

Proof. For convenience, we assume real scalars. Note also that in the case K = (0, 1),
K(n) = (0, 1). Let ε > 0 be fixed. First choose d1 ∈ K(n) ∩ D. Now choose δ1 > 0 so that
letting V1 = (d1 − δ1, d1 + δ1) ∪ K, then

|gd1(d1) − gd1(x)| < ε for all x ∈ V1 . (3.9)

For simplicity in notation, set a = gd1(d1). Now if x ∈ V1 and x > d1,

(fd1 + gd1)(x) > −1 + a + ε . (3.10)

If x ∈ V1, x < d1, then

(fd1 + gd1)(x) > 1 + a − ε . (3.11)

But

max{|1 + a − ε|, | − 1 + a + ε|} = 1 − ε + |a| ≥ 1 − ε . (3.12)

Now since d1 is a 2-sided cluster point of K(n−1), it follows that

V 1
1

def
= (d1 − δ1, d1) ∩ K(n−1) ∩ D �= ∅

and

V 2
1

def
= (d1, d1 + δ1) ∩ K(n−1) ∩ D �= ∅ .

Hence if follows from (3.7) - (3.11) that we may set Ṽ1 = V 1
1 or V 2

1 , and then

Ṽ1 ∩ K(n−1) ∩ D �= ∅ (3.13)

and

|(fd1 + gd1)(x)| > 1 − ε for all x ∈ Ṽ1 . (3.14)
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Now choose d2 ∈ Ṽ1 ∩ K(n−1) ∩ D, and proceed in exactly the same way as in the first step.

Thus, we first choose V2 ⊂ Ṽ1 an open neighborhood of d2 so that

|gd2(d2) − gd2(x)| < ε for all x ∈ V2 . (3.15)

Since d2 is a right and left cluster point of K(n−2) we again choose Ṽ2 and open subset of V2

such that

|(fd2 + gd2)(x)| > 1 − ε for all x ∈ V 2
2 (3.16)

and so that

Ṽ2 ∩ K(n−2) ∩ D �= ∅ . (3.17)

Continuing by induction, we obtain d1, . . . , dn in D, dn+1 ∈ K, and open sets in K, K =
Ṽ0 ⊃ Ṽ1 ⊃ Ṽ2 ⊃ · · · ⊃ Ṽn so that for all 1 ≤ j ≤ n + 1, dj ∈ Ṽj and

|(fdj
+ gdj

)(x)| > 1 − ε for all x ∈ Ṽj . (3.18)

Evidently then d1, . . . , dn and v = dn+1 satisfy the conclusion of the lemma

We are now prepared for our main non-complementation result.

Theorem 3.14 Let n > 1 and let K and D be as in Lemma 3.13. Set B = rcl(K, D). Then
if P is a bounded linear projection of B onto C(K),

‖P‖ ≥ n − 1 . (3.19)

Hence if K = [0, 1] or if K is countable and K(n) �= ∅ for all n, C(K) is an uncomplemented
subspace of rcl(K, D).

Proof. Let λ = ‖P‖, and set B = rcl(K); also let π : B → B/C(K) be the quotient map.
Then letting Y = kernel P , standard Banach space theory yields that π(Y ) = B/C(K) and

‖y‖ ≤ (λ + 1)‖πy‖ for all y ∈ Y . (3.20)

Now by Proposition 3.11 and its proof, B/C(K) is isometric to c0 and in fact [π(fd)]d∈D =
B/C(K) and (πfd) is isometrically equivalent to the c0-basis (for c0(D)). But it follows from
(3.20) that we may then choose (unique) yd’s in Y so that

πyd = πfd for all d (3.21)

and

‖
∑

cdyd‖ ≤ (λ + 1) max |cd| (3.22)

for any choice of scalars cd with cd �= 0 for all but finitely many d. But (3.21) yields that for
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each d ∈ D there is a gd ∈ C(K) so that

yd = fd + gd for all d . (3.23)

At last, given ε > 0, we choose d1, . . . , dn in D and v ∈ K satisfying (3.13), i.e. the conclusion
of Lemma 3.13. But then we may choose scalars c1, . . . , cn with |cj| = 1 for all j, so that

cj(fdj
+ gdj

)(v) > 1 − ε for all 1 ≤ j ≤ n . (3.24)

Hence

‖
n∑

j=1

cjydj
‖ > (

n∑

j=1

cj(fdj
+ gdj

))(v) > n − nε . (3.25)

Finally, (3.22) and (3.25) yield that

λ + 1 > n − nε . (3.26)

But ε > 0 was arbitrary, so the conclusion of the theorem follows.

To complete the proof of Amir’s theorem, we only need to exhibit a subset K of [0, 1] with
K homeomorphic to ωω+ and K(w) �= ∅. This is easily done, in the next result.

Proposition 3.15 Let α = ωn+ for some 1 ≤ n ≤ ω. Then there is a subset K of [0, 1]
which is homeomorphic to α, so that K(j) = K(j) for all j ≤ ω. Moreover then rcl(K) is
algebraically isometric to C(K) ⊕ C(K).

Proof. Obviously, we may put K inside [−1, 1] or any particular interval [a, b] instead.
For n = 1 let K = { 1

n
,− 1

n
, 0 : n = 1, 2, . . .}. Then evidently K(1) = K(1) = {0}, K is

homeomorphic to ω+, and rcl(K) is clearly algebraically isometric to c⊕ c = C(K)⊕C(K).
Suppose 1 ≤ n < ∞, α = ωn+, and K = Kα has been constructed satisfying the conclusion
of the proposition.

Let now {Kj : j ∈ Z ∼ {0}} be a family of “copies” of Kα, where for each j ≥ 1,

Kj ⊂
(

1

j + 1
,
1

j

)
(3.28(i))

while if f ≤ −1

Kj ⊂
(

1

j
,

1

j + 1

)
(3.28(ii))

Finally, let Kα+1 = ∪j∈Z′Kj ∪ {0} where Z ′ = Z ∼ {0}.
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Then for any 1 ≤ i ≤ n,

Kα+1,(i) = ∪j∈Z′K
(i)
j ∪ {0}

= ∪j∈Z′Kj,(i) ∪ {0}

= Kα+1
(i) .

(3.27)

In particular, for any j, K
(n)
j consists of a single point, xj .

Thus,

Kα+1,(n) = Kα+1
(n) = {xj , x−j , 0 : j ∈ N} (3.28)

and of course as in the first step

Kα+1,(n+1) = Kα+1,(n+1) = {0} . (3.29)

Now letting X = {f ∈ rcl Kα+1 : f(x) = 0 for all x ≥ 0} and Y = {f ∈ rcl Kα+1 : f(x) =
0 for all x < 0}, then

rcl Kα+1 = X ⊕ Y (3.30)

(algebraically and isometrically, �∞ direct sum). But it follows easily from our induction
hypothesis that X and Y are both algebraically isometric to C(ωn+1+), whence the final
statement of the proposition holds. This proves the result for all n < ω.

Of course, for α = ω, we may now just repeat the entire procedure, this time placing inside
each interval ( 1

n
, 1

n+1
) and ( 1

−n+1
, 1
−n

), a “copy” of Kωn+ which we have constructed above,
thus achieving the proof.

Corollary 3.16 For each n > 1, there is a unital subalgebra An of C(ωn · 2+) with An

algebraically isometric to C(ωn+), which is not λ-complemented in Cωn · 2+) for any λ <
n − 1. There is also a unital subalgebra B of C(ωω+) which is algebraically isometric to
C(ωω+) which is uncomplemented in C(ωω+).

Proof. The first assertion follows immediately from the preceding two results, for the final

assertion, it follows that B0
def
= (⊕∞

j=1 Aj)c0
is uncomplemented in (⊕∞

n=1 C(ωn · 2+))c0
. But

the second space is just C0(ω
ω), while B0 is also algebraically isometric to C0(ω

ω). Hence
just taking the unitizations of each, the result follows.

Remark 3.17 Of course, since (ωn+) is isomorphic to c0, it has the separable extension
property. Thus, there exists λn so that for all separable Banach Spaces X ⊂ Y and operators
T : X → C(ωn+), there is an extension T̃ of T to Y with ‖T̃‖ ≤ λn‖T‖. Our argument
yields that λn > n − 1. Actually, Amir proves in [A] that λn = 2n + 1 for all n = 1, 2, . . ..

We finally deduce Milutin’s result that the Cantor map induces an uncomplemented embed-
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ding of C([0, 1]) in C(D). We identify D with {0, 1}N as above, and let ϕ : D → [0, 1] be
the Cantor map defined above.

Proposition 3.18 Let D be the set of dyadic rationals in (0, 1); i.e., D = { k
2n : 1 ≤ k <

2n, n = 1, 2, . . .}. There exists an algebraic surjective isometry T : C({0, 1}N) → rcl([0, 1], D)
such that T (ϕ0(C[0, 1])) = C([0, 1]). Thus ϕ0(C[0, 1]) is uncomplemented in C({0, 1}N) by
Theorem 3.14.

Proof. Define a “standard” partial inverse map τ : [0, 1] → D as follows. If x ∈ [0, 1], x �∈ D,
there is a unique y ∈ D with ϕ(y) = x, and define

τ(x) = y . (3.31)

If x ∈ D, then there is a unique (εj) ∈ D so that for a unique n ≥ 1, εj = 0 for all j > n,
εn = 1, and ϕ((εj)) = x, i.e. x =

∑n
j=1

εj

2j . Now define

τ(x) = ((εj)) . (3.32)

Of course then

ϕ(τ(x)) = x for all x ∈ [0, 1] . (3.33)

Now define T by

(Tf)(x) = f(τ(x)) for all f ∈ C(D), x ∈ [0, 1] . (3.34)

Now it easily follows that T is an algebraic isometry mapping C(D) into �∞[0, 1]. We now
easily check that

T (ϕ0f) = f for all f ∈ C([0, 1]) . (3.35)

Moreover, if f ∈ C(D), then

Tf is continuous at x for all x �∈ D. (3.36)

Finally, let x ∈ D and (εj) = τ(x) with n as given preceding (3.32). Let (ym) be a sequence
in [0, 1] with ym → x. Suppose first that

x < ym for all m. (3.37)

Then it follows that for all m,

τ(ym) = (ε1, . . . , εn, β
(m)
n+1, β

(m)
n+2, . . .)

and in fact then τ(ym) → τ(x) = (ε1, . . . , εn, 0, . . .). Hence

(Tf)(ym) = f(τ(ym)) → f(τ(x) = (Tf)(x) (3.38)
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by continuity of f . Thus Tf is indeed right continuous at x. Suppose next that

ym < x for all m. (3.39)

This time, it follows that

τ(ym) = (ε1, . . . , εn−1, 0, β
(m)
n+1, β

(m)
n+2, . . .)

for all m, and in fact now

τ(ym) → (ε1, ε2, . . . , εn−1, 0, 1, 1, , 1 . . .)
def
= z .

Hence now,

(Tf)(ym) = f(τ(ym)) → f(z) (3.40)

by continuity of f , showing that Tf has a left-limit. Thus we have indeed proved that

T (C(D)) ⊂ rcl([0, 1], D) .

We may check, however that conversely if f ∈ rcl([0, 1], D), then defining f̃ on D by

f̃(τx) = f(x) for all x ∈ [0, 1] (3.41)

f̃(y) = f(ϕ(y)−) (3.42)

if y ∈ D ∼ τ([0, 1]), then f̃ ∈ C(D), and hence finally T satisfies the conclusion of 3.18,
completing the proof.

4 Operators on C(K)-spaces

Throughout, K denotes a compact Hausdorff space. By an operator on C(K) we mean a
bounded linear operator from C(K) to some Banach space X. Of course, a “C(K)-space” is
just C(K) for some K. We first recall the classical result of Dunford and Pettis.

Theorem 4.1 [DP] A weakly compact operator on a C(K) space maps weakly compact sets
to compact sets.

See [JL] page 62 for a proof.

We note the following immediate structural consequence.

Corollary 4.2 Let T : C(K) → C(K) be a given weakly compact operator. Then T 2 is
compact. Hence if T is a projection, its range is finite-dimensional.
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Evidently the final statement may be equivalently formulated: every reflexive complemented
subspace of a C(K) space is finite dimensional.

We are interested here in non-weakly compact operators. Before focusing on this, we note
the following structural result due to the author [Ro3].

Theorem 4.3 A reflexive quotient space of a C(K) space is isomorphic to a quotient space
of an Lp(µ)-space for some 2 ≤ p < ∞.

Let us note that conversely, Lp is isometric to a quotient space of C([0, 1]) for all 2 ≤ p < ∞.
(Throughout, for all 1 ≤ p < ∞, Lp denotes Lp(µ), where µ is Lebesgue measure on [0, 1].)
Theorem 4.3 is in reality the dual of the version of the main result in [Ro3]: every reflexive
subspace of L1 is isomorphic to a subspace of Lp for some 1 < p ≤ 2

We now focus on the main setting of this section — “fixing” properties of various classes of
non-weakly compact operators on C(K)-spaces.

Definition 4.4 Let X, Y, Z be Banach spaces. An operator T : X → Y fixes Z if there exists
a subspace Z ′ of X with Z ′ isomorphic to Z so that T |Z ′ is an isomorphism.

We now summarize the main results to be discussed here. The first result is due to A.
Pe�lczyńksi [Pe2].

Theorem 4.5 A non-weakly compact operator on a C(K)-space fixes c0.

To formulate the next result, we will need the notion of the Szlenk-index of an operator.

Definition 4.6 Let X and Y be separable Banach spaces and T : X → Y be a given operator;
let ε > 0. The ε-Szlenk index of T , βε(T ), is defined as βε(T

∗(Ba(X∗))), where βε is as in
Definition 2.16. Sz(T ), the Szlenk index of T , is defined as:

Sz(T ) = sup
ε>0

βε(T ) = β(T ∗(Ba(X∗))) .

The results in Section 2 show that Sz(C(ωω+)) = ω2, it was in fact rather easy to obtain
that Sz(C(ωω+)) ≥ ω2. It follows easily that if an operator on a separable C(K)-space fixes
c(ωω+), its Szlenk index is at least ω2. The converse to this, is due to D. Alspach.

Theorem 4.7 [A1] Let K be a compact metric space, X be a Banach space, and T : C(K) →
X a given operator. The following are equivalent.

1) Sz(T ) ≥ ω2.
2) βε(T ) ≥ ω for all ε > 0.
3) T fixes C(ωω+).

We next give another characterization of operators fixing C(ωω+), due to J. Bourgain.
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Definition 4.8 Let X, Y be Banach spaces and T : X → Y be a given operator. T is called a
Banach-Saks operator if whenever (xj) is a weakly null sequence in X, there is a subsequence
(x′

j) of (xj) so that 1
n

∑n
j=1 T (x′

j) converges in norm to zero. X has the Banach-Saks property
if IX is a Banach-Saks operator.

It is easily seen that c0 has the Banach-Saks property, It is a classical result, due to J. Schreier,
that C(ωω+) fails the Banach-Saks property [S]. Thus any operator on a C(K)-space fixing
C(ωω+), is not a Banach-Saks operator. Bourgain established the converse to this result in
[Bo1].

Theorem 4.9 A non-Banach-Saks operator on a C(K)-space fixes C(ωω+).

Bourgain also obtains “higher ordinal” generalizations of Theorem 4.7, which we will briefly
discuss.

The final “fixing” result in this summary is due to the author.

Theorem 4.10 [Ro2] Let K be a compact metric space, X be a Banach space, and T :
C(K) → X be a given operator. Then if T ∗(X∗) is non-separable, T fixes C([0, 1]).

The proofs of these results involve properties of L1(µ)-spaces, for by the Riesz representation
theorem, C(K)∗ may be identified with M(K) the space of scalar-valued regular countably
additive set functions on B(K) the Borel subsets of K.

A. Operators fixing c0.

Theorem 4.5 follows quickly from the following two L1 theorems, which we do not prove
here. The first is due to A. Grothendieck (Théorème 2, page 146 of [Gr]).

Theorem 4.11 Let W be a bounded subset of M(K). Then W is relatively weakly compact
is and only if for ever sequence O1, O2, . . . of pairwise disjoint open subsets of K,

µ(Oj) → 0 as j → ∞ , uniformly for all µ in W. (4.1)

The second is a relative disjointness result due to the author.

Proposition 4.12 [Ro1] Let µ1, µ2, . . . be a bounded sequence in M(K), and let E1, E2, . . . be
a sequence of pairwise disjoint Borel subsets of K. Then given ε > 0, there exist n1 < n2 < · · ·
so that

for all j,
∑

j 	=i

|µnj
|(Eni

) < ε . (4.2)

(For any sequence (fj) in a Banach space, [fj ] denotes its closed linear span.)
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Proof of Theorem 4.5. Assume X is a Banach space and T : C(K) → X is not weakly
compact. Then also T ∗ : X∗ → C(K)∗ = M(K) is non weakly compact, so in particular

W
def
= T ∗(Ba(X∗)) is non-weakly compact. (4.3)

Of course then W is not relatively weakly compact, since it is closed. Thus by Gothendieck’s
theorem, we may choose η > 0, a sequence O1, O2, . . . of disjoint open sets in K, and a
sequence µ1, µ2, . . . in W with

|µj(Oj)| > η for all j. (4.4)

Let then 0 < ε < η. By passing to a subsequence of the Oj’s and µj ’s, we may also assume
by Proposition 4.12 that

∑

j 	=i

|µj|(Oi) < ε for all j. (4.5)

For each j, by (4.4) we may choose fj ∈ C(K) of norm 1 with 0 ≤ fj ≤ 1 and fj supported
in Oj, so that

∣∣∣
∫

fjdµj| > η . (4.6)

Set Z = [fj ]. It is immediate that Z is isometric to c0; in fact (fj) is isometrically equivalent
to the c0 basis. Thus we have that given n and scalars c1, . . . , cn,

∥∥∥∥T
( n∑

j=1

cjfj

)∥∥∥∥ ≤ ‖T‖max
j

|cj| . (4.7)

But for each j

∥∥∥T
( n∑

i=1

cifi

)∥∥∥ ≥ sup
x∗∈Ba X∗

∣∣∣(T ∗x∗)
( n∑

i=1

cifi

)∣∣∣

≥
∣∣∣∣
∫ ( n∑

i=1

cifi

)
dµj

∣∣∣∣

≥ |cj|
∣∣∣
∫

fjdµj

∣∣∣ −
∑

i	=j

|ci|
∫
|fi|d|µj|

≥ |cj|η − max |ci|
∑

i	=j

|µj|(Oi)

≥ |cj|η − max |ci|ε .

(4.8)

But then taking the max over all j, we get that

∥∥∥∥T
( n∑

i=1

cifi

)∥∥∥∥ ≥ (η − ε) max |ci| . (4.9)
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(4.6) and (4.9) yield that T |Z is an isomorphism, completing the proof.

B. Operators fixing C(ωω+).

We will not prove 4.7. However, we will give the description of the isometric copy of C(ωω+)
which is fixed, in Bourgain’s proof of this result. We first indicate yet another important
description of the C(α+) spaces, due to Bourgain, which is fundamental in his approach.

Definition 4.13 Let T∞ be the infinitely branching tree consisting of all finite sequences
of positive integers. For α, β in T∞, define α ≤ β if α is an initial segment of β; i.e., if
α = (j1, · · · , jk) and β = (m1, . . . , m�), then � ≥ k and ji = mi for all 1 ≤ i ≤ k. Also, let
�(α) = k, the length of α. The empty sequence ∅ is the “top” note of T∞. A set T ⊂ T∞ will
be called a tree if whenever β ∈ T and α ∈ T∞, α ≤ β and α �= ∅, then α ∈ T . Finally, a
tree T is called well-founded if it contains no strictly increasing sequence of elements of T∞.

We now define Banach spaces associated to trees T , denoted XT , as follows.

Definition 4.14 Let T be a well founded tree, and let c00(T ) denote all systems (cα)α∈T of
scalars, with finitely many cα’s non-zero. Define a norm ‖ · ‖T on c00(T ) by

‖(cα)‖T = max
α∈T

∣∣∣∣
∑

γ≤α

cγ

∣∣∣∣ . (4.10)

Let XT denote the completion of c00(T ) under ‖ · ‖T .

Proposition 4.15 Let T be an infinite well founded tree. Then there exists a countable
limit cardinal α so that XT is either isometric to C0(α) (if T has infinitely many elements
of length 1 and φ /∈ T ) or to C(α+). Conversely, given any such ordinal α, there exists a
tree T with XT isometric to C0(α) or to C(α+). Moreover, let T be a given infinite tree,
and for α ∈ T let bα be the natural element of c00(T ) : (bα)(β) = δαβ. Let τ : N → T be
a bijection (i.e., an enumeration) so that if τ(i) < τ(j), then i < j. Then (bτ(j))

∞
j=1 is a

monotone basis for XT .

All of the above assertions and developments are due to Bourgain [Bo1], except for the basis
assertion, which is due to E. Odell. The author is most grateful to Professor Odell for his
personal explanations of these results.

We next indicate the trees Tn corresponding to the spaces C(ωn+) for 0 ≤ n ≤ ω. For n
finite, simply let Tn be all finite sequences of positive integers of length at most n; also let
T 0

n = Tn ∼ {∅}. Finally, let T 0
ω = ∪∞

n=1{(n, α) : α ∈ Tn−1}, and let Tω = T 0
ω ∪ {∅}. The

reader should have no difficulty in establishing the assertions of 4.15 in this special case. In
particular, for all 1 ≤ n ≤ ω, XT 0

n
is isometric to C0(ω

n) and XTn is isometric to C(ωn+).
There still remains the intuitive issue: what is the picture for a subspace of C(K) which
is isomorphic to C(ωω+) and fixed by an operator T satisfying the hypotheses of 4.7? The
following elegant description gives Bourgain’s answer.
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Definition 4.16 Let F be a family of non-empty clopen subsets of a totally disconnected
infinite compact metric space K. F is called regular if

(a) any two elements of F are either disjoint or one is contained in the other.
(b) F has no infinite totally ordered subsets, under the order A ≤ B if A ⊃ B.

We again leave the proof of the following motivating result to the reader.

Proposition 4.17 Let F be an infinite regular family of clopen subsets of K. There is a well
founded tree T and an order preserving bijection τ : F → T . [F ] is a subalgebra of C(K)
which is algebraically isometric to C(α+) or C0(α) for some countable ordinal α. Moreover,
identifying τ(A) with the basis elements bτ(A) of Proposition 4.15, then τ extends to a linear
isometry of [F ] with XT . Conversely, given any well-founded tree T , then there exists a
regular family F (for a suitable K) with F order isomorphic to T .

Let us just indicate pictures for the regular families corresponding to T 0
n and Tn, and thus

to C0(ω
n) and C(ωn+). Of course, a sequence of disjoint clopen sets spans c0 isometrically.

T 0
1 ◦ ◦ ◦ ◦ · · ·

We get T1 by putting all these inside one clopen set, which actually corresponds then to the
function 1 in C(ω+) = c.

T1

�

�

�

�
◦ ◦ ◦ ◦ · · ·

Now we can get T 0
2 by repeating T1 infinitely many times.

T1

�

�

�

�
◦ ◦ ◦ ◦ · · ·

�

�

�

�
◦ ◦ ◦ ◦ · · ·

�

�

�

�
◦ ◦ ◦ ◦ · · · · · ·

Of course, we then put all these inside one clopen set, to obtain T2.

Finally, we obtain T 0
ω by choosing a sequence of disjoint clopen sets O1, O2, . . . and inside

On, we put the regular system corresponding to T 0
n .

Bourgain proves Theorem 4.7 by establishing the following general result.

Theorem 4.18 Let K a totally disconnected compact metric space, X a Banach space, and
T : C(K) → X a bounded linear operator be given such that for some ε > 0 and countable
ordinal α

βε(T ) ≥ ωα .

Then there is a regular system F of clopen subsets of K with Y
def
= [F ] isometric to C0(ω

ω·α)
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such that T |Y is an isomorphism.

The whole point of our exposition: one must choose a regular family of clopen sets to achieve
the desired copy of C(ωω+); this requires the above concepts.

Remark 4.19 In view of Milutin’s Theorem, it follows that for any compact metric space
K and operator T : C(K) → X, T fixes C(ωω·α+) provided βε(T ) = ωα. Thus Theorem4.7
follows, letting α = 1. Actually, Alspach obtains in [A1] that if βε(T ) ≥ ω for some ε > 0,
K arbitrary, then still T fixes some subspace of C(K) isometric to C0(ω

ω).

We turn next to the basic connection between the Banach-Saks property and C(ωω+). We
first give Schreier’s fundamental example showing that C(ωω+) fails the Banach-Saks prop-
erty; i.e., there exists a weakly null sequence in C(ωω+), such that no subsequence has its
arithmetic averages tending to zero in norm.

Proposition 4.20 There exists a sequence U1, U2, . . . of compact open subsets of ωω such
that setting bj = XUj

for all j, then

(a) no point of ωω belongs to infinitely many of the Uj’s

and

(b) For all scalars (cj) with only finitely many cj’s non-zero∥∥∥∥
∑

cjbj

∥∥∥∥ = max
{∣∣∣∣

r∑

i=1

cji

∣∣∣∣ : j1 < · · · < jr and r ≤ j1

}
. (4.11)

Before proving this, we first show that the sequence (bj) in 4.20 is an “anti-Banach-Saks”
sequence. For convenience, we restrict to real scalars.

Proposition 4.21 Let (bj) be as in 4.20. Then bj → 0 weakly. Define a new norm on the
span of the bj’s by

∣∣∣
∣∣∣
∣∣∣
∑

cjbj

∣∣∣
∣∣∣
∣∣∣ = max

{ r∑

i=1

|cj| : r = j1 and j1 < · · · < jr

}
. (4.12)

Then ‖x‖ ≤ |||x||| ≤ 2‖x‖ for all x ∈ [bj ].

It follows immediately that given j1 < j2 < · · ·, then 1
r

∑r
i=1 bji

does not tend to zero in norm
as r → ∞. In fact, we have for all k that

∥∥∥
2k∑

i=1

bji

∥∥∥ ≥ 1

2

∣∣∣
∣∣∣
∣∣∣

2k∑

i=1

bji

∣∣∣
∣∣∣
∣∣∣ ≥ k

2
. (4.13)

We also see the fundamental phenomenon: any k-terms of the bj’s past the kth are 2-
equivalent to the �1

k-basis. It also follows, incidentally, that the norm-condition (4.13) alone,
insures that bj → 0 weakly. We prefer however, to give the simpler argument which follows
from 4.20. Finally, it follows that the sequence (bj) in 4.20 is an unconditional basic sequence.
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Proof of 4.21. Since no k belongs to infintely many of the Kj’s, it follows that XKj
→ 0

pointwise on ωω+, which immediately yields that XKj
→ 0 weakly, by the “baby” version of

the Riesz representation theorem. The lower estimate in (4.12) is trivial. But if we fix cj’s,
r ≥ 1 and r = j1 < j2 < · · · < jr, then there is s subset F of j1, . . . , jr, with

∣∣∣∣
∑

i∈F

ci

∣∣∣∣ ≥
1

2

r∑

i=1

|cji
| . (4.14)

But if we enumerate F as i1 < · · · < ik, then trivially k ≤ r ≤ j1 ≤ i1, hence

∥∥∥∥
∑

cj · bj

∥∥∥∥ ≥
∣∣∣∣
∑

i∈F

ci

∣∣∣∣ ≥
1

2

r∑

i=1

|cji
| ≥ 1

2
|||cjbj ||| . (4.15)

Proof of 4.20. We give yet one more (and last!) conceptualization of the compact countable
spaces ωn+ and ωω+. We identify their elements with certain finite subsets of N. Let F be
a family of finite subsets of N, so that F contains no infinite sequences F1, F2, . . . with

Fn
⊂
	= Fn+1 for all n, and such that F is closed under pointwise convergence (where Fj → F

means XFj
→ XF pointwise on N). It follows easily that F is then a compact metric space.

Now first let Fn be the family of all subsets of N of cardinality as most n. It follows that Fn

is homeomorphic to ωn+. In fact, we obtain by induction that F (j)
n = Fn−j, so that finally

F (0)
n = {∅}. Now we “naturally” obtain Fω homeomorphic to ωω+ as follows.

Fω
def
= {∅} ∪

∞⋃

n=1

{α ∪ n : �(α) ≤ n and the least element of α ≥ n} . (4.16)

In other words, Fω consists of all finite sets whose cardinality is at most its least element. It
is clear that Fω is indeed compact in the pointwise topology, and moreover it is also clear
that F (n)

ω �= ∅ for all n = 1, 2, . . . Finally, it is also clear that for each n, the nth term in
the above union is homeomorphic to ωn+, and so we have that F (ω)

ω = {∅}, whence Fω is
homeomorphic to ωω+. Now for each j, define

Uj = {α ∈ Fω : j ∈ α} . (4.17)

It then easily follows that Uj is a clopen subset of Fω, and of course φ /∈ Uj for any j.

It is trivial that no α ∈ Fω belongs to infinitely many Uj ’s since α is a finite set. Finally, let
(cj) be a sequence of scalars with only finitely many non-zero elements; then for any α ∈ Fω

∣∣∣∣
∑

cjbj(α)
∣∣∣∣ =

{∣∣∣∣
∑

cj

∣∣∣∣ : j ∈ α
}

. (4.18)

But if α = {j1, . . . , jr} with j1 < j2 < · · · < jr, then by definition of Fω, r ≤ j1, and con-
versely given j1 < · · · jr with r ≤ j1, {j1, . . . , jr} ∈ Fω. Thus (4.18) yields (4.11), completing
the proof.
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Next we discuss Banach-Saks operators on C(K) spaces. Actually, Theorem 4.9 is an imme-
diate consequence of Theorem 4.7 and the following remarkable result ([Bo1], Lemma 17)
(see Definition 4.8 for the ε-Szlenk index of an operator)

Theorem 4.22 Let X and Y be Banach spaces with X separable and T : X → Y be a given
operator. Then if the ε-Szlenk index of T is finite for all ε > 0, T is a Banach-Saks operator.
In particular, if the ε-Szlenk index of X is finite for all ε > 0, X has the Banach-Saks
property.

Just to clarify notation, we first give the

Proof of Theorem 4.9. Let T : C(K) → Y be a non-Banach-Saks operator. It is trivial
that then, without loss of generality, we may assume that C(K) is separable, i.e., that K is
compact metric. Then by Theorem 4.22, there exists an ε > 0 such that βε(T

∗(Ba(Y ∗))) ≥ ω.
But then T fixes C(ωω+) by Theorem 4.7.

The initial steps in the proof of Lemma 17 of [Bo1] (given as a lemma there) can be elimi-
nated, using a fundamental dichotomy discovered a few years earlier. Moreover, the details
of the proof of Lemma 17 itself do not seem correct. Because of the significance of this result,
we give a detailed proof here.

The following is the basic dichotomy discovered By the author in [Ro5]; several proofs have
been given since, see e.g. [Mer].

Theorem 4.23 [Ro5] Let (bn) be a weakly null sequence in a Banach space. Then (bn) has
a subsequence (yn) satisfying one of the following mutually exclusive alternatives:

(a) 1
n

∑n
j=1 y′

j tends to zero in norm, for all subsequences (y′
j) of (yj).

(b) (yj) is a basic sequence so that any k terms past the kth are uniformly equivalent to the �1
k

basis. Precisely, there is a δ > 0 so that for all k < j1 < · · · < jk and scalars c1, . . . , ck,∥∥∥∥
k∑

i=1

ciyji

∥∥∥∥ ≥ δ
k∑

i=1

|ci| . (4.19)

Note that it follows immediately that if (yj) satisfies (b), there is a constant η > 0 so that
for any subsequence (y′

j) of (yj), ‖
∑2k

j=1 y′
j‖ ≥ ηk for all k, hence no subsequence of (yj)

has averages converging to zero in norm. In modern terminology, (yj) has a spreading model
isomorphic to �1. Notice that Schreier’s sequence given in Proposition 4.20 is a witness to
this general phenomenon.

Now we give the

Proof of Theorem 4.22. Let T : X → Y be a given operator, and suppose T is non-
Banach-Saks. We may assume without loss of generality that ‖T‖ = 1. Choose (xn) a weakly
null sequence in X so that the arithmetic averages of Txn do not tend to zero in norm.
Assume that ‖xn‖ ≤ 1 for all n. Now choose (bn) a subsequence of (xn) so that setting
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yn = Tbn for all n, then for some δ > 0

(yn) satisfies (4.19) . (4.20)

Let K = T ∗(Ba(Y ∗)). We shall prove that

Pm(δ, K) �= ∅ for all m = 1, 2, . . . (4.21)

where the sets Pm(δ, K) are those originally defined by Szlenk in his derivation (as defined
above, preceding Proposition 2.17).

We need the following fundamental consequence of (4.19).

For all m and α = (j1, . . . , jm) with m < j1 < j2 < · · · < jm, there exists a y∗
α ∈ Ba(Y ∗)

with

|y∗
α(yj)| ≥ δ for all j ∈ α. (4.22)

Given m, � ≥ 1, we set

Γm,� = {α ⊂ {� + 1, � + 2, . . .} : #α = m} (4.23)

(i.e., Γm,� is just all m element subsets of N past the �th term).

We now prove the following claim by induction on m.

Claim: For all m, � ≥ m and families {y∗
α : α ∈ Γm,�} with y∗

α satisfying (4.22) for all
α ∈ Γm,�, there is a weak∗-cluster point of {T ∗(y∗

α) : α ∈ Γm,�} belonging to Pm(δ, K).
(This is a more delicate version of the apparently incorrect argument in [Bo1]; the author
nevertheless greatly admires the ingenuity of Bourgain’s discussion there).

The case m = 1 is really immediate, just using the ω∗-compactness of K. After all, given
any n > �, then by definition,

|(T ∗y∗
(n))(bn)| = |y∗

(n)(yn)| ≥ δ (4.24)

hence any ω∗-cluster point of (T ∗y∗
(n)) lies in P1(δ, K) since (bn) is weakly null in Ba(X).

Now suppose the claim is proved for m, let � ≥ m + 1, and let {y∗
α : α ∈ Γm+1,�} be given

with y∗
α satisfying (4.22) for all α ∈ Γm+1,�. Fix n > �, and define ỹ∗

α for each α ∈ Γm,n by

ỹ∗
α = y∗

α∪{n} .

But then for all α ∈ Γm,n, ỹ∗
α satisfies (4.22), hence by our induction hypothesis, there

exists a ω∗-cluster point x∗
n of {T ∗(ỹ∗

α) : α ∈ Γm,n} which belongs to Pm(δ, K). But since
α ∪ {n} ∈ Γm+1,�, we have that

|〈T ∗(ỹ∗
α), bn〉| = |〈y∗

α∪{n}, yn〉| ≥ δ (4.25)

40



for all α ∈ Γm,n; then also

|x∗
n(bn)| ≥ δ . (4.26)

But then if x∗ is a weak∗-cluster point of (x∗
n)∞n=�+1, x∗ ∈ Pm+1(δ, K), and of course x∗ is

indeed a weak∗-cluster point of {T ∗(T ∗(y∗
α) : α ∈ Γm+1,�}. This completes the induction step

of the claim. which then shows (4.21) so the proof of Theorem 4.22 is complete.

C. Operators fixing C([0, 1]).

We finally treat Theorem 4.10. We shall sketch the main ideas in the proof given in [Ro2]. We
first note, however, that there are two other proofs known, both conceptually different from
each other and from that in [Ro2]. L. Weis obtains this result via an integral representation
theorem for operators on C(K) spaces [We]. For extensions of this and further complements
in the context of Banach lattices see [GJ] and [FGJ]. Finally, the general result 4.18 also
yields 4.10, as noted by Bourgain in [Bo1]. Indeed, suppose T : C(K) → X are given as in
the statement of 4.10, where K is totally disconnected. Then 4.18 yields that T fixes C(L)
for every countable subset L of [0, 1]. But the family of all compact subsets L of [0, 1] such
that T fixes C(L), forms a Borel subset of the family of all compact subsets L of [0, 1] in the
Hausdorff metric; the countable ones, however are not a Borel set by classical descriptive
set theory. Hence there is an uncountable compact L ⊂ [0, 1] so that F fixes L, and then
C(L) is isomorphic to C([0, 1]) by Milutin’s theorem. We also note that a refinement of
the arguments in [Ro2] yields the following generalization of 4.10, due jointly to H. P. Lotz
and H.P. Rosenthal [LR]: Let E be a separable Banach lattice with E∗ weakly sequentially
complete, X be a Banach space, and T : E → X be an operator with T ∗(X∗) non-separable.
Then T fixes C([0, 1]). For extensions of this and further complements in the context of
Banach lattices, see [GJ] and [FGJ].

We first introduce some (standard) terminology. Let X be a Banach space, Y be a subspace
of X, and W be a subset of Ba(X∗). We say that W norms Y if there exists a constant
λ ≥ 1 so that

‖y‖ ≤ λ sup
w∈W

|w(y)| for all y ∈ Y . (4.27)

If (4.27) holds, we say that W λ-norms Y . Now let K be a compact metric space. Theorem
4.10 then follows immediately from the following stronger statement:

Theorem 4.24 A non-separable subset of Ba(C(K)∗) norms a subspace of C(K) isometric
to C(D).

Indeed, we may obviously assume that T : C(K) → X has norm one. Then assuming T ∗X∗

is non-separable, so is W = T ∗(Ba(X∗)), and thus 4.24 yields a subspace Y of C(K) with Y
isometric to C(D) and T |Y an isomorphism; then T fixes C(D), and so of course C([0, 1]),
which is isometric to a subspace of C(D).

The proof of 4.24 proceeds by reduction to the following almost isometric result.
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Lemma 4.25 Let Z be a subspace of C(K)∗ with Z isometric to L1. Then for every ε > 0,
Ba(Z) (1 + ε)-norms a subspace of C(K) which is isometric to C(D).

We shall sketch some of the ideas in the proof of 4.25 later on. We first note that the actual
proof of Theorem 4.24 yields the following dividend.

Corollary 4.26 Let Z be a non-separable subspace of C(K)∗. Then for all ε > 0, Ba(Z)
(1 + ε)-norms a subspace of C(K) which is isometric to C(D).

Of course 4.26 has the following immediate consequence.

Corollary 4.27 Let X be a quotient space of C(K) with X∗ non-separable. Then X contains
a subspace (1 + ε)-isomorphic to C(D) for all ε > 0.

Remark 4.28 The conclusion badly fails for subspaces X of C(D) which are themselves
isomorphic to C(D). Indeed, it is proved in [LP] that for every λ > 1 there exists a Banach
space X which is isomorphic to C(D) but contains no subspace λ-isomorphic to C(D); of
course X is isometric to a subspace of C(D).

We now take up the route which leads to Lemma 4.25 Say that elements µ and ν of C(K)∗

are pairwise disjoint if µ and ν are singular, regarding µ, ν as complex Borel measures on
K. The next result is proved by a two step transfinite induction.

Lemma 4.29 Let L be a convex symmetric non-separable subset of Ba(C(K))∗. Then there
is a δ > 0 so that for all 0 < ε < δ, there exists an uncountable subset {�α}α∈Γ of L and a
family {µα}α∈Γ of pairwise disjoint elements of Ba(C(K)∗) so that for all α,

‖µα − �α‖ ≤ ε and ‖µα‖ ≥ δ . (4.28)

Moreover if L is the unit ball of a subspace of C(K)∗, one can take δ = 1.

Now of course the family {µα/‖µα‖ : α ∈ Γ} is isometrically equivalent to the usual �1(Γ)
basis. But this is also an uncountable subset of a compact metrizable space, Ba(C(K)∗)
in the ω∗-topology. So it follows that we may choose α1, α2, . . . distinct elements of Γ with
(fn)∞n=1 ω∗-dense in itself where fn = µαn/‖µαn‖ for all n; note that (fn)∞n=1 is isometrically
equivalent to the usual �1 basis. A variation of an argument of C. Stegall [St] now yields

Proposition 4.30 Suppose X is a separable Banach space and (fn) in X∗ is isometrically
equivalent to the �1 basis and ω∗-dense in itself. Then there exists a subspace U of X∗,
isometric and ω-isomorphic to C(D)∗, such that for all x ∈ X,

sup
u∈Ba(U)

|u(x)| ≤ sup
n

|fn(x)| . (4.29)

Of course U is obtained as T ∗(C(D))∗ where T is constructed to be a quotient map of X
onto C(D)).
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For our purposes, we only need that U contains a subspace isometric to L1. We now complete
the proof of Theorem 4.24, using 4.25, 4.29 and 4.30. Let L be as in 4.24. We may assume that
L is convex and symmetric, for if L̃ is the closed convex hull of L∪−L, then sup�∈L |�(x)| =
sup�∈L̃ |�(x)| for all x ∈ C(K). Let δ satisfy the conclusion of Lemma 4.29, and let 0 < ε so
that

1 − ε − ε

δ
> 0 . (4.30)

Now let (�α)α∈Γ and (µα)α∈Γ satisfy the conclusion of 4.29. Choose α1, α2, . . . distinct α’s so
that (fn)∞n=1 is ω∗-dense in itself, where fn = µαn/‖µαn‖ for all n. Also let yn = �αn and
δn = ‖µαn‖ for all n. Next, choose Z a subspace of C(K)∗ isometric to L1 such that for all
x ∈ C(K),

sup
z∈Ba Z

|z(x)| ≤ sup
n

|fn(x)| (4.31)

thanks to Proposition 4.30. Finally, choose X a subspace of C(K) with X isometric to C(D))
so that

(1 − ε)‖x‖ ≤ sup
z∈Ba Z

|z(x)| for all x ∈ X , (4.32)

by Lemma 4.25. Now by our definition of the yn’s and δn’s, we have for all n that (by (4.28))

‖fn − yn/δn‖ ≤ ε

δ n
≤ ε

δ
. (4.33)

Thus finally fixing x ∈ X with ‖x‖ = 1, we have

1 − ε ≤ sup
n

|fn(x)| by (4.31) and (4.32) (4.34)

≤ 1

δ
sup

n
|yn(x)| + ε

δ
by (4.33) . (4.35)

Hence

(1 − ε − ε

δ
)δ ≤ sup

n
|yn(x)| . (4.36)

Thus letting λ = ((1 − ε − ε
δ
)δ)−1, we have proved that L λ-norms X. Finally, if L is the

unit ball of a non-separable subspace of C(K)∗, we may choose δ = 1 by 4.29; but then it
follows that since ε may be chose arbitrarily small, λ is arbitrarily close to 1, and this yields
Corollary 4.26.

We finally treat Lemma 4.25. Let then Z be a subspace of C(K)∗ which is isometric to
L1. Standard results yield that there exists a Borel probability measure µ on K, a Borel
measurable function θ with |θ| = 1, a compact subset S of K with µ(S) = 1, and a σ-
subalgebra S of the Borel subsets of S such that (S,S, µ|S) is a purely non-atomic measure
space and Z = θ · L1(µ|S). (We adopt the notation: θ · Y = {θy : y ∈ Y }). The desired
isometric copy of C(D) which is (1 + ε)-normed by Z is now obtained through the following
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construction.

Lemma 4.31 Let µ, E, and S be as above, and let ε > 0. Then there exist sets F n
i ∈ S

and compact subsets Kn
i of S satisfying the following properties for all 1 ≤ i ≤ 2n and

n = 0, 1, . . ..

(i) Kn
i ∩ Kn

i′ = F n
i ∩ F n

i′ = ∅ for any i′ �= i.
(ii) Kn

i = Kn+1
2i−1 ∪ Kn+1

2i and F n
i = F n+1

2i−1 ∪ F n+1
2i .

(iii) Kn
i ⊂ F n

i .

(iv) (1−ε)
2n ≤ µ(Kn

i ) and µ(F n
i ) ≤ 1

2n .
(v) θ|K0

1 is continuous relative to K0
1 .

(This is Lemma 1 of [Ro2], with condition (v) added as in the correction to [Ro2].) We
conclude our discussion with the

Proof of Lemma 4.25. Let F = K0
1 and let A denote the closure of the linear span of

{χKn
i

: 1 ≤ i ≤ 2n, n = 0, 1, 2, . . .} in C(F ). Then A is a subalgebra of C(F ) algebraically
isometric to C(D). Hence also,

Y
def
= θ̄ · A is a subspace of C(F ) isometric to C(D). (4.37)

(θ̄ denotes the complex conjugate of θ, in the case of complex scalars.) Now let E : C(F ) →
C(K) be an isometric extension operator, as insured by the Basuk Theorem (Lemma 1.4(b)
above). Finally, set X = E(Y ). So, evidently X is a subspace of C(K), isometric to C(D).

We claim that

Ba(Z)
1

1 − 2ε
− norms X (4.38)

which yields 4.25. Of course, it suffices to show that for a dense linear subspace X0 of X

sup
z∈Ba Z

|z(x)| ≥ (1 − 2ε)‖x‖ for all x ∈ X0 . (4.39)

We take X0 to be the linear span of the functions E(θ̄ · χKn
i
). So, fix n and let

φ = θ̄
2n∑

i=1

ciχKn
i

for scalars c1, . . . , c2n with maxi |ci| = 1. (4.40)

Finally, let φ̃ = E(φ). So ‖φ̃‖ = 1. Of course we identify the elements of Z with the complex
Borel measures in θ · L1(µ|S). So choose i with |ci| = 1 and let f = θχF n

i
/µ(F n

i ).
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Then ‖f‖L1(µ) = 1, so f · µ as an element of Z, also has norm 1. We have that

∣∣∣
∫

fφ̃dµ
∣∣∣ ≥

∣∣∣
∫

Kn
i

fφ̃dµ
∣∣∣ −

∫

F n
i ∼Kn

i

|fφ̃|dµ

=
µ(Kn

i )

µ(F n
i )

−
∫

F n
i ∼Kn

i

|fφ̃|dµ

≥ µ(Kn
i )

µ(F n
i )

− µ(F n
i − µ(Kn

i )

µ(F n
i )

since |φ̃| ≤ 1

≥ 1 − 2ε by Lemma 4.31.

(4.41)

This concludes the proof, and our discussion of Theorem 4.10.

5 The Complemented Subspace Problem

In its full generality, this problem, (denoted the CSP), is as follows: Let K be a compact
Hausdorff space and X be a complemented subspace of C(K). Is X isomorphic to C(L) for
some compact Hausdorff space L? We first state a few results which hold in general, although
most of them are easily reduced to the separable case anyway. (All Banach spaces, subspaces
etc., are taken as infinite-dimensional.

Theorem 5.1 [Pe2] Every complemented subspace of a C(K)-space contains a subspace
isomorphic to c0.

This is an immediate consequence of Corollary 4.2 and Theorem 4.5. The next result refines
Milutin’s theorem to the non-separable setting.

Proposition 5.2 [D1] A complemented subspace of a C(K) space is isomorphic to a com-
plemented subspace of C(L) for some totally disconnected L.

Let us point out, however: it is unknown if a (non-separable) C(K) space itself is isomorphic
to C(L) for some totally disconnected L.

Later on, we shall give results characterizing c0 (or rather c) as the smallest of the com-
plemented subspaces of C(K)-spaces. Of course Theorem 4.10 characterizes C([0, 1]) as the
largest separable case.

Theorem 5.3 [Ro2] Let X be a complemented subspace of a separable C(K) space with X∗

non-separable. Then X is isomorphic to C([0, 1]).

PROOF. Assume then X is complemented in C(K) with C(K) separable, i.e., K is metriz-
able. Then K is uncountable, since C(K)∗ itself must be non-separable. Thus by Milutin’s
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Theorem, C(K) is isomorphic to C([0, 1]).

By Theorem 4.10, X contains a subspace isomorphic to C([0, 1]). By Pe�lczyński’s weak
injectivity result (Theorem 3.1), X contains a subspace Y isomorphic to C([0, 1]) with Y
complemented in C(K). Thus by the decomposition method (applying Proposition 1.2 to
C(D) instead), X is isomorphic to C([0, 1]).

For the next result, recall that a Banach space X is called primary if whenever X is iso-
morphic to Y ⊕ Z (for some Banach spaces Y and Z), then X is isomorphic to Y or to
Z.

The following result is due to Lindenstrauss and Pe�lczyński.

Corollary 5.4 [LP] C([0, 1]) is primary.

PROOF. Suppose C([0, 1]) is isomorphic to X ⊕ Y . Then X∗ or Y ∗ is non-separable, and
hence either X or Y is isomorphic to C([0, 1]) by the preceding result.

Remark 5.5 Actually, the stronger result is obtained in [LP]: Let X be a subspace of
C([0, 1]). Then C([0, 1]) embeds in either X or C([0, 1])/X. Also, it is established in [AB1]
and independently, in [Bi], that C(K) is primary for all countable compact K. Thus, all
separable C(K)-spaces are primary.

We next give characterizations of C([0, 1]) which follow from Theorem 5.3 and some rather
deep general Banach space principles. We assume K is general, although the result easily
reduces to the metrizable case.

Theorem 5.6 Let X be a complemented subspace of C(K). The following are equivalent.

(1) C([0, 1]) embeds in X.
(2) �1 embeds in X.
(3) L1 embeds in X∗.
(4) X∗ has a sequence which converges weakly but not in norm.

PROOF. The implications (2) ⇒ (3) and (1) ⇒ (3) are due to Pe�lczyński (for general
Banach spaces X) [Pe3]. (Actually, (3) ⇒ (2) is also true for general X, by [Pe3] and a
refinement due to Hagler [H2].) Of course (1) ⇒ (2) is obvious, and so is (3) ⇒ (4), since �2

is isometric to a subspace of L1. We show (4) ⇒ (2) ⇒ (1) to complete the proof. Let then
(x∗

n) in X∗ tend weakly to zero, yet for some δ > 0,

‖x∗
n‖ > δ for all n . (5.1)
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Then for each n, choose xn in Ba(X) with

|x∗
n(xn)| > δ . (5.2)

Now since X is complemented in C(K), X has the Dunford-Pettis property (i.e., X satisfies
the conclusion of Theorem 4.1). But then

(xn) has no weak-Cauchy sequence. (5.3)

Indeed, if a Banach space Y has the Dunford Pettis property, then y∗
n(yn) → 0 as n → ∞

whenever (y∗
n) is weakly null in Y and (yn) is weak-Cauchy in Y ; so (5.3) follows in virtue of

(5.2). But then by the �1-Theorem [Ro4], (xn) has a subsequence equivalent to the �1-basis,
hence (2) holds.

(2) ⇒ (1). Let P : C(K) → X be a projection and let Y be a subspace of X isomorphic to
�1. Let Z be the conjugation-closed norm-closed unital subalgebra of C(K) generated by Y .
Then by the Gelfand-Naimark theorem (which holds in this situation for real scalars also),
Z is isometric to C(L) for some compact metric space L. Let T = P |Z. Since T |Y = I|Y ,
T ∗(Z∗) is non-norm-separable. Hence (1) holds by Theorem 4.10.

For the remainder of our discussion, we assume the separable situation. Thus, K denotes a
compact metric space; a “C(K)-space” refers to C(K) for some K, so it is separable.

Now of course Theorem 5.3 reduces the CSP to the case of spaces X complemented in C(K)
with X∗ separable. If the CSP has an affirmative answer, such an X must be c0-saturated
(see Proposition 3.5). This motivates the following special case of the CSP, raised in the 70’s
by the author.

Problem 1. Let X be a complemented subspace of C(K) so that X contains a reflexive
subspace. Is X isomorphic to C([0, 1])?

Although this remains open, it was solved in such special cases as: �2 embeds in X, by
J. Bourgain, in a remarkable tour-de-force.

Theorem 5.7 [Bo2] Let X be a Banach space and let T : C(K) → X fix a subspace Y of
C(K) so that Y does not contain �∞n ’s uniformly. Then T ∗(X∗) is non-separable.

Of course then T fixes C([0, 1]) by Theorem 4.10, and so we have the

Corollary 5.8 Let X be complemented in C(K) and assume X contains a subspace Y which
does not contain �∞n ’s uniformly. Then X is isomorphic to C([0, 1]).

For the remainder of our discussion, we focus on spaces X with separable dual. The next
result is due to Y. Benyamini, and rests in part on a deep lemma due to M. Zippin ([Z1],
[Z2]) which we will also discuss.
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Theorem 5.9 [Be3] Let X be a complemented subspace of C(K). Then either X is isomor-
phic to c0 or C(ωω+) embeds in X.

The following result is an immediate consequence, in virtue of the decomposition method
and weak injectivity of C(ωω+), i.e., Theorem 3.1.

Corollary 5.10 A complemented subspace of C(ωω+) is isomorphic to c0 or to C(ωω+).

Now of course, Theorem 5.9 implies Zippin’s remarkable characterization of separably in-
jective spaces, since if C(ωω+) embeds in X, it also embeds complementably, and hence X
cannot be separably injective by Amir’s Theorem [A], obtained via Theorem 3.14 above.
In reality, Theorem 5.9 rests fundamentally on the main step in [Z1],which may be formu-
lated as follows [Be3]. (Let us call βε(BaX∗) the ε-Szlenk index of X, where βε is given in
Definition‘1.11.)

Lemma 5.11 [Z1] Let X be a Banach space with X∗ separable, and let 0 < ε < 1
2
. There

is a δ > 0 so that if W is a ω∗-compact totally disconnected (1 + δ)-norming subspace of
Ba(X∗) and if γ < ωα+1 with α the δ-Szlenk index of X, then there exists a subspace Y of
C(W ) with Y isometric to C(γ+) so that for all x ∈ X, there exists a y ∈ Y with

‖iW x − y‖ ≤ (1 + ε)‖iW x‖ . (5.4)

(Here, (iW x)(w) = w(x) for all w ∈ W . Also, iW = i if W = Ba X∗.) Zippin also proved
in [Z1] the interesting result that for any separable Banach space X and δ > 0, there is a
(1 + δ)-norming totally disconnected subset of Ba(X∗). Benyamini establishes the following
remarkable extension of this in the main new discovery in [Be3].

Theorem 5.12 Let X be a separable Banach space and ε > 0. There exists a ω∗-compact
(1 + ε)-norming subset W of Ba(X∗) and a norm one operator E : C(W ) → C(Ba(X∗)) so
that

‖EiW x − ix‖ ≤ ε‖x‖ for all x ∈ X . (5.5)

The preceding two rather deep results hold for general Banach spaces X. In particular,
the non-linear approximation resulting from Zippin’s Lemma shows that in a sense, the
C(K)-spaces with K countable play an unexpected role in the structure of general X. The
next quite simple result, however, needed for Theorem 5.9, bears solely on the structure
of complemented subspaces of C(K)-spaces. It yields (for possibly non-separable) X that
if X is isomorphic to a complemented subspace of some C(K)-space, then X is already
complemented in C(BaX∗) and moreover, the best possible norm of the projection is found
there.

Proposition 5.13 [BL] Let X be given, let L = Ba(X∗), and suppose λ ≥ 1 is such that for
some compact Hausdorff space Ω, there exist operators U : X → C(Ω) and V : C(Ω) → X
with

IX = V ◦ U and ‖U‖ ‖V ‖ ≤ λ . (5.6)
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Then i(X) is λ-complemented in C(L).

PROOF. Without loss of generality, ‖U‖ = 1. Let Ω be regarded as canonically embedded
in C(Ω)∗. Thus letting ϕ = U∗|Ω, ϕ maps Ω into L. So of course ϕ◦ maps C(L) into C(Ω).
We now simply check that

V ϕ◦i(x) = x for all x ∈ X . (5.7)

Then it follows that V ϕ◦ is a projection from C(L) onto iX, and of course

‖V ϕ◦‖ ≤ ‖V ‖ ‖ϕ◦‖ ≤ λ . (5.8)

Remark 5.14 Theorem 5.12 and the preceding Proposition may be applied to C(K) spaces
themselves to obtain that C(K) is (1+ ε)-isomorphic to a (1+ ε)-complemented subspace of
C(D), for all ε > 0. Thus the main result in [Be3] yields another proof of Milutin’s Theorem.
We prefer the exposition in Section 2, however, for the above result “loses” the isometric
fact that C(K)

cc
↪→ C(D) for all K.

The next remarkable result actually yields most of the known positive results in our present
context.

Theorem 5.15 [Be3] Let X∗ be separable, with X a Banach space isomorphic to a comple-
mented subspace of some C(K)-space. There exists a δ > 0 so that if α is the δ-Szlenk index
of X and γ < ωα+1, then X is isomorphic to a quotient space of C(γ+).

PROOF. By the preceding result, i(X) is already complemented in C(L) where L = Ba(X∗)
in its ω∗-topology. Let P : C(L) → i(X) be a projection and let λ = ‖P‖. Now let 0 < ε be
such that

ελ <
1

2
. (5.9)

Choose ε > δ > 0 satisfying the conclusion of Zippin’s Lemma. Now choose W a (1 + δ)-
norming totally disconnected ω∗-compact subset of L and a norm one operator E satisfying
the conclusion of Theorem 5.12; in particular, (5.5) holds. Finally let x ∈ X, and choose
y ∈ Y satisfying (5.4). Then since ‖E‖ = 1,

‖Ey − EiW x‖ ≤ ε‖iWx‖ . (5.10)

Then by (5.5)

‖Ey − ix‖ ≤ ε(‖iWx‖ + ‖x‖) ≤ 2ε‖x‖ . (5.11)

Since Pix = ix, we have

‖PEy − ix‖ ≤ 2ε‖P‖ ‖x‖ ≤ 2ελ‖x‖ . (5.12)
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Since 2ελ < 1 by (5.6) and of course ‖ix‖ = ‖x‖, it follows finally by (5.12) that PE|Y maps
Y onto X, completing the proof.

We now obtain the

Proof of Theorem 5.9 Suppose first that the ε-Szlenk index of X is finite for all ε > 0.
Then by Theorem 5.15, there is a positive integer n so that X is isomorphic to a quotient
space of C(ωn+). But in turn, C(ωn+) is isomorphic to c0, and so X is thus isomorphic to a
quotient space of c0. Finally, every quotient space of c0 is isomorphic to a subspace of c0 by a
result of Johnson and Zippin [JZ1]. But X is also a L∞-space by a result of J. Lindenstrauss
and the author [LR2], and hence also by the results in [JZ1], X is isomorphic to c0.

If the ε-Szlenk index of X is at least ω for some ε > 0, then X contains a subspace isomorphic
to C(ωω+) by Alspach’s result, Theorem 4.7.

Recall that a Banach space X is called an L∞ space if there is a λ > 1 so that for all finite
dimensional E ⊂ X, there exists a finite-dimensional F with E ⊂ F ⊂ X so that

d(F, �∞n ) ≤ λ where n = dim F . (5.13)

If λ works, X is called an L∞,λ-space.

Using partitions of unity, it is not hard to see that a C(K)-space is an L∞,1+ space, i.e., it is
an L∞,1+ε space for all ε > 0. However, a Banach space X is an L∞,1+ space if and only if it
is an L1(µ)-predual; i.e., X∗ is isometric to L1(µ) for some µ. We shall discuss these briefly
later on. The result of [LR2] mentioned above: A complemented subspace of an L∞ space is
also an L∞-space. In general, L∞-spaces are very far away from C(K)-spaces; however the
following result due to the author [Ro6], shows that small ones are very nice. (The result
extends that of [JZ1] mentioned above.)

Proposition 5.16 [Ro6] Let X be a L∞-space which is isomorphic to a subspace of a space
with an unconditional basis. Then X is isomorphic to c0.

(This was subsequently extended in [GJ] to L∞-spaces which embed in a σ-σ Banach lattice.)
Theorem 5.15 actually yields that if X is as in its statement, there exists a countable compact
K so that X and C(K) have the same Szlenk index, with X isomorphic to a quotient space
of C(K). Remarkably, Alspach and Benyamini prove in [AB2] that for any L∞-space X with
X∗ separable, one has that C(K) is isomorphic to a quotient space of X, K as above. So in
particular, using also a result from Section 2, we have

Theorem 5.17 [Be3], [AB2] Let X be isomorphic to a complemented subspace of a C(K)
space with X∗ separable. Then the Szlenk index of X is ωα+1 for some countable ordinal α
and then X and C(ωωα

+) are each isomorphic to a quotient space of the other.
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Despite the many positive results discussed so far, the eventual answer to the CSP seems far
from clear. We conclude this general discussion with two more problems on special cases.

Let then X be isomorphic to a complemented subspace of a C(K)-space with X∗ separable.

Problem 2. Does X embed in C(α+) for some countable ordinal α? What if Sz(X) = ω2?

Finally, what is the structure of complemented subspaces of C(ωω2
+)? Specifically,

Problem 3. Let X be a complemented subspace of C(ωω2
+) with Sz(X) = ω2. Is X iso-

morphic to C(ωω+)? If Sz(X) = ω3, is X isomorphic to C(ωω2
+) itself?

We next indicate complements to our discussion. Alspach constructs in [A1] a quotient space
of C(ωω+) which does not embed in C(α+) for any ordinal α; thus Problem 2 cannot
be positively solved by just going through quotient maps. The remarkable fixing results
Theorems 4.7 and 4.9 cannot be extended without paying some price. Alspach proves in [A3]
that there is actually a surjective operator on C(ωω2

+) which does not fix C(ωω2
+). This

result has recently been extended by Gasparis [Ga] to the spaces C(ωωα+1
+) for all ordinals α

and an even wider class of counterexamples is given by Alspach in [A3]. Thus an affirmative
answer even to Problem 3 must eventually use the assumption that one has a projection,
not just an operator. We note also results of J. Wolfe [W], which yield rather complicated
necessary and sufficient conditions that an operator on a C(K) space fixes C(α+).

Some of the original motivation for the concept of L∞-spaces was that these might charac-
terize C(K) spaces by purely local means. However Benyamini and Lindenstrauss discovered
this is not the case even for L∞,1+ spaces. They construct in [BL] a Banach space X with
X∗ isometric to �1, such that X is not isomorphic to a complemented subspace of C([0, 1]).
We note in passing, however, that the CSP is open for separable spaces X (in its statement)
which are themselves L1(µ) preduals. It is proved in [JZ2] that separable L1(µ) preduals X
are actually isometric to quotient spaces of C([0, 1]). Hence if X is such a space and X∗ is
non-separable, X contains for all ε > 0 a subspace (1 + ε)-isomorphic to C([0, 1]), by the
results of [Ro2] discussed above. Also, it thus follows by Theorem 4.5 that separable L1(µ)
preduals contain isomorphic copies of c0. J. Bourgain and F. Delbaen prove in [BD] that sep-
arable L∞ spaces are not even isomorphic to quotients of C([0, 1]) in general; they exhibit
for example an L∞ space such that every subspace contains a further reflexive subspace. For
further counterexample L∞ spaces of a quite general nature, see [Bo-Pe].

Here are some positive results on the structure of separable L∞ spaces, which of course yield
results on complemented subspaces of C(K) spaces. Results of D.R. Lewis and C. Stegall
[LS] and of C. Stegall [St] yield that if X is a separable L∞ space, then X∗ is isomorphic
to �1 or to C([0, 1])∗. Thus in particular, the duals of complemented subspaces of separable
C(K) spaces are classified. It is proved in [JRZ] that every separable L∞ space X has a basis
which is moreover shrinking in case X∗ is separable. A later refinement in [NW] yields that
the basis (bα) may be chosen with d([bj ]

n
j=1, �

∞
n ) ≤ λ for all n (for some λ); of course this

characteristizes L∞ spaces.
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We conclude with a brief discussion of the postive solution to the CSP problem in the
isometric setting. Let L be a locally compact 2nd countable metrizable space and let X be
a contractively complemented subspace of C0(L). Then X is isomorphic to a C(K) space.
The reason for this: such spaces X are characterized isometrically as Cσ-spaces. This is
proved for real scalars in [LW], and for complex scalars in [FR]. For real scalars, X is a Cσ

subspace of C(L) provided there exists an involutive homeomorphism σ : L → L such that
X = {f ∈ C(L) : f(σx) = −f(x) for all x ∈ X}. See [FR] for the complex scalar case. It
follows by results of Benyamini in [Be1] that such spaces are isomorphic to C(K)-spaces;
in fact it is proved in [Be1] that separable G-spaces are isomorphic to C(K)-spaces. This
family of spaces includes closed sublattices of C(K) spaces. It then follows (using the known
structure of Banach lattices) that if a complemented subspace X of a separable C(K)-space
is isomorphic to a Banach lattice, Xis isomorphic to a C(K)-space. On the other hand, it
remains an open question, if complemented subspaces of Banach lattices are isomorphic to
Banach lattices. We note finally that Benyamini later constructed a counter-example to his
result in the non-separable setting, obtaining a non-separable sublattice of a C(K) space
which is not isomorphic to a complemented subspace of C(L) for any compact Hausdorff
space L [Be2]. For further complements on the CSP in the non-separable setting, see [Z2];
for properties of non-separable C(K) spaces, see [Ne] and [Ziz].

We note finally the following complement to the isometric setting [AB3]. If a Banach space
X is (1 + ε)-isomorphic to a (1 + ε)-complemented subspace of a C(K)-space for all ε > 0,
then X is contractively complemented in C(L) where L = (Ba(X)∗, ω∗), hence X is a Cσ

space.
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