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Abstract

It is proved that every non-trivial weak-Cauchy sequence in a Banach space with the PCP (the Point of
Continuity Property) has a boundedly complete basic subsequence. The following result, due independently
to S. Bellenot and C. Finet, is then deduced as a corollary. If a Banach space X has separable dual and
the PCP, then every non-trivial weak-Cauchy sequence in X has a subsequence spanning an order-one
quasi-reflexive space.
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1. Introduction

We use standard Banach space facts and terminology. Let us just recall that a sequence (bj )

in a Banach space is a basic sequence provided it is a Schauder-basis for its closed linear span,
denoted [bj ]. A basic sequence (bj ) is called boundedly complete provided whenever scalars
(cj ) satisfy supn ‖∑n

j=1 cjbj‖ < ∞, then
∑

cjbj converges. A weak-Cauchy sequence is called
non-trivial if it does not converge weakly. Our main result goes as follows:

Theorem 1. Let X be a Banach space with the Point of Continuity Property (the PCP). Then
every non-trivial weak-Cauchy sequence in X has a boundedly complete basic subsequence.
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Recall that a Banach space is said to have the PCP provided every non-empty closed subset
admits a point of continuity from the weak to norm topologies. It is known that separable dual
spaces, and more generally, spaces with the Radon–Nikodym property, have the PCP.

It is also known that there are separable Banach spaces with the PCP and failing the RNP
[2], and in fact there exists a separable space whose dual is non-separable and has the PCP. (See
[6] and [11] for references and further information; a remarkable result of Charles Stegall [14]
asserts that a non-separable dual of a separable Banach space fails the RNP.) For an interesting
“tree” characterization of Banach spaces having the PCP with separable duals, see [4]. A (quite
special) case of our main result is also obtained in [4]. For a recent application of Theorem 1,
see [13]. We also obtain the following immediate consequence of Theorem 1 and previously
known results: Every semi-normalized basic sequence in a Banach space with the PCP has a
boundedly complete subsequence. (In case the Banach space is isomorphic to a subspace of a
separable dual space, this follows easily from the l1-Theorem and Theorem III.2 of [9].)

Of course boundedly complete basic sequences span Banach spaces isomorphic to a dual
space; moreover it was previously known that Banach spaces with the PCP have boundedly
complete basic sequences (see [6]). (All Banach spaces shall be assumed infinite-dimensional.)
This latter result also easily follows from our main result and the “�1-Theorem” [10]. Indeed,
if X is a reflexive Banach space, then any basic sequence is boundedly complete; but if X is
non-reflexive with the PCP, then by the �1-Theorem, either X has a sequence equivalent to the
usual �1-basis, which of course is boundedly complete, or X has a non-trivial weak-Cauchy
sequence.

We recall that a basic sequence (bj ) in a Banach space is called (s) (respectively (s.s.)) if
(bj ) is a weak-Cauchy sequence so that whenever scalars (cj ) are such that

∑
cjbj converges

(respectively supn ‖∑n
j=1 cj bj‖ < ∞), then

∑
cj converges ((s) stands for “summing”, (s.s.)

stands for “strongly summing”). As shown in [8] (cf. also [12, Proposition 2.2]), every non-trivial
weak-Cauchy sequence in a Banach space has an (s)-subsequence. Now it is proved in [12] that
a Banach space X contains no isomorph of c0 if and only if every non-trivial weak-Cauchy
sequence in X has an (s.s.) subsequence. Thus if X has the PCP, we obtain a better behaved sub-
sequence, for boundedly complete (s)-sequences are obviously (s.s.). However, the existence of
boundedly complete (s)-sequences in a general Banach space appears to be a rare phenomenon.
Indeed, W.T. Gowers [7] has constructed a Banach space X containing no (infinite-dimensional)
subspace isomorphic either to c0 or to a dual space. Thus X has no boundedly complete basic
sequences, although it is “saturated” with (s.s.) ones, by the above-mentioned result in [12].

Our main result is proved using arguments along the lines of those in S. Bellenot [1] and
C. Finet [5], and uses (as do the above authors) the fundamental result of N. Ghoussoub
and B. Maurey [6] that every separable Banach space with the PCP has a boundedly com-
plete skipped-blocking decomposition. We prove Theorem 1 by first observing in Proposition 2
that an (s)-sequence is boundedly complete if and only if its difference sequence is skipped-
boundedly complete. Then we show that any non-trivial weak-Cauchy sequence in a space
with a skipped-boundedly complete decomposition may be refined so that its differences al-
most lie in the elements of the decomposition in such a way that a skipped-blocking of the
differences almost lies in a skipped-blocking of the decomposition, hence is boundedly com-
plete.

Next, we give an argument of Bellenot which yields that any non-trivial weak-Cauchy se-
quence in a space with separable dual, has a subsequence whose differences form a shrinking
basic sequence (Proposition 5). Finally, we observe that if a Banach space B is spanned by a
boundedly complete (s)-basis with difference sequence (ej ), and Y denotes the closed linear
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span of the e∗
j ’s in B∗, then the canonical map of B into Y ∗ has range of codimension one

(Proposition 6). These considerations then immediately yield the main result of Bellenot [1]
and Finet [5]: if a Banach space X has separable dual and the PCP, then every non-trivial
weak-Cauchy sequence in X has a subsequence spanning an order-one quasi-reflexive space
(Corollary 6 below).

2. The PCP and the notion of the boundedly complete skipped blocking property (the bcsbp,
to be defined shortly), were introduced in [2], where it was proved that the bcsbp implies the
PCP. Subsequently N. Ghoussoub and B. Maurey proved the remarkable result that the converse
is true (for separable spaces) in [6]. (For a later exposition of these results, see [11].)

To define the bcsbp, we first recall that a sequence of non-zero finite-dimensional subspaces
(Fj ) of a Banach space X is called a decomposition of X if [Fj ] = X and Fi ∩ [Fj ]j �=i = {0} for
all i. (For (Aj ) a sequence of subsets of X, [Aj ] denotes the closed linear span of the Aj ’s.)

Given (Fj ) a decomposition and I a finite non-empty interval of integers, we denote the linear
span of the Fj ’s for j in I by FI .

A sequence (Fj ) of non-zero finite-dimensional subspaces of a Banach space is called an FDD
provided (Fj ) is a Schauder-decomposition for [Fj ]. That is, for every x in [Fj ], there exists a
unique sequence (fj ) with fj ∈ Fj for all j and x = ∑

fj . A classical result of Banach yields
that an FDD is a decomposition for its closed linear span.

Definition 1. A decomposition (Fj ) for a Banach space X is called a boundedly complete
skipped-blocking decomposition if given a sequence (nj ) of non-negative integers with nj +1 <

nj+1 for all j , then (F(nj ,nj+1)) is a boundedly complete FDD. That is, (F(nj ,nj+1)) is an FDD so
that whenever fj ∈ (F(nj ,nj+1)) for all j and supn ‖∑n

j=1 fj‖ < ∞, then
∑

fj converges.

Of course we say that X has the bcsbp if X admits a boundedly complete skipped-blocking
decomposition.

Definition 2. A sequence (ej ) in a Banach space is called skipped boundedly complete if letting
Fj be the span of ej for all j , then (Fj ) is a boundedly complete skipped-blocking decomposition
for [ej ].

Remark. The following equivalences are easily established ((xj ) is called a proper subsequence
of (bj ) if (xj ) = (bnj

) where N ∼ {n1, n2, . . .} is infinite). Let (ej ) be a basic sequence in a
Banach space. The following are equivalent:

(i) (ej ) is skipped boundedly complete.
(ii) Every proper subsequence of (ej ) is boundedly complete.

(iii) Given a sequence of scalars (cj ) with cj = 0 for infinitely many j and supn ‖∑n
j=1 cj ej‖ <

∞ , then
∑

cj ej converges.

The next result gives some simple equivalences for an (s)-sequence to be boundedly complete.
(For a sequence (bj ), (ej ) is called the difference sequence of (bj ) if e1 = b1 and ej = bj −bj−1

for all j > 1. We recall that if (bj ) is an (s)-sequence, its difference sequence (ej ) is basic; cf.
Proposition 2.1 of [12].)
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Proposition 2. Let (bj ) be an (s)-sequence with difference sequence (ej ). The following asser-
tions are equivalent:

(a) (bj ) is boundedly complete.
(b) (ej ) is skipped boundedly complete.
(c) (ej ) is a (c.c.)-sequence so that whenever supn ‖∑n

j=1 cj ej‖ < ∞ and limj→∞ cj = 0,
then

∑
cj ej converges.

Remark. Note that (ej ) cannot itself be boundedly complete since (‖∑n
j=1 ej‖) = (‖bn‖) is

a bounded sequence. Also, recall that a basic sequence (ej ) is defined to be (c.c.) provided
(
∑n

j=1 ej ) is weak-Cauchy and whenever supn ‖∑n
j=1 cj ej‖ < ∞, then (cj ) converges. (“(c.c.)”

stands for “coefficient converging”.)

Proof of Proposition 2. (a) ⇒ (b). We use equivalence (iii) in the remark following Definition 2.
Suppose cj ’s are scalars with cj = 0 for infinitely many j and supn ‖∑n

j=1 cj ej‖ < ∞. Since
(ej ) is a basic sequence, supj |cj | < ∞. Now for all n,

n∑
j=1

cj ej = (c1 − c2)b1 + · · · + (cn−1 − cn)bn−1 + cnbn. (1)

It follows that supn ‖∑n
j=1(cj − cj+1)bj‖ < ∞, hence

∑
(cj − cj+1)bj converges. Choose

n1 < n2 < · · · with cnj
= 0 for all j . Then by (1),

ni∑
j=1

cj ej =
ni−1∑
j=1

(cj − cj+1)bj for all i,

hence limi→∞
∑ni

j=1 cj ej exists, so
∑

cj ej converges since (ej ) is a basic sequence.
(b) ⇒ (c). It follows immediately from Proposition 2.7 of [12] that if (ej ) satisfies (b), (ej ) is

(c.c.). Indeed, if the scalars (cj ) satisfy the conditions in (iii) of the remark after Definition 2,
then since

∑
cj ej converges and (ej ) is semi-normalized, cj → 0, so (ej ) is (c.c.) by 2.7 of [12].

Now let the cj ’s satisfy the condition in (c), and choose (nj ) an increasing sequence of indices
with |cnj

| < 1/2j for all j . Since
∑

cnj
enj

converges absolutely, its partial sums are bounded, so

defining c′
j = cj if j �= ni for any i and c′

j = 0 if j = ni for some i, then supk ‖∑k
j=1 c′

j ej‖ < ∞,

whence
∑k

j=1 c′
j ej converges by (b), so

∑
c′
j ej + ∑

cnj
enj

converges, i.e.,
∑

cj ej converges.
(c) ⇒ (a). Let (αj ) be scalars so that supn ‖∑n

j=1 αjbj‖ < ∞. Since (ej ) is (c.c.), (bj ) is
(s.s.) by Proposition 2.3 of [12], and hence

∑
αj converges. Now define (cj ) by cj = ∑∞

i=j αi

for all j . Then of course cj → 0 and for all n,

n∑
j=1

cj ej =
n−1∑
j=1

αjbj + cnbn by (1). (2)

Thus since supn ‖∑n
j=1 cj ej‖ < ∞,

∑
cj ej converges by (c), so since cn → 0,

∑
αjbj con-

verges by (2). �
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We next give a simple criterion for a basic sequence to be skipped boundedly complete. For

F a non-empty subset of X and x ∈ X, d(x,F )
df= inf{‖x − f ‖: f ∈ F }.

Lemma 3. Let (Fj ) be a skipped boundedly complete decomposition of a Banach space X, and
(ej ) a semi-normalized basic sequence in X. Assume there exist integers 0 = n0 < n1 < n2 < · · ·
so that

∞∑
j=1

d(ej ,F(nj−1,nj+1)) < ∞. (3)

Then (ej ) is skipped boundedly complete.

Proof. We may choose (uj ) non-zero vectors so that for all j , uj ∈ F(nj−1,nj+1) and

‖ej − uj‖ � 2d(ej ,F(nj−1,nj+1)) for all j. (4)

Thus
∑‖ej − uj‖ < ∞ by (3), and it follows by a standard perturbation result that (uj ) is

a basic sequence equivalent to (ej ). Thus we need only prove that (uj ) is skipped boundedly
complete. Let (mj ) be given with m0 = 0 and mi−1 + 1 < mi for all i; we need only show that
([uj ]j∈(mi−1,mi))

∞
i=1 is a boundedly complete decomposition. Now this decomposition lies inside

the one for the Fj ’s, which skips Fnm1
,Fnm2

, . . . . That is, setting �j = nmj
for all j , we have

that [ui]i∈(mj−1,mj ) ⊂ F(�j−1,�j ) for all j . Since (F(�j−1,�j )) is a bounded complete FDD, so is
[ui]i∈(mj−1,mj ). �

We are now prepared for the

Proof of Theorem 1. Let (bi) be a non-trivial weak-Cauchy sequence in X. We may assume
without loss of generality that X is separable, for we could replace X by [bi]. Now by pass-
ing to a subsequence of (bi), we may assume that (bi) is an (s)-sequence. By the basic result
in [6], since X is assumed to have the PCP, there exists a boundedly complete skipped blocking
decomposition (Fj ) for X. Next, we may assume without loss of generality that

bi is in the linear span of the Fj ’s for all i. (5)

Indeed, we may choose a sequence (yi) of non-zero elements of the linear span of the Fj ’s
with

∑‖bi − yi‖ < ∞. It then follows by a standard perturbation argument that (yi) is a basic
sequence equivalent to (bi); in particular, (yi) is an (s)-sequence. If then m1 < m2 < · · · are such
that (ymi

) is boundedly complete, so is (bmi
).

Now by the definition of a decomposition, for each j there exists a projection Qj from X

onto Fj with kernel [Fi]i �=j . Each Qj is then a bounded linear projection, although the Qj ’s

are not in general uniformly bounded. Thus also defining Pj = ∑j

i=1 Qi for all j , Pj is again a
bounded linear projection for each j .

A simple compactness argument shows that we may choose (b′
j ) a subsequence of (bj ) so

that

lim
j→∞Pk

(
b′
j

)
exists for all k = 1,2, . . . . (6)
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Now setting n0 = 0, n1 = 1, we claim we can choose 1 < n2 < n3 < · · · and (xj ) a subsequence
of (b′

j ) so that for all j ,

xj ∈ F[1,nj+1) (7)

and

∥∥Pnj
(xk) − Pnj

(xj )
∥∥ <

1

2j
for all k > j. (8)

Once this is done, we have that (xj ) is the desired boundedly complete subsequence. Indeed,
let (ej ) be its difference sequence, fix j , and let k = nj−1, � = nj+1 − 1. Then by (7), xj and
xj−1 lie in F[1,�]. It follows that

(I − Pk)(xj − xj−1) ∈ F(nj−1,nj+1). (9)

But by (8), ‖Pk(xj − xj−1)‖ < 1/2j−1. Thus we have

d(ej ,F(nj−1,nj+1)) <
1

2j−1
. (10)

Of course (10) and Lemma 3 yield that (xj ) is boundedly complete.

It remains to construct n2 < n3 < · · · and m1 < m2 < · · · so that (xj )
df= (b′

mj
) satisfies (7)

and (8).
First, using (6), choose m1 so that

∥∥Pn1

(
b′
m1

) − Pn1

(
b′
j

)∥∥ <
1

2
for all j � m1. (11)

Next using (5), choose n2 > n1 so that

b′
m1

∈ F[1,n2]. (12)

Now suppose j > 1 and mj−1 and nj have been chosen. Then using (6), choose mj > mj−1
so that

∥∥Pnj

(
b′
mj

) − Pnj

(
b′
k

)∥∥ <
1

2j
for all k > mj . (13)

Finally, choose nj+1 > nj so that

b′
mj

∈ F[1,nj+1]. (14)

This completes the inductive construction of the mj ’s and nj ’s. Now (14) and (13) yield that
(7) and (8) hold for all j , completing the proof. �
Remark. The following consequence of the main result of [12, Theorem 1.1], complementary to
Theorem 1, is motivated by a question of F. Chaatit.
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Suppose (bj ) is a semi-normalized non-weakly null basic sequence in a Banach space, so that
whenever (cj ) is a sequence of scalars with supn ‖∑n

j=1 cjbj‖ < ∞ and
∑

cj convergent,
then

∑
cj bj converges. Then either (bj ) has a convex block basis equivalent to the summing

basis, or (bj ) has a boundedly complete subsequence.

To see this, since (bj ) is non-weakly null, and (bj ) is basic, either (bj ) has a non-trivial weak-
Cauchy subsequence or a subsequence equivalent to the �1-basis, by the �1-Theorem. Of course
in the latter case, the subsequence is boundedly complete. In the former case, by the c0-Theorem
(Theorem 1.1 of [12]), either (bj ) has a convex block basis equivalent to the summing basis, or
an (s.s.)-subsequence (b′

j ). But then of course (b′
j ) satisfies the same hypotheses as (bj ), whence

(b′
j ) is boundedly complete.

Corollary 4. Let X be a Banach space with the PCP. Then every semi-normalized basic sequence
in X has a boundedly complete subsequence.

Proof. Let (xj ) be a semi-normalized basic sequence in X. If (xj ) has a weakly convergent
subsequence (x′

j ), then (x′
j ) must converge weakly to zero, for no basic sequence can converge

weakly to something non-zero. Thus by a result in [6], (x′
j ) has a boundedly complete subse-

quence.
If (xj ) has a subsequence (x′

j ) equivalent to the �1-basis, then of course (x′
j ) is boundedly

complete. If (xj ) has no weakly convergent subsequence and no subsequence equivalent to the
�1-bases, (xj ) has a weak-Cauchy subsequence (x′

j ) by the �1-Theorem [10]. Of course then
(x′

j ) is a non-trivial weak-Cauchy sequence, so (x′
j ) has a boundedly complete subsequence by

Theorem 1. �
Remarks. 1. It follows from the results of [6] that if X is a Banach space with the PCP, then every
normalized weakly null tree in X has a boundedly complete branch. (See [4] for the relevant
definitions.) We can of course assume that X is separable. Thus X has a boundedly complete
skipped blocking decomposition, by [6], and it is not hard to see that the claimed result follows
from this.

2. We do not know the answer to the following question. Is the converse to Corollary 4 valid
if it is assumed that X has no subspace isomorphic to �1? The converse is false without this
assumption, for by a result in [3], there exists a subspace X of L1 with the Strong Schur Property,
failing the PCP.

We conclude with a discussion of the above mentioned result of S. Bellenot and C. Finet.
Recall that a basic sequence (xj ) in a Banach space X is shrinking if [x∗

j ] = [xj ]∗, where [x∗
j ]

are the functionals biorthogonal to the xj ’s (in [xj ]∗). It is a standard result that a basic sequence
(ej ) is shrinking if and only if every f in X∗ satisfies the condition∥∥f |[ei]∞i=n

∥∥ → 0 as n → ∞. (15)

The proof of the next result is as in [1], and is given here for the sake of completeness.

Proposition 5. Let X be a Banach space with X∗ separable and (xj ) be a non-trivial weak-
Cauchy sequence in X. Then (xj ) has an (s)-subsequence (bj ) whose difference sequence (ej )

is shrinking.
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Proof. Let {d1, d2, . . .} be a countable dense subset of X∗. By Proposition 2.2 of [12] and a
simple compactness argument, we may choose (bj ) an (s)-subsequence of (xj ) so that (setting
b0 = 0),

∞∑
i=1

∣∣bj (di) − bj−1(di)
∣∣ < ∞ for all i. (16)

Letting (ej ) be the difference sequence of (bj ), (16) yields that every f in X∗ satisfies (15).
Indeed, first if f = dj for some j , letting τ = maxi ‖e∗

i ‖, we have that

f

(
�∑

i=k

ciei

)
� τ

(
�∑

i=k

∣∣f (ei)
∣∣)

∥∥∥∥∥
�∑

i=k

ciei

∥∥∥∥∥
for all scalars c1, . . . , c�. Hence

∥∥f |[ei]∞i=k

∥∥ � τ

∞∑
k

∣∣f (ei)
∣∣ → 0 as k → ∞, by (16).

Finally, if f is arbitrary, let ε > 0 and choose j so that ‖f − dj‖ < ε. Then

lim
n→∞

∥∥f |[ei]∞i=n

∥∥ � lim
n→∞

∥∥dj |[ei]∞i=n

∥∥ + ε = ε.

Since ε > 0 is arbitrary, (15) holds. �
Remark. It is evident that if (bj ) is an (s)-sequence with difference sequence (ej ), then (ej )

is shrinking if and only if (bj ) spans a codimension-one subspace of [bj ]∗. Indeed, suppose
X = [bj ] and let G be the weak*-limit of the bj ’s in X∗∗; let s be the summing functional.
Then G(s) = 1 and G(b∗

j ) = 0 for all j . Hence [b∗
j ] �= X∗. Of course s = e∗

1 and b∗
j = e∗

j − e∗
j+1

for all j . Hence if (ej ) is shrinking, [b∗
j ] ⊕ [s] = X∗. But conversely if Y

df= [e∗
j − e∗

j+1]∞j=1 is
codimension one in X∗, then since e∗

1 does not belong to Y , X∗ = [e∗
j ].

The next result shows that the span of a boundedly complete (s)-sequence naturally embeds
as a codimension-one subspace of a certain dual space. For Y a linear subspace of X∗, the dual
of X, we define the canonical map T :X → Y ∗ by (T x)(y) = y(x) for all x ∈ X, y ∈ Y .

Proposition 6. Let (bj ) be a boundedly complete (s)-basis for a Banach space B , (ej ) its differ-
ence sequence, and T : B → [e∗

j ]∗ the canonical map. Then T B is a codimension-one subspace
of [e∗

j ]∗.

Proof. [e∗
j ]∗ may be canonically identified with B((ej )), the set of all sequences (cj ) so that

supn ‖∑n
j=1 cj ej‖ < ∞. In fact, if F ∈ [e∗

j ]∗, then F = ∑∞
j=1 F(e∗

j )T ej , the convergence be-
ing weak*, and F → (F (e∗

j ))
∞
j=1 is the desired isomorphism. Since (ej ) is an (s)-sequence,

(
∑n

j=1 ej ) is a weak-Cauchy sequence, and it follows that G
df= ∑∞

j=1 T ej is an element of [e∗
j ]∗

which does not belong to T B , hence T B is of codimension at least one. Now conversely, suppose
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F ∈ [e∗
j ]∗, so F = ∑∞

j=1 F(e∗
j )T ej , the convergence being weak*. Of course since T is an (into)

isomorphism,

sup
n

∥∥∥∥∥
n∑

j=1

F
(
e∗
j

)
ej

∥∥∥∥∥ < ∞. (17)

Since (bj ) is boundedly complete, (ej ) is a (c.c.)-sequence (by Proposition 2(c)), hence

lim
n→∞F

(
e∗
j

) df= c exists. (18)

But then we have that

sup
n

∥∥∥∥∥
n∑

j=1

(
F

(
e∗
j

) − c
)
ej

∥∥∥∥∥ < ∞. (19)

Thus by Proposition 2(c),
∑∞

j=1(F (e∗
j ) − c)ej converges to an element b of B . But then F =

T b + cG. This proves [e∗
j ]∗ = T B ⊕ [G]. �

The above mentioned result of S. Bellenot and C. Finet now follows directly.

Corollary 7. (See [1] and [5]). Let X have the PCP and suppose X∗ is separable. Then every
non-trivial weak-Cauchy sequence in X has a boundedly complete subsequence spanning an
order-one quasi-reflexive space.

Proof. Let (xj ) be a non-trivial weak-Cauchy sequence in X. By Theorem 1, (xj ) has a bound-
edly complete (s)-subsequence (x′

j ). By Proposition 4, (x′
j ) has a further subsequence (bj )

whose difference sequence (ej ) is shrinking; thus [e∗
j ] = B∗, where B = [bj ]. Then the map T

of Proposition 6 is simply the canonical embedding of B in B∗∗, whence since B∗∗/B is one-
dimensional by Proposition 6, B is order-one quasi-reflexive. �
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